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The version most commonly used these days is Heath’s translation:



Or Joyce’s online edition based on Heath:



From A History of Mathematics by Carl B. Boyer:

“The Elements of Euclid not only was the earliest major Greek
mathematical work to come down to us, but also the most
influential textbook of all times.”

But the Elements is much more than a textbook - its method of
starting with a small set of basic “self-evident” axioms and
deducing everything from them is followed by mathematicians 2300
years later.

However, the axioms used by mathematicians today are different,
and are based on a careful analysis of language.
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In this Lecture

I Revisit the algorithm for finding the gcd (HCF) of two
numbers

I Understand its relation to finding a common meaure

I Understand the notion of irrational numbers

The arrangement of ideas is from the Elements but the emphasis is
on discussing ideas, and not on giving Euclid-style proofs of
theorems.
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Commensurable Magnitudes

Definition (Elements, Book X, Definition 1)

Those magnitudes are said to be commensurable which are
measured by the same measure, and those incommensurable which
cannot have any common measure.

What does it mean to be “measured by a measure”?

a

b

a a a a a a a

The magnitude a measures the magnitude b (b = 7a)

c
a a a a

d

d d d

d d

d measures b, but not c .
So d is not a common measure of b and c .
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Commensurability and Rational Numbers

Theorem
If magnitudes a and b are commensurable then the ration a/b is a
rational number.

Proof.
Suppose c is a common measure of a and b:

a = mc , b = nc ,

m and n are integers.
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d = 2e

So e is a common measure of a and b, and furthermore, the ratio
a : b is 12 : 7.
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Consider the equations from the previous slide:

a = b + c c < b (1)

b = c + d d < c (2)

c = 2d + e e < d (3)

d = 2e (4)

The equation (1) tells us:

a

b
= 1 +

Similarly, the equations (2), (3) and (4) tell us:

b

c
= 1 +

1

c/d
;

c

d
= 2 +

1

d/e
;

d

e
= 2.

Putting these together gives the continued fraction expansion:

12

7
=

a

b
= 1 +

1

1 + 1
2+ 1

2

.
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Euclid’s Theorem

Euclid’s algorithm, if it ends, gives a common measure for the
magnitudes a and b.
Euclid proved that if this algorithm does not end, then a and b can
not have a common measure, i.e., they are incommensurable.

Theorem (Book X, Proposition 2)

If, when the less of two unequal magnitudes is continually
subtracted in turn from the greater that which is left never
measures the one before it, then the two magnitudes are
incommensurable.
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The Key to Understanding Euclid’s Theorem

b

a

b b c

I c < a/2, so if Euclid’s algorithm continues indefinitely, the
magnitudes a, b, c , etc., diminish to become smaller than any
given magnitude.

I The common measures of a and b are the same as the
common measures of b and c .
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The Proof of Euclid’s Theorem

Suppose that a and b have a common measure; call it x .
Then x is a common measure of all the magnitudes a, b, c , etc.,
obtained by Euclid’s algorithm.
However, these will eventually diminish to become smaller than x ,
which is absurd.
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Relation to Rational Numbers

If a and b are commensurable then a/b is a rational number.
If a and b are not commensurable then a/b is an irrational number.
On the other hand, if Euclid’s algorithm ends, a/b has a finite
continued fraction expansion, otherwise it’s continued fraction
expansion is infinite.

Theorem (Reinterpretation of Euclid’s theorem)

Rational numbers are precisely those numbers which have finite
continued fraction expansions.
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Existence of Non-Commensurable Magnitudes

Theorem (Book X, Proposition 9)

The squares on straight lines commensurable in length have to one
another the ratio which a square number has to a square number;
and squares which have to one another the ratio which a square
number has to a square number also have their sides
commensurable in length. But the squares on straight lines
incommensurable in length do not have to one another the ratio
which a square number has to a square number; and squares which
do not have to one another the ratio which a square number has to
a square number also do not have their sides commensurable in
length either.



Illustration of the Last Point

b

a

By Pythagoras’s theorem:
a2 = 2b2.
So the squares of a and b do not
have to one another a ratio
which is a square number.
Euclid’s theorem says that a and
b are not commensurable, or in
other words,

√
2 is an irrational

number.
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