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Abstract This paper shows that over finite word models, the interval logic of
Halpern and Shoham (Halpern and Shoham (1991)) is expressively complete for
two-variable logic with betweenness relations, introduced in Krebs et al. (2016).
Satisfiability of formulae can be checked in polynomial space.

1 Introduction

Soon after Halpern et al. (1983); Moszkowski (1983) came up with interval tem-
poral logic, with its characteristic binary chop operation, Halpern and Shoham
(1991) defined unary interval logics, using modalities based on Allen (1983) inter-
val algebra.

In these traditional interval logics (for example, see van Benthem (1983)),
propositions are interpreted over intervals [s, t], where s, t are positions in the
word and s ≤ t. That is, in the semantics they represent arbitrary binary relations
over the domain (the set of positions of the word {1, 2, . . . }). This plays a key role
in Halpern and Shoham showing that satisfiability of their logic HS was undecid-
able over an infinite domain. Venema (1989) showed that the HS modalities can
be represented in a plane, which allows encoding of grid problems. This result was
sharpened, for example see Lodaya (2000); Bresolin et al. (2009b); Marcinkowski
and Michaliszyn (2011). A large number of papers by Goranko, Montanari and
others (see the papers Goranko et al. (2004); Bresolin et al. (2014)) have classi-
fied the decidability status of the satisfiability and model checking problems for
nearly all fragments of the original Halpern-Shoham logic. HS is one of the best
understood logics.

Realizing the difficulty of the two-dimensional interpretation, Halpern and
Shoham suggested a different interpretation where propositions are interpreted
at points, and hence their interpretation is a unary relation. Now the semantics
of an interval logic formula is a first-order sentence over a linear order and hence
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decidability is regained. This direction led to the Duration Calculus, an extension
of interval logic with measurements studied by Zhou et al. (1991).

In this paper we only consider finite word models (the domain is {1, 2, . . . ,max}),
over a finite alphabet (set of letters) Σ. Our tools will be automata and language
theoretic. The discussion can be extended to timed words. In particular DC can
be interpreted over timed words, providing a rich variety of features. The book
by Zhou and Hansen (2004) gives many details of this work. Wilke (1994); Rabi-
novich (2000); Lodaya and Pandya (2006) define extensions to capture monadic
second-order logic, since this remains decidable over word models (Thomas (1997)
is a nice survey). Surprisingly validity and model checking of many practical exam-
ples can be successfully carried out, as demonstrated by Pandya (2001) using the
Mona library of Basin and Klarlund (1995) for manipulating automata. Recently
this work has been extended to synthesis for a rich variety of specifications by
Wakankar et al. (2017).

Since first-order and monadic second-order logic over words have a mature al-
gebraic theory of expressiveness (see the book of Straubing (1994)), over the last
ten years we have applied it to interval logics. By the theorem of Kamp (1968) any
first-order logic sentence over words can be expressed by repeatedly using at most
three variables. In a couple of papers (Lodaya et al. (2008, 2010)), we character-
ized using interval logics two-variable logic over words FO2[<] and its extension
FO2[<,Suc] with the successor relation. The characterization of the quantifier al-
ternation hierarchy of FO [<] (again see Thomas (1997)) remains largely open,
except for a few lower levels. We review this work in Section 2.

Venema (1991) showed that Halpern-Shoham logics are not expressively com-
plete for first-order logic. Intuitively they fall within the guarded fragment of
Andréka et al. (1998), specialized to words. Bresolin et al. (2009a) showed that
a fragment called neighbourhood logic is expressively complete for two-variable
logic. They also showed that this is not true for HS .

Recently we algebraically characterized the logic FO2[<, bet ], which extends
two-variable logic with betweenness relations (Krebs et al. (2016, 2018)), alter-
nately with counting upto a threshold, giving a larger fragment of first-order logic
than two-variable logic. In this paper we attempt to tackle FO2[<, bet ] using new
fragments of Halpern-Shoham logic. In Section 3 we illustrate some key examples
to show how they are formulated in interval logic. We are aided by a point tempo-
ral logic which we have already proved to be expressively complete in Krebs et al.
(2016). In Section 4 we proceed in the other direction. Section 5 brings together
all the results.

2 Two-variable logics and interval logics

In this paper we confine ourselves to models which are finite words, that is, discrete
linear orders with domain {1, . . . ,max} where each position has a letter (or colour)
from a finite alphabet Σ. Thus we are in the context of formal language theory
which is well-studied for decades (for example, see the book by Straubing (1994)).

A language is a set of words. For example, over the alphabet Σ = {a, b, c, d},
those words where, between the last a and subsequent first d, there must be no
b. This is usually denoted by a regular expression Σ∗ac∗d{b, c, d}∗. That is, any
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number of letters from Σ, then an a, then any number of c’s, then a d, then any
number of letters from b, c, d.

To avoid confusion, we do not use the word “language” to denote the formal
setup of a logic, where we prefer to use “formulae” and “sentences”. Our base
logic will be two-variable first-order logic FO2[<] over words, with the linear order
interpreting a binary predicate < and letters at word positions interpreting unary
predicates a(.) for every a ∈ Σ. We will also consider FO2[<,Suc], which also has
the successor partial function y = x+ 1 interpreting a binary predicate Suc(x, y).
In Section 3 we will consider our richer logic FO2[<, bet ].

Going further, one can use arbitrary numerical predicates for positions, for
example ∃y(x = 2 × y) holds when position x has an even value. The language
of even-length words and the language {anbn | n ≥ 1} are defined using this kind
of predicate. Regular expressions no longer suffice to describe such languages.
Circuit families were proposed for this purpose, that is, the n’th circuit in the
family describes the language Ln of words in a language L which are of length
n. Since each Ln is a finite language, it can be defined by a boolean circuit (a
directed acyclic graph with nodes, called “gates”, labelled by boolean operations)
with n inputs and one output for acceptance or rejection. The implicit restriction
to the alphabet {0, 1} can be modelled by coding bigger alphabets. It turns out
Gurevich and Lewis (1984); Immerman (1987) that formulae of first-order logic
on words using arbitrary numerical predicates correspond exactly to languages
defined by families of circuits whose depth (length of longest path from an input
to the output) is bounded by a constant.

2.1 Unambiguous interval temporal logic

In Lodaya et al. (2008), we defined an unambiguous interval logic. For example
the language Σ∗ac∗d{b, c, d}∗ is defined by the formula

(trueLa((¬(trueFbtrue))Fdtrue)),

where La stands for the last a and Fb for the first b. More formally the logic has
this syntax, where a ∈ Σ is a letter and P ⊆ Σ is a subset of letters:

β ::= pt | a | dPe | ddPe | dPee | ddPee | β1 ∨ β2 | ¬β |
β1Faβ2 | β1Laβ2 | ⊕ β | 	 β

Given two positions s ≤ t of a word w, let [s, t] stand for the interval from
position s to position t and w[k] for the letter at position k.
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w, [s, t] |= pt iff s = t

w, [s, t] |= a iff s = t ∧ w[t] = a

w, [s, t] |= dP e iff for all k : s < k < t : w[k] ∈ P
w, [s, t] |= ddP e iff for all k : s ≤ k < t : w[k] ∈ P
w, [s, t] |= dP ee iff for all k : s < k ≤ t : w[k] ∈ P
w, [s, t] |= ddP ee iff for all k : s ≤ k ≤ t : w[k] ∈ P
w, [s, t] |= β1Faβ2 iff for some k : s ≤ k ≤ t : w[k] = a and

(for all m : i ≤ m < k : w[m] 6= a) and
w, [s, k] |= β1 and w, [k, t] |= β2

w, [s, t] |= β1Laβ2 iff for some k : s ≤ k ≤ t : w[k] = a and
(for all m : k < m ≤ j : w[m] 6= a) and
w, [s, k] |= β1 and w, [k, t] |= β2

w, [s, t] |= ⊕β iff s < t and w, [s+ 1, t] |= β

w, [s, t] |= 	β iff s < t and w, [s, t− 1] |= β

Our paper proved several results about this logic. First of all, even though it
does not appear so from the semantics above, the logic has the two-variable prop-
erty. We showed that all formulae of the logic have a unique parsing property and a
translation to specially designed automata of Schwentick et al. (2002). Using their
results, the translation extends to sentences of two-variable logic FO2[<]. Using the
automata, we showed that the complexity of model checking is in LogDCFL, and
that of satisfiability is in Pspace (and NP over a fixed alphabet). Conversely, there
is an exponential construction from FO2[<] to formulae of our logic which define
the same language. A more general interval logic with the same expressiveness is
reported in Lodaya and Pandya (2017).

Automata have a mature algebraic theory (see the books Pin (1986) and
Straubing (1994)). Recall that a monoid is a set with an associative operation
which has an identity element (usually denoted 1). The transition monoid of an
automaton is effectively constructed by looking at all the transition functions from
states to states realized by different words as inputs. The associative operation
is function composition and the identity element is the identity function. Thus
transitions performed by letters as well as words map to monoid elements. More
precisely, for a language we use the transition monoid of the minimal automaton
for the language, which is called its syntactic monoid. For the special automata of
Schwentick et al. (2002), this transition monoid has nice properties, allowing an
algebraic characterization of the languages in terms of an equational variety called
DA, as also of two-variable logic from the work of Thérien and Wilke (1998), and
thus of our unambiguous interval temporal logic. Tesson and Thérien (2002) is a
detailed study of many properties of this variety.

We will briefly skim over this characterization. An idempotent element e in a
monoid satisfies e = ee. Every loop in a minimal automaton (with words l, ll, . . . )
will ultimately map to an idempotent. Me is the submonoid generated by factors
of e, that is, generated by {a | e = paq, for some p, q}. These are the words made
up of letters which go into making up the loop. A monoid is in variety DA if for all
its idempotents e, eMee = {e}. The equation for DA is simpler, but this condition
is also checkable on a monoid. As a consequence of this characterization, whether
a language is definable by a sentence of two-variable logic (equivalently, of our
unambiguous logic) is checkable.

To give an example, suppose the loop (ab)∗ maps to an idempotent e. Then Me

is the language {a, b}∗. The definition of DA says that in this case, all of {a, b}∗
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must map to that e. This gives a non-definability result: the language (ab)∗ does
not map to a monoid in DA, since it cannot be distinguished from {a, b}∗.

A similar argument shows Σ∗aaΣ∗ is also not two-variable definable.

2.2 Lookaround interval temporal logic

In Lodaya et al. (2010), we considered an expanded version of our logic, where
instead of modalities dealing with unambiguous occurrences of letters, we had
modalities for unambiguous occurrences of substrings.

The formula trueFaatrue says that there is an occurrence of the substring aa,
where the underline indicates that the subintervals are positioned at the second a

in the first occurrence of aa in the word. We saw that this language Σ∗aaΣ∗ is not
two-variable definable. Thus this logic is more expressive. Since (ab)∗ is exactly
those words which begin with a, end with b, and do not contain occurrences of
the substrings aa and bb, it follows that this language is also definable in the
lookaround logic by a longer formula.

The formula ¬(trueLbbtrue)Faatrue says that the substring bb does not occur
before the first occurrence of the substring aa.

Formally we have the following syntax, where u ∈ Σ+ is a substring and P ⊆
Σ+ is a finite subset of forbidden substrings of the form uav with letter a ∈ Σ

with prefix and suffix u, v ∈ Σ∗.
β ::= true | pt | u | d¬Pe | dd¬Pe | d¬Pee | dd¬Pee |

β1 ∨ β2 | ¬β | ⊕ β | 	 β | β1Fuavβ2 | β1Luavβ2
Given two positions s ≤ e of a word w, let w[s..t] stand for the substring

from position s to position t. The new modalities can be defined in this way,
d¬P ee, dd¬P e, dd¬P ee being analogously extended from Section 2.1.

w, [s, t] |= u iff w[s..t] = u

w, [s, t] |= d¬P e iff for all k,m, u : s ≤ k < m ≤ t and u ∈ P : w[k..m] 6= u

w, [s, t] |= β1Fuavβ2 iff for some k : s+ |u| ≤ k ≤ t− |v| : w[k − |u|..k + |v|] = uav

and (for all m : s ≤ m < k : w[m− |u|..m+ |v|] 6= uav)
and w, [s, k] |= β1 and w, [k, t] |= β2

w, [s, t] |= β1Luavβ2 iff for some k : s+ |u| ≤ k ≤ t− |v| : w[k − |u|..k + |v|] = uav

and (for all m : k < m ≤ t : w[m− |u|..m+ |v|] 6= uav)
and w, [s, k] |= β1 and w, [k, t] |= β2

Our results for the lookaround logic parallel those of the earlier paper. By
following a proof analogous to our earlier one, we showed that the formulas of
this logic translate to the two-variable logic FO2[<,Suc]. For this purpose we had
to define and work with more general (but still specialized) automata than those
defined by Schwentick et al. (2002). The model checking problem for the logic is
in LogDCFL, and the satisfiability problem is in Pspace. There is an exponential
construction from an FO2[<,Suc] sentence to an equivalent formula in this logic
defining the same language.

As in the case of our earlier logic, the logic FO2[<,Suc] has an algebraic char-
acterization. Thérien and Wilke (1998) showed that it corresponds to the variety
LDA of monoids M where, for every idempotent e 6= 1 of M , eMe is in DA. Now
if we suppose that the language (ab)∗ maps to the idempotent e, this says that
the language (ab)∗Σ∗(ab)∗, which is seen to be just the language Σ∗ of all words,
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should be definable in two-variable logic, which it is (by the sentence true). By
our theorem, (ab)∗ is definable in FO2[<,Suc].

Again one can form non-definability arguments based on the algebraic char-
acterization. Thus one shows first that the syntactic monoid for the language
c∗(ac∗bc∗)∗ is not in DA. Then, since c maps to an idempotent (in fact, the iden-
tity), and cMc = M is not in DA, the language is not in LDA. Hence it is not
definable by a sentence of FO2[<,Suc].

2.3 Halpern-Shoham logics

The interval logic of Halpern and Shoham (1991) uses modalities corresponding
to all the relations in the interval algebra of Allen (1983). We use some of these,
B,E,D,A and A, to model the logics we have seen above. All of these are subsumed
by the chop modality of the original interval logic of Moszkowski (1983). Thus the
syntax of the logic HS is as below, where P ⊆ Σ is a finite subset of letters.
Since we are dealing with a finite alphabet, we will freely use boolean formulas to
represent P .

β ::= pt | a | dPe | ddPe | dPee | ddPee | 〈Bpt〉β | 〈Ept〉β |
β1 ∨ β2 | ¬β | 〈B〉β | 〈E〉β | 〈D〉β | 〈A〉β | 〈A〉β

One can write tricky formulas. For example, 〈Bpt〉pt ∧ dfalsee ∧ 〈Ept〉pt cannot
be satisfied by a word of length more than two.

As usual in modal logic, there are derived box modalities, for example we have
[D]β = ¬〈D〉¬β. As before, the semantics is defined on intervals [s, t] of word w

with s ≤ t. Our during modality is strict on the left as well as the right.
w, [s, t] |= a iff s = t and w[t] = a

w, [s, t] |= 〈Bpt〉β iff w, [s, s] |= β

w, [s, t] |= 〈Ept〉β iff w, [t, t] |= β

w, [s, t] |= 〈B〉β iff for some m : s ≤ m < t : w, [s,m] |= β

w, [s, t] |= 〈E〉β iff for some m : s < m ≤ t : w, [m, t] |= β

w, [s, t] |= 〈D〉β iff for some m : s < k < m < t : w, [k,m] |= β

w, [s, t] |= 〈A〉β iff for some m : t ≤ m : w, [t,m] |= β

w, [s, t] |= 〈A〉β iff for some m : m ≤ s : w, [m, s] |= β

〈A〉 and 〈A〉 move from the current interval to a neighbouring interval on the
right or left, respectively, while 〈Bpt〉 and 〈Ept〉 shrink the current interval to a
point. The fragment of HS with just these operators is sometimes called neigh-
bourhood logic. Their semantics can be translated into FO2[<] by rotating vari-
ables. Bresolin et al. (2009a) showed that the converse holds and neighbourhood
logic is expressively complete for two-variable logic FO2[<].

The unambiguous modalities β1Faβ2 and β1Laβ2 are modelled in HS as

〈B〉(dd¬ae ∧ β1 ∧ 〈Ept〉a ∧ 〈A〉β2), 〈E〉(d¬aee ∧ β2 ∧ 〈Bpt〉a ∧ 〈A〉β1).

The first formula says that the current interval [s, t] has a proper left subinterval
[s,m] with m < t in which β1 holds and an adjoining right subinterval after that in
which β2 holds. The second one is a mirror image. These HS formulae do not have
identical semantics. Using the unique parsing property of our logic alluded to in
Lodaya et al. (2008), the modelling does work correctly. Our results above shows
that we can add the unambiguous B,E modalities to A,A (and even more, the
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role of determinism is spelt out in Lodaya and Pandya (2017)), still maintaining
the expressive completeness for two-variable logic.

Some patterns are going to appear frequently. We introduce derived modalities
for invariance requirements on the B,D and E operators (without any unambiguity
requirement).

Definition 1 Let [DP dQeR]β = [D](〈Bpt〉P ∧ dQe ∧ 〈Ept〉R ⊃ β), and for the dual
modality, 〈DP dQeR〉β = 〈D〉(〈Bpt〉P ∧dQe∧〈Ept〉R∧β). If the P or R requirement is
trivial, we drop it. If it is the same as the Q requirement, we use the closed interval
form as an abbreviation. The fragment of HS logic, where only these derived forms
of B,D and E are used with P,Q,R ⊆ Σ, is called InvHS .

Note that InvHS defines the same languages as HS , since we can use Σ for the
sets P,Q,R if required.

The formulae β1Faβ2 and β1Laβ2 above can be written in InvHS :

〈Bdd¬aea〉(β1 ∧ 〈A〉β2), 〈Ead¬aee〉(β2 ∧ 〈A〉β1).

Let u1 ≺ u2 and u1 � u2 denote that u1 is a proper prefix, respectively suffix, of
u2. (Note that ≺ and � are not converse to each other.) The lookaround modality
β1Fuavβ2 is modelled in a formula below, which is not an InvHS formula, and
which slightly extends HS by matching substrings against intervals rather than
just letters:

〈B〉(dd¬uave ∧ β1 ∧ 〈E〉ua ∧ 〈A〉(〈B〉av ∧ β2) ∧
∧

u�u′,uav=u′av′

¬(〈E〉u′a ∧ 〈A〉〈B〉av′)).

The conjunctions at the end rule out the possibility of an earlier match of uav
which starts at the end of the beginning subinterval. (Note that v′ ≺ v is implied.)
This will not be caught by forbidding the substring uav since both occurrences of
uav = u′av′ stretch beyond the beginning subinterval. We do not introduce derived
modalities here, we will not need them in the rest of the paper.

3 Interval logics with invariance

In our paper Krebs et al. (2016), we extended two-variable logic with binary predi-
cates a(x, y), a ∈ Σ, which say that x < y and there is an occurrence of the letter a

lying strictly between the two positions. The formula
∧
a∈Σ
¬a(x, y) says that there

is no letter strictly between x and y, that is, that y = x+ 1. Thus this logic sub-
sumes FO2[<,Suc]. There is a richer counting capability (up to a threshold) which
can be modelled, we refer the reader to the paper.

In fact the logic extends further than FO2[<,Suc], since the language c∗(ac∗bc∗)∗

that we saw was not definable in that logic, can be defined by a sentence in the
new logic. We also started on an algebraic characterization, which was completed
in a second paper Krebs et al. (2018). Our result is that FO2[<, bet ] corresponds
to the variety MeDA of monoids where, for every idempotent e in the monoid,
the submonoid eMee is in DA. Again this condition is effectively checkable on a
monoid.
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For example, in the syntactic monoid of the language c∗(ac∗bc∗)∗, c maps to an
idempotent and the submonoid cMcc = {c} is the trivial singleton monoid, which
is in DA. This holds for all idempotents and the syntactic monoid is in MeDA.
A more involved argument from Krebs et al. (2016) uses the characterization to
show that the regular language (a(ab)∗b)+ is not definable in FO2[<, bet ].

3.1 Modelling addition

We now attempt to design an interval logic which can describe betweenness fea-
tures. Chandra et al. (1985) observed that the language c∗(ac∗bc∗)∗ is important
in modelling integer addition. For simplicity let the base be 2 and work with the
alphabet {0, 1}3. Let ADD be the language of words representing vertically three

numbers
( m

n
m+n

)
written reversed (least significant bit first) in base 2.

For this to be correct, the i’th bit of sum is computed from the i’th bit of the
inputs and whether or not there is a carry into bit i. If the i’th bit of both inputs
is 1, we map the letter to a (we think of this as a set operation). If the i’th bit of
both inputs is 0, we map to b (this is a reset operation). Otherwise we map to c

(an identity operation).
Think of a monoid ({a, b, c}, ·, c) representing these three operations. The carry

product is x · a = a, x · b = b and x · c = x for an element x. The carry into bit i+ 1
of the sum is exactly when the first i monoid elements multiply to a. Now the carry
computation of an addition corresponds to a word in the language c∗(ac∗bc∗)∗.

In HS logic we can say that there is a beginning subinterval ending with a and
with possibly only c’s preceding it, there is an ending interval beginning with b

and possibly only c’s following it, and there are no subintervals which begin and
end with a and do not contain a b, nor those which begin and end with b and do
not contain an a. That is, in InvHS :

〈Bddcea〉true ∧ 〈Ebdcee〉true ∧ ¬〈Dad¬bea〉true ∧ ¬〈Dbd¬aeb〉true.

This is also definable in FO2[<, bet ]. Hence the language ADD is also definable
in InvHS and in FO2[<, bet ].

3.2 Defining circuits

In Krebs et al. (2016) we showed that our logic FO2[<, bet ] can define languages
arbitrarily high in the quantifier alternation hierarchy of first-order logic on words
(see Thomas (1997)) and the constant-depth circuit hierarchy of Sipser (1983).
The entire latter hierarchy corresponds to first-order logic on words using arbi-
trary numerical predicates, as we said in Section 2. For simplicity assume that
the circuits have levels consisting of gates of only one type, alternating between
or and and. With alphabet {0, 1, o1, a2, o3, . . . , a2k, o2k+1, . . . } one can encode in
prefix form constant-depth boolean circuits with inputs set to 0 and 1, upto any
finite level. We will see examples below. In our encoding we use / as a right end-
marker for the input word signifying the circuit and propositions P0, P1, . . . for
letters from subalphabets, which we will define.

Our aim is to show that the logic InvHS can describe circuits of arbitrary
depth and hence represent regular languages at any level of the constant-depth
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hierarchy, using more and more such propositions. Using its semantics, it is thus a
rich fragment of first-order logic FO [<] on words. The formulation of Sipser (1983)
is used since it is amenable for our logic.

Let Circ1 = o1{0, 1}+ be the regular language encoding circuits of depth one
(an or gate followed by inputs). Let P1 be the subalphabet {o1, a2, o3, . . . , /}. The
InvHS formula is

C1 = 〈Bo1d¬o1eP1〉d0 ∨ 1e.

Further, circuits which evaluate to true need to have at least one 1, the language
is True1 = o1{0, 1}∗1{0, 1}∗. The InvHS formula is

T1 = 〈Bo1d¬o1eP1〉(d0 ∨ 1e ∧ ¬d0e).

The next level is the regular language Circ2 = a2(Circ1)+ (an and gate at level
two, followed by depth one circuits). Let P2 be the subalphabet {a2, o3, . . . , /}. The
InvHS formula can be written in two ways. The second formula shows how the
endmarker can be used to convert invariant during formulae to invariant prefix
and suffix formulae.

C2 = [Da2d¬a2eP2]C1, or C′2 = [Ed¬/eP2][Ba2d¬a2eP2]C1.

T rue2 = a2(True1)+ describes the circuits evaluating to true at the second
level. The InvHS logic formula forces every conjunct to have a true disjunct:

T2 = [Da2d¬a2eP2]T1.

The third level is the regular language Circ3 = o3(Circ2)+ which is handled
by defining P3 = {o3, . . . , /} and

C3 = [Do3d¬o3eP3]C2.

Now the circuits evaluating to true are described by True3 = o3(Circ2)∗True1(Circ2)∗.
The InvHS formula requires one true disjunct among all the disjuncts:

T3 = C3 ∧ (〈Do3d¬o3eP3〉T2).

It should be clear how to extend this to circuits of any finite level. Thus,
like FO2[<, bet ], the logic InvHS can also define languages arbitrarily high in the
quantifier alternation hierarchy.

3.3 Defining monomials

We now show that we can define languages arbitrarily high in the nested un-
til/since hierarchy of linear temporal logic on finite words, worked out by Thérien
and Wilke (2004) (see the survey by Tesson and Thérien (2007)). To do this we
will show that one can use a series of between operations, briefly a monomial

language P ∗0 a1P
∗
1 . . . P

∗
n−1anP

∗
n for some subalphabets P0, P1, . . . , Pn−1, Pn (again

interpreted by propositions), followed by a formula β. To do this in temporal logic
one would require n+ 1 nested until operators.

The formula of HS logic is: F0 = 〈B〉(F1∧〈A〉β), where the formulae Fm, m ≥ 1,
expand the monomial, starting with F1 = 〈BddP0e〉〈A〉F2, F2 = 〈Ba1dP1e〉〈A〉F3, up



10 Kamal Lodaya

to Fn = 〈Ban−1dPn−1e〉〈A〉Fn+1, ending with Fn+1 = 〈Bpt〉(an)∧dPnee. We can also
allow, instead of a single monomial, a boolean collection of monomials before the
satisfaction of β. This latter formula shows that the second level of the quantifier
alternation hierarchy (see Thomas (1997)) is subsumed in HS logic.

Another way is to run the induction down from n+1 to describe the languages
formed as one moves left in the monomial, to obtain an InvHS formula scheme.
The base step is: F ′n+1 = β. The induction step is: F ′m−1 = 〈Bam1dPm−1e〉〈A〉F ′m.
The final formula is: F ′0 = ddP0e〈A〉F ′1. If β was in InvHS , so are the formulae F ′m.
It follows that the logics InvHS and FO2[<, bet ] can define languages arbitrarily
high in the until/since hierarchy of temporal logic.

Our examples have given sufficient evidence that our interval logic with invari-
ance InvHS rivals the two-variable logic FO2[<, bet ] in expressiveness.

Lemma 2 InvHS subsumes FO2[<, bet ].

Proof We rely on a theorem in Krebs et al. (2016), which shows that definability
in the latter logic is achieved by a point temporal logic with modalities which, for
our purposes here, we can read as:

(¬R) until α and (¬R) since α, for R ⊆ Σ.

But the translation from monomials to InvHS that we have given above is already
a generalization of the first modality, and a mirrored translation will handle the
second one. This gives us a direct linear translation from the point temporal logic,
and hence a translation from FO2[<, bet ], to InvHS . ut

4 Staying within two-variable between logic

As we have seen so far, the Halpern-Shoham logic with invariance InvHS is ex-
pressive enough to encompass our earlier two-variable logic with betweenness from
Krebs et al. (2016). In this section we see if we have gone too far and overshot this
logic.

Definition 3 The fragment of InvHS logic, where the derived forms of the invari-
ance requirements B and E are used only in the forms 〈BP dQeR〉β and 〈EP dQeR〉β,
where β is a boolean combination of 〈A〉 formulas or a boolean combination of 〈A〉
formulas, is called bundled InvHS (to borrow some jargon from Padmanabha et al.
(2018)). Assuming our words are provided with endmarkers, we also allow invari-
ance D requirements.

Lemma 4 Bundled InvHS is expressively complete for FO2[<, bet ].

Proof There is a standard linear translation from neighbourhood logic (with the
A,A modalities) to two-variable logic FO2[<]. From this it follows that prefixing
the neighbourhood modalities with invariance requirements to form the modali-
ties 〈BP dQeR〉〈A〉β and 〈EP dQeR〉〈A〉β linearly translates into the extended logic
FO2[<, bet ], the invariance requirements were designed to do so. The same holds
if one takes boolean combinations of the 〈A〉 or the 〈A〉 formulas. Assuming end-
markers, it follows that the invariance-guarded 〈D〉 modality can be eliminated
as in Section 3.2 and the resulting formula translated into FO2[<, bet ]. Combin-
ing with Lemma 2, bundled InvHS equals the expressive power of two-variable
between logic. ut
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We can push this idea further. From Section 2.3 we know that when unambigu-
ously guarded, the formula 〈BP dQeR〉(β1 ∧〈A〉β2) which is syntactically not in the
bundled fragment, is definable in FO2[<], hence also in FO2[<, bet ]. What happens
when we drop the unambiguity requirement? In our earlier papers Lodaya et al.
(2008, 2010) we used unique parsing properties and automaton characterizations
to traverse the path from interval logic to two-variable logic. These are lacking for
the logic InvHS . We obtain a positive result by translating InvHS to its bundled
fragment.

Lemma 5 InvHS is expressively complete for FO2[<, bet ].

Proof Given Lemmas 2 and 4, it is sufficient to take care of formulae which are
outside the bundled fragment of InvHS . We take a representative type of such a
formula, an invariance-guarded 〈B〉 formula. The same approach works for other
invariance-guarded formulae.

Consider for various cases of the subformula β1, which we name for this proof a
loose subformula, in an InvHS formula which is not inside an 〈A〉 or 〈A〉 modality:

〈BP dQeR〉(β1 ∧ 〈A〉β2).

We will make use of the number of direction alternations in a formula: each oc-
currence of a 〈D〉 or 〈E〉 modality immediately inside a 〈B〉 modality, and each
occurrence of a 〈D〉 or 〈B〉 modality immediately inside a 〈E〉 modality, and each
occurrence of a 〈B〉,〈E〉,〈D〉 modality immediately inside a 〈D〉 modality, counts as
a direction alternation.

In each case, we give rules to rewrite this formula to a formula “closer” to
the bundled fragment of InvHS , that is, where each invariance-guarded modality
is immediately followed by an 〈A〉 or 〈A〉 modality. The rules have simple ideas:
requirements are pulled out to the endpoints of the interval if possible, otherwise
nested modalities are converted to a sequence of modalities “fenced” by 〈A〉,〈A〉
modalities. This reduces the modal depth of loose subformulae. This does not
happen in case there is a direction alternation between adjoining modalities, the
best the sequencing can do is to process them in the same direction, reducing the
number of such alternations.

Let us run through the cases. If β1 is a point formula, its point requirements
can be handled in the invariance guard, with any 〈A〉,〈A〉modal requirements being
pulled out. Disjunctions can also be pulled out.

Now we have cases where β1 is headed by a modality followed by a formula γ1.
If β1 = 〈A〉γ1 (or even a boolean combination of such formulas), it can be pulled
out. Nested invariance-guarded B formulae first have an intersecting interval, then
the remaining outer condition is fulfilled. We call this distribution of the invariance
requirements. Nesting an invariance-guarded [E] formula is dealt with similarly,
but a nested 〈E〉 formula is linearized. Nesting an invariance-guarded [D] formula
combines features from the treatment of nested [B] and [E] formulae, a nested 〈D〉
formula combines features from the treatment of nested 〈B〉 and 〈E〉 formulae.

In each case either the formula mapped to is already in the bundled fragment,
or the loose subformulae in the mapped formula have lesser modal depth than β1,
or the number of alternations in the mapped formula are lesser than β1. Thus the
rules can be recursively applied to obtain a reduction into the bundled fragment.
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Here are the rewrite rules for these cases, the left column gives the loose formula
β1 being considered. We also specify the closeness achieved in each rule.

〈A〉γ1 ∧ ¬〈A〉γ2 〈BP dQeR〉(〈A〉γ1 ∧ ¬〈A〉γ2 ∧ 〈A〉β2), modal depth decreases
↪→ 〈A〉γ1 ∧ ¬〈A〉γ2 ∧ 〈BP dQeR〉〈A〉β2

[BP ′dQ′eR′]γ1 〈BP dQeR〉([BP ′dQ′eR′]γ1 ∧ 〈A〉β2), modal depth decreases
↪→ [B(P ∧ P ′)dQ ∧Q′eR′]γ1 ∧ 〈Ept〉(R ∧ 〈A〉β2)

〈BP ′dQ′eR′〉γ1 〈BP dQeR〉(〈BP ′dQ′eR′〉γ1 ∧ 〈A〉β2), modal depth decreases
↪→ 〈B(P ∧ P ′)dQ ∧Q′e(R ∧R′)〉(γ1 ∧ 〈A〉〈ER′dQeR〉β2)

[EP ′dQ′eR′]γ1 〈BP dQeR〉([EP ′dQ′eR′]γ1 ∧ 〈A〉β2), modal depth decreases
↪→ 〈Bpt〉P ∧ [EP ′dQ ∧Q′e(R ∧R′)](γ1 ∧ 〈A〉β2)

〈EP ′dQ′eR′〉γ1 〈BP dQeR〉(〈EP ′dQ′eR′〉γ1 ∧ 〈A〉β2), direction alternation decreases
↪→ 〈BP dQeP ′〉〈A〉(〈BP ′dQ ∧Q′e(R ∧R′)〉γ1 ∧ 〈A〉β2)

[DP ′dQ′eR′]γ1 〈BP dQeR〉([DP ′dQ′eR′]γ1 ∧ 〈A〉β2), modal depth decreases
↪→ 〈Bpt〉P ∧ [DP ′dQ ∧Q′eR′](γ1 ∧ 〈Ept〉(R ∧ 〈A〉β2))

〈DP ′dQ′eR′〉γ1 〈BP dQeR〉(〈DP ′dQ′eR′〉γ1 ∧ 〈A〉β2), direction alternation decreases
↪→ 〈BP dQeP ′〉〈A〉(〈BP ′dQ ∧Q′e(R ∧R′)〉(γ1 ∧ 〈A〉〈EP dQeR〉β2))

Finally consider the cases where β1 is a boolean combination of invariance-
guarded modalities. We use the fact that there is a linear ordering and there are
only a few order types to deal with, which we can disjunct over. Two invariance-
guarded B formulae in the same interval can be ordered, or seen as one of two
possible orderings. If there is a B and an E formula, there are three possibilities
for their satisfying subintervals: either they are disjoint, or they meet, or they
overlap. Each possibility leads to distribution of the invariance requirements over
upto three intervals. The D modality can be handled by another set of distribution
disjuncts. We do not spell out the rules in detail.

As before, by recursively applying the rules we obtain formulae in bundled
InvHS . Putting together the rules for all formulae outside the bundled fragment
gives an argument that InvHS formulae can be equivalently put into its bundled
fragment. Hence InvHS is expressively complete for FO2[<, bet ]. ut

5 Drawing some conclusions

As we observed after Definition 1, the logic InvHS is semantically no different
from HS , so Lemma 5 yields an expressiveness result for Halpern-Shoham logic.
Venema (1991) showed that HS is weaker than full first-order logic, we can now
make the weakness precise.

Theorem 6 HS is expressively complete for FO2[<, bet ].

We put our expressiveness characterization mentioned in Section 3 to use, by
borrowing a result from Krebs et al. (2016). Defining arbitrarily many subintervals
within arbitrarily many subintervals is not in general possible in Halpern-Shoham
logic:

Corollary 7 The regular language (a(ab)∗b)+ is not definable by an HS formula.
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To further analyze the translation provided in the above result, we measure
the size of HS formulae using their dag-size (see the book of Demri et al. (2016)).
That is, we think of a formula as being represented by a directed acyclic graph
and count only the number of distinct subformulae of the formula. Each rewrite
rule in the translation of Lemma 5 changes dag-size by a constant, so the recursive
translation maps an InvHS formula to a bundled InvHS formula whose dag-size
only grows polynomially. Building upon this one obtains a complexity result.

Theorem 8 The satisfiability problem for HS over finite word models is complete for

polynomial space.

Proof Since LTL[F,P,X,Y] formulae can be represented in the logic, there is a
polynomial space lower bound on the complexity of satisfiability, shown by Sistla
and Clarke (1985).

For the upper bound, there is a trivial translation to InvHS . The proof of
Lemma 5 gives a translation into bundled InvHS , which is polynomial in the dag-
size of the formula. From the proof of Lemma 4 we can extract a more direct
translation from bundled InvHS , not into two-variable between logic, but to the
point temporal logic of Krebs et al. (2016) (mentioned in the proof of Lemma 2).
That paper provides a further polynomial translation to standard linear temporal
logic LTL. Finally, that the satisfiability of LTL formulae can be checked in space
polynomial in their dag-size was shown by Sistla and Clarke (1985). ut

As we mentioned in the introduction of this paper, in our interval logics, propo-
sitions are interpreted at points and not at intervals. Thus we do not encounter the
high complexities of two-dimensional HS logics detailed in papers such as Bresolin
et al. (2014). The expressiveness of these logics within three-variable first-order
logic should be higher, but remains unexplored.

It would be interesting to extend the ideas of this paper to fragments of the
Duration Calculus on timed word models. The dissertation of Shah (2012) looks
at unary point temporal logics with metric interval modalities.

The work of Wakankar et al. (2017) suggests a different direction, moving from
satisfiability problems to those of synthesis. This will require coming up with a
suitable notion of automata.
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Birkhäuser.
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automata. In Proc. 3rd FTRTFT, Lübeck, eds. Hans Langmaack, Willem-Paul de Roever,
and Jan Vytopil. Vol. 863 of LNCS, 694–715.

Zhou, Chaochen, and Michael Hansen. 2004. Duration calculus. Springer.
Zhou, Chaochen, Tony Hoare, and Anders Ravn. 1991. A calculus of durations. Inform. Proc.

Lett. 40 (5): 269–276.


