1 Induction

Prove the following statements for all positive integers n using induction.

- 1. $1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.
- $2. \ 2^n \ge 1 + n$
- 3. n(n+1)(n+2) is divisible by 6.
- 4. Let p be a prime. We know that if $p \mid ab$, then $p \mid a$ or $p \mid b$. Show using induction on n that if $p \mid a_1 \dots a_n$, then p divides at least one of a_1, \dots, a_n (Hint: Statement is true at n = 2).
- 5. $x^n y^n$ is divisible by x y for all integers x, y.
- 6. If n is odd, then $x^n + y^n$ is divisible by x + y.
- 7. $4^{2n+1} + 3^{n+2}$ is divisible by 13.
- 8. $3^{3n+3} 26n 27$ is divisible by 169.
- 9. $5^{2n} 6n + 8$ is divisible by 9.
- *10. Prove that for $n \geq 3$, there are **odd** positive integers x and y such that $2^n = 7x^2 + y^2$.

2 Divisiblity and primes

- 1. Find all positive integers n such that $n+2 \mid n^2+4$.
- 2. Prove that $4 \mid 5^n 1$ for all n (You may use problem 5 in the above section).
- 3. Prove that $29 \mid 2^{466} + 5^{466}$ (Use problem 6 of above section).
- 4. Suppose that p and p+2 are both primes. Such pairs of primes are called **twin primes**. For example, the pairs (3,5), (5,7), (11,13), (17,19) are twin primes. Prove that if p and p+2 are twin primes with p>3, then the number p+1 is divisible by 6.
- *5. Suppose that p, p+2 and p^2+2p-2 are all prime numbers. Prove that p=3.
- 6. Let a and b be positive integers such that a + b + ab = 2020. Prove that a + b = 88.
- 7. Let a and b be positive integers such that a + b = ab. Prove that a = b = 2.
- *8. Suppose that $2^n 1$ is prime. Then n is prime.
- *9. If $n^4 + 4^n$ is prime, prove that n = 1.

3 GCD, LCM and Euclid's Algorithm

- 1. Suppose that $c \mid a$ and $c \mid b$. Then $c \mid (a, b)$.
- 2. Suppose that $a \mid c$ and $b \mid c$. Then $[a, b] \mid c$.
- 3. Find all positive integers a and b such that a + b + [a, b] = 25.
- *4. A point (x, y) in the XY plane is called an integer point if both x and y are integers. How many integer points lie on the line joining the points (0, 0) and (88, 64).
- *5 Using Euclid's algorithm, prove that $(2^n 1, 2^m 1) = 2^{(n,m)} 1$, where (n, m) denotes the GCD of m and n.

(68, 263), (72, 196), (1000, 5505), (36, 333)
Problems marked with * are difficult.

4. Find GCD of the following pairs of numbers using the Euclid's algorithm: