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ABSTRACT
We introduce a class of distributed systems called Communicating Sequential Agents
(CSAs). Sound and complete axiomatizations are provided for various subclasses using
a family of indexed temporal logics. Some of the important features of these logics are:

o Both the formulas and the structures for the logics reflect the fact that a system is
composed out of a number of participating sequential agents.

e Formulas of the logics are interpreted only at local states.

e An agent makes a definite assertion about another agent only if it has received —
directly or indirectly — some communication from that agent supporting that
assertion.
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0. Introduction

In this paper, we introduce a class of distributed systems called Communicating
Sequential Agents (CSAs) and propose a family of indexed temporal logics to reason
about them.

During the eighties, modal logics have been extensively used to reason about
distributed systems. Temporal and tense logics allow clean and often decidable
theories in which specifications seem to be easily written [1,2]. Model checkers can
be constructed to verify specifications [3,4]. However, temporal logics have been
interpreted over sequences (linear time [2]) and trees (branching time [3,5]) rather
than the more general partial orders which characterize the semantics of distributed
systems.

Much of the work on temporal logics is based on the idea of global states.
Usually, this presumes that a global observer exists and specifications are assertions
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of behaviour as seen by this observer. However, often an individual agent in a
distributed system has no access to the global state of the system due to spatial
separation and autonomy of the agents. Knowledge of the state of another agent is
based strictly on the messages received from that agent.

Consequently we restrict our interest to distributed systems and temporal logics
with the features outlined below. The distributed systems we consider shall support:

(a) The underlying structures of the models are partial orders.
(b) Both the formulas and the structures for the logics reflect the fact that a
system is composed of a number of participating agents.

(c) Agents are characterized as being sequential, and all choices can be traced
back to them.

The logics we propose shall have the following features:

(d) Formulas of the logics are interpreted only at local states.

(e) An agent makes a definite assertion about another agent only if it has
received — directly or indirectly — some communication from the agent supporting
that assertion.

Our study covers various such classes of distributed systems and we provide
sound and complete axiomatizations for them using a family of such logics.

The distributed systems we consider can be viewed as special kinds of prime
event structures arising out of the work of Nielsen, Plotkin and Winskel [6] and later
developed in a variety of ways by Winskel [7]. One subclass of systems we identify
(called n-ACSAs) model distributed programs composed out of a finite number of
sequential programs that communicate with each other by message passing. Such
systems have been repeatedly considered in the literature (e.g. [8]). The semantics
of CCS and related languages [9,10] can also be the systems we study here; this
follows from the work of Winskel [7]. An appendix relates our models to such event
structure models {7,11].

Temporal logics for partially-ordered structures have been proposed by Pinter
and Wolper [12] and by Katz and Peled [13]. In these studies the local state of
the agents is not the focus of attention as is the case here. Logics of knowledge
[14,15,16] certainly emphasize the notion of agents, but they also assume states of
knowledge as seen by a global observer. Reif and Sistla [17] consider local state but
use a spatial modality to refer to other processors.

A logic for n-ACSAs was presented in [11] with a more elaborate axiomatization.
This paper has a simpler completeness proof for this class. We use new proof
strategies to obtain completeness for the various other classes considered here.

In Sec. 1, we describe systems of n Asynchronously Communicating Sequential
Agents (n~-ACSAs), a formal model for the intuitive notion of n sequential processes
communicating with each other by sending and receiving messages.

Section 2 describes our logical language, gives a formal semantics for it in our
class of models and demonstrates how a specification may be written in it.



Temporal Logics for Communicating Sequential Agents: I 119

The following two sections, Secs. 3 and 4, are devoted to presenting an axioma-
tization for our models and proving it sound and complete. In Sec. 5, we show how
the restriction to a bounded finite number of agents can be dispensed with.

An important subclass of models is that in which all events have finite causes.
This finitariness also yields discrete, well-founded models. Axiomatizing this sub-
class requires a different proof idea and is undertaken in Sec. 6.

Section 7 expands our models to incorporate those allowing synchronous (“hand-
shake”) communication [9,10]. It turns out that the same logical language is ade-
quate to describe these systems.

If we drop condition (e) above, we can have a temporal logic which evaluates
formulas at local states but can make assertions about other agents without neces-
sarily receiving any information from them. In such a situation, we can dispense
with indexed modalities and use basic tense logic with some type propositions. In
the forthcoming Part II of this paper, we consider various such alternatives within
tense logic for axiomatizing the class of CSAs.

We conclude with a discussion.

1. Frames

In this section, we introduce systems of communicating sequential agents, for
which we will design and study logics in the subsequent sections.

Our model of a distributed system consists of a finite set of agents that commu-
nicate with each other. An agent is simply a set of events together with a “tree-like”
ordering relation over their occurrences. The idea is that an agent represents the
“unfolded” behaviour of a sequential nondeterministic process.

Let (X, <) be a poset and £ € X. Then

lze2{yeX|y<ze}.

Definition 1.1. An agent is a pair (F, <), where

— F is a set of event occurrences and
— < C (E x E) is a partial order called the causality relation such that
Ve € E. |e is totally ordered by <. 0

The restriction imposed on the causality relation in the definition of an agent
can be formulated in a different fashion:

Vei,e2,e3€ E. (e1 < ez and e3 <e3) = (e3 <eporez <ey).

This is referred to as backward linearity of the agent.

An agent is then a poset (E, <) in which [e is a totally ordered subset of E for
every ¢ € E. Suppose that e; < ez in the agent (E, <). Then this will be taken to
mean that in any computation that this agent participates in, e can occur only if e;
has already occurred in that computation. When neither e; < e; nor e3 < e; holds,
we interpret this as a choice between the occurrences of e; and es in the behaviour
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of the agent. Consequently in no computation that the agent participates in can
both e; and e; occur. The motivation for imposing backward linearity on agents
should now be clear: we do not wish an event occurrence to causally depend uporn
conflicting event occurrences.

lein an agent can be thought of as the state of that agent when the event e
has “just” occurred, the state containing information about all events that have
occurred. A computation of the agent is then a chain in the agent, corresponding
to the standard idea of a computation as a sequence of states.

We now proceed to consider systems of such sequential agents that
asynchronously communicate with each other. Informally, a system has finitely
many sequential processes, which communicate with each other by sending mes-
sages asynchronously. The computation of each process proceeds sequentially; any
waiting is caused only when the process requires a message from another. We can
think of each event as being a send, receive or internal event. Since our model refers
only to event occurrences, we can think of multiple occurrences of the same message
as being distinguished using some scheme like affixing sequence numbers. Studies
of distributed systems typically consider such models [8,18].

Definition 1.2. A system of n Asynchronously Communicating Sequential
Agents (abbreviated n-ACSA) is a tuple (Ey, ..., E,; <) where

(i) E1NE;=0,fori#j€e{l,...,n},
(i) < C E x E is a partial order, where E = U E;, and

i
(iil) Ve e E. Vi: 1 <i< n. |eN E; is totally ordered by <. a

When e; < €3, €1 € E;, e2 € Ej and i # j, we have the occurrence of a j-
event causally dependent on the occurrence of an i-event, and we think of this as a
behaviour where agent j receives information about agent ¢. This information could
be a message from agent i (the receipt of a message can never precede its sending),
or a chain of indirect messages between e; and e;.

We shall use the symbol | for restriction. Let <; denote the restriction of <
to the agent i, <[ (E; x E;). Note that the definition above says more than the
statemnent that for each ¢, (E;, <;) is a sequential agent. Of course, this is implied
by Def. 1.2, but the converse is not the case. For example, in Fig. 1, we have a
system where (E1,<q) and (E3, <7) are sequential agents, but (£, Eq; <) is not a
2-ACSA, as it violates condition (iil) of the definition.

Figure 2 gives an example of a 2-ACSA, where each agent chooses symmetrically
between internal action and sending a message to the other agent. In each agent, if
the internal action is chosen, the next event that may occur is receiving a message
from the other agent. If both agents choose to send or both agents choose to
perform an internal action, the system can deadlock. Figure 3 gives an example
of a 2-ACSA consisting of a producer-consumer system. The producer chooses to
produce an item or to stop, while the consumer receives the produced items.
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Fig. 1. Two sequential agents.
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Fig. 3. A Producer-Consumer System.

We had earlier defined the state of an agent (E, <) to be any set |e, where
e € E. In systems of communicating agents, | e can be regarded as a local state of
agent j, where e € E;. It includes the local history of agent j as well as the “latest”
local histories of all other agents from which j has had a communication upto this
state. Thus | e represents agent j’s view of the system state, which is in general
partial. For an n-ACSA S, we let Lg denote the set of local states of the system,

Ls2{lelee UE,-
i

If e1 and e, are events of distinct agents in an n-ACSA and they are unordered
by <, we cannot read this to mean that e; and e are concurrent. If an agent chooses
between e/ and e5, and we have e| < e1, ) < es, then in no computation can e;
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and e; both occur. Thus, local choice gets “inherited” in computations. However,
it is easy to discover which events are concurrent.

Definition 1.3. Let (Ey, ..., En; <) be an n-ACSA and let E = | E;. If

i
e1, e2 € E, and neither e; < e3 nor e3 < e; holds, then we say e; and e; are

concurrent iff for all i € {1, ..., n}, (le1U |l ez) N E; is totally ordered by <. O

Clearly, we can see that no two events of the same agent can be concurrent.
Further, unordered events of distinct agents are not concurrent only if they causally
depend upon unordered events of some agent in the system. Hence a conflict can
always be traced back to a choice made by some agent.

For convenience, our definition of frames is parametrized by the number of
agents. In a later section, we will generalize the definition to include systems with
finite but arbitrarily many agents. Further, we will also relax our assumption above
that communication between agents is purely asynchronous; we will consider events
shared by many agents, representing synchronization among them. For the time
being, we restrict our attention to n-ACSAs and a logic to reason about them.

n-ACSAs are closely related to event structures [6,7]. In fact, there is a bijection
between the class of n-ACSAs and that of n-agent event structures introduced in
[11]. In the Appendix, we formally establish this relationship.

We let S, §’, ... (with or without subscripts) range over the class of n-ACSAs.
Often we will write S = (E;<) to mean S = (E, ..., E,;<), where an implicit
partitioning of E into E,, ..., E, will be assumed and write | e with respect to <,
without specifically mentioning the partial order relation. We will also use e to
denote {¢’ € E|e < e'}.

2. The Language and its Models

For this section and the next one we fix an n € N and let ¢, j, k range over
{1,2, ..., n}.

We fix, in addition, a countable set of atomic propositions P = {p1,p2, ...}
and let p, ¢ range over P. We also fix a set consisting of n atomic type proposi-
tions, T, = {7, ..., Tn} such that P N 7T, = @ and set P’ = P U T,,. The type
propositions will be used to identify particular agents.

The formulas of our language are then given by:

Definition 2.1.

(i) Every member of P’ is a formula.
(i1) If o and B are formulas, then so are ~ o, a V 8, B;a and O;a, for 1 < ¢
<n. a

Let ®,, be the set of all formulas. We let a, 3, v, 6§ (with or without sub-
scripts) range over ®,,. The following derived modalities and logical connectives will



Temporal Logics for Communicating Sequential Agents: I 123

prove useful:

i) aABE~(~aV~p)

(i) c®BE(~aAB)V(~BAa)

(i) adD B2 ~aVp

(V) a=B2(adBA(BD )

v) ¢at~8 ~c

(Vi) Ogaé~D;~a .

A frame is an n-ACSA S = (Ey, E,, ..., E;; <). A model is an ordered pair
M = (5, V), where

(i) S=(E, E,, ..., E,; <) is a frame and

(i) V: Ls — 2P is the valuation function defined on the local states of S

satisfying:

Vee E.ri€eV(le)iffe€ E; .

Let M = (S, V) be a model, where S = (E; <), and let e € E. For a formula
a, the notation of « being true at a local state | e in M is denoted as M, |eF o
and is defined inductively as follows:

Definition 2.2.
(i) M,leFaifa€V(le), fora € P.
(i) M,leF~aiff M, |e¥ a.
(iii) M, leFaVvpBif M, leFaor M, leES.
(iv) M, leEBiaiffforalle’ €lenE;, M, |eF a.
(v) M, leFDaiff
(Case 1: e€ E; —foralle’ €teNE;, M, |e'F a).
(Case 2: e ¢ E; — for some e’ € le N E;, M, |e' E O;a). a

The first three clauses of the definition are standard and require no explanation.
The meaning of B;« asserted at a local state |e, where e € E;, can be expressed as:

“at the state when e has just occurred, as far as agent j knows, o has always
been true in agent i.”

This works like the standard tense logic past operator.
On the other hand, the semantics of O;a is nonstandard — when it is asserted
at a local state | e, where e € Ej, it must be read as:

“at the state when e has just occurred, agent j knows that « will be true
henceforth in agent :.”

When i = j, O;a works in the same way as the tense logic future operator. Note
that the two cases in clause (v) could be combined into a single one:

M, |e E O;a iff for some ¢’ € |eN E;,
foralle” €1e'NE;, M, [e" F a.
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Note that O;« is strong and B;« is weak in the following sense: when D;a is
asserted in an agent other than i, it refers to knowledge about another agent. Hence
the semantics ensures that the agent ¢ has communicated at some stage in the past
that a would hold henceforth in its future. Thus if there has been no communication
from agent 7 at all at some local state for agent j, then agent j can assert B5;8 for
arbitrary 8 at that state, but not ;5.

The semantics of the derived dual modalities can be understood in a similar
manner. It can be easily seen that

M, lek iaiff
(Case 1: e € E;:) for some ¢ €teNE;, M, |e'F a.
(Case 2: e ¢ E;:) foralle’ € lenNE;, M, |e' F {;a.

Thus while in agent 7 itself ;o asserts that o can hold in future at some time, in
another agent j # 1, it merely says:

“as far as agent j knows at this local state, o« can hold eventually in agent ”.

Therefore, if agent i has never communicated with agent 7, then ¢;a will hold in
agent 7 at that state for any a.
The semantics of €;« is standard:

M, le E ©;a iff for some ¢’ € leN E;, and M, le' E a.
The intended meaning is (assume e € Ej):

“agent j knows at |e that o was true in the past in agent :.”

Definition 2.3.

(i) «a is satisfiable (o has a model) iff there exists a model M = ((E; <), V)
such that M, |eF o for some e € E.

(i) Foramodel M = ((E; <), V), MFaiffforalle e E, M, |eF a.

(iil) o« is valid (denoted F a) iff M F o for every model M.

Since | e is uniquely determined by e in a frame, we will also write M, e F « for
M, |e E a. When we talk of an event e satisfying a formula o, we mean the local
state | e satisfies a.

We now give an example to illustrate the use of our logical language. Consider a
distributed database managed by n processes which communicate with each other
by exchanging messages. A protocol is needed whereby the processes can commat to
a distributed transaction. When each committed process knows that all the others
have also committed it can go ahead and perform the distributed transaction. For
this, the following requirement must be met.

If any process commits to the transaction then it knows that all processes in the
system can eventually commit.
Such distributed transaction commit protocols commonly arise in the design of dis-
tributed systems [12].

We now specify the protocol requirement in our logical language. Let {C4, ...,
C»} be a set of propositions, where C; is read to mean “process j has committed
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to the transaction”. The formula

A (n ACiD 0;(4\0,-0,-))

3

expresses the requirement above.
A two-stage implementation of this protocol may use two local variables in each
process F;:

(i) a variable L; in which process P; records whether it can participate in the
transaction or not, and

(ii) a variable, which we also call C;, to record the commitment of the process
to the transaction.

The implementation can perhaps run as follows:

Process P;:

(i) As soon as a local decision L; is made, broadcast L; to all other processes.
(ii) When L; is heard from all j, set C; to TRUE.

(iii) As soon as C; is set, broadcast it to all other processes.

(iv) When Cj is heard from all j, perform transaction.

(v) Acknowledge all incoming messages.

All processes follow the same protocol in a symmetric manner. This is, of course, a
naive protocol. However, our aim here is to merely illustrate the use of our logical
language. Let us again, by abuse of notation, use {L1, ..., L,} to denote another
set of propositions. Consider now the following formulas:

¢y {\ (‘r.' o) (C.- = é\()ij))

(2 /.\ (Ti ACiD <>¢'/j\9j9ici) :

The first of the two formulas says that a process sets C; to be TRUE only when
it has heard L; from all other processes P;. The second formula asserts that if
any process P; sets C;, then in its future there is a state when it has heard an
acknowledgement from all other processes for a broadcast from P; that C; has been
set. Note that here an agent has to assert something about the state of other agents
and this can be done using messages from them.

It is easy to verify that the formulas (1) and (2) together imply the requirement
above. In fact, in the next section, we use an axiom system and show how we can
logically deduce the requirement from (1) and (2). This verifies that the simple
protocol above meets its specification.

Note that the protocol above works for only one transaction. When a protocol is
needed for several transactions, we can index the transaction by sequence numbers
and modify the specification above appropriately. In a deterministic system, the
formula expresses a strong requirement. In a nondeterministic system, we can only
assert the existence of a future “committing” execution.
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3. The Axiom System A(n-ACSA)

Most of our axioms are indexed versions of Burgess’s axioms for tense logic [19].
The new axioms that we introduce reflect the way knowledge about other agents
depends on communication from them.

Axioms
(A0) All substitutional instances of the tautologies of propositional logic.
(A1) (a) Bi(aeD B) D (Bia D BH;iB) (Deductive closure)
(b) Oi(a D B) D (O;a D 0;8)
(A2) (a) D (BiaDa) (Local reflexivity)
(b) % D (Oia D a)
(A3) ©i9ja D 9ja (Transitivity)
(A4) Qia A D Oi(aA9iB)V &i(B A Sa) (Backward linearity)
(A5) (a) ©ia D> O (Relating past
(b) ia D B;$ia and future)
(A6) O;a D ¢,0;a (Communication)
(A7) @n=A~7 (Type axioms)
(b) E,’T,‘ *

(¢) % D 0Oiw

Inference Rules

MP nadp
(MP) -
o
[4 4
(T6e) 7>Ga

Firstly we note that reflexivity (Axiom A2) holds only within agents, and hence
a AB; ~ a may well be consistent. The formula B; ~ «, when it is asserted by an
agent j # ¢, talks only about events in agent 7 as viewed by j, and hence a j-event
may satisfy o as well as B; ~ a. Similarly, @ A ; ~ a can also be consistent.

(A3) asserts transitivity across agents. As we shall see later, in the case of
Oia,we only have transitivity within agents. (A4) states that individual agents are
tree-like.

Note that the standard form of (A5.a), namely, & D 0;€;a is not sound in our
logical system. An event e in E;, where j # ¢, may satisfy o, but may have no
communication from i at all to support [0;€;a. Hence the axiom refers only to
t-events or other events where ¢ has communicated. A similar remark holds in the
case of (A5.b).

The communication axiom (A6) says that a strong assertion 0;& must be sup-
ported by communication from agent i to that effect. The type axiom (AT7.a) cap-
tures the fact that each event belongs to exactly one agent. The other type axioms
reflect the nature of our indexed modalities B;a and O;a being assertions about
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agent i. Note that O0;7; is not in general valid, since an agent j, in the absence of
any communication from i (# j), can well assert that ¢; ~ 7; holds!

The inference rules (MP) and (TGB;) are standard, whereas the rule (TGO;)
again reflects the nonstandard nature of our future modality.

A formula a which can be derived using the axioms and the inference rules will
be called a thesis. We will use F « to denote the fact that a is a thesis in the
system A(n-ACSA).

We say a formula is consistent if its negation is not a thesis in our system.
The finite set of formulas {a, ..., a;,} is consistent if and only if the formula
a1 A...Aay, is consistent. A set of formulas is consistent if and only if every finite
subset is consistent.

Theorem 3.1. (Soundness)
If + o then F a.

Proof. The soundness of Axioms (Al) and (A5) and the inference rules (MP) and
(TGE;) are standard arguments in tense logic. Axioms (A2), (A3), (A4) and (A7)
can be easily seen to be sound from the definition of frames.

Now consider (A6). Let M = ((E; <), V) be a model and assume for some
e € E that M, e F O;a. If e € E;, since e < e, by semantics of &;, M, e £ &;,0;,
as required. Otherwise, by semantics of O;«r, there exists ¢’ € E; such that ¢/ < e
and M, ¢ F O;a. Clearly, by semantics of §;, M, e F §;0;0a.

To see that (TGO;) preserves validity, assume that « is valid, and that M, e F ;.
Then e € E;. If ¢’ € E; such that e < ¢/, then since F a, M, ¢’ F a as well. Thus,
by the semantics of O;a, M, e F D;0r. O

Proposition 3.2.
(i) If ©;a is consistent, then so is a.
(i1) If i A Qs is consistent, then so is a.

Proof.
(i) and (ii) are, respectively, the contrapositive versions of the inference rules
(TGB;) and (TGLL;). 0

We now state some useful theses and derived inference rules.

Theses

(T1) (a) Bi(a AB) = (Bia AB;0)
(b) Oi(a A B) = (Oia AO;B)

(T2) (a) ©i(a AB)D (&ia A&if)
(b) Qi(a A B) D (Qia A O:f)

(T3) (a) BiaA&iB D &i(anpB)

(b) Qi AQiB D Oi(a A B)
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(T4) (a) ©ia D Qi(ri AN a)
(b) 7 AQia D Qi(ri A a)
(T5) O D O0,0;
(T6) 9.'(01/\5.‘ﬂ1)/\...Ae,'(a/\E.'ﬂk)

D Qg(a ABiBiA...A E;ﬂk) (k > 0)
Derived Inference Rules

a=p
(DRO) v[a/B) =7

where y{a/f] is the formula obtained by replacing a by 8 uniformly throughout 5.

adDf
(DR1) B;a D B;8

adDpf
(DR2) O;a D 0O;8

adDf
(DR3) 2> 6:f
(DR4) @B

7 D (Oia D $if)

The derivations of (T1) through (T4) and of the derived inference rules are easily
obtained from [19,20]. Here we just derive (T5) and (T6).

(T5) O;e D 0;0;«

(1) Bia D 9:i0;a (A6)

(2) ©:0ia D 0; 00 (A5.a, subst)

(3) €:0;a D> O;a (A5.b, contrapos.)
(4) 0:9:0ia O 0,0 (3, DR2)

(6) Oia D 0;0; (1,2, 4)

(TG) 9.'(& A B,',Bl) A...A Q;(a A E,’ﬂk) )
Qi(a ABiB1) A... A Bifk) (k>0)
The derivation is by induction on k. The base case, when k = 1, is trivial to
see. Below, let 8 abbreviate the formula 8; A ... A Bx—1.

(1) (e ABB) A...A Qi(a ABifr-1) D Gi(a AB;f)
(IH, T1.a, DR3)
(2) %i(a ABiL) A... A Gi(a ABifr)
D Qi(a AB;B) A Gi(a ABiBr) (1, PC)
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(3) $i(a ABLH) A Oi(a A BiBe)
D Qi(a AB;BA 9,‘((! A E,‘,Bk))

V &i(a ABLBi A §i(a A B B)) (A4)

(4) Si(a ABiBAGi(a A Bifr))

D ej(a A 9.'((1 AB;BAB;8)) (A3, T3.a, DR3)
(3) Qi(a ABBAAa ABif))

D Qi A 9 9i(a AE;B ABifr)) (4, T2.a)
(6) Qi(a ABLB A &i(a AB:f:))

D Oi(a AB;B AB;iBy) (5,A3, PC)
(7) 9i(a ABiBk A Gi(a AB:B))

D Qi(a AB;BAB;B) (6, subst)
(8) 9,-(01 A E;ﬂl) AN A 9,'(01 A E,’ﬂk)

DQ;(C(/\E,‘ﬂl AN...A E,',Bk) (2, 3,6,7,

T1.a, DR3)

We now present a proof of the protocol given in Sec. 2. We need to show that
the formula

(R) Ar: AGi D & {_\Qj Ci)

is implied by the formulas (1) and (2) below:
MA@D (G= /J_\eij))
(2) {\ (i AC; D 0;/].\9,'950,-)

The proof goes as follows. Each line of the derivation uses DR3 and DR4 in addition
to the theses cited.

(3 A(RAC D %N GH(RAC)) (2, T4.2)
4) /\ (i ACi D Oié\ejei/k\ek-[dk) (3, 1)
(8) A(RACi D <>.-/J_\e,- A6 Le) (4, A3)
(6) /\ (i AC; D s /]\ Oi(m A /k\ekLk)) (5, T4.a)
(MAmAGS <>,-/j\<>,-c,-) (6, 1)

4. Completeness of A(n-ACSA)

We now proceed to demonstrate that our axiom system is complete. The proof
follows Burgess [19] in style. Completeness is proved by showing that every consis-
tent formula is satisfiable.
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By an MCS (Maximal Consistent Set), we mean a consistent set of formulas
which is not properly included in any other consistent set. The next two results are
standard.

Proposition 4.1. Any consistent set of formulas can be extended to an MCS. O

Proposition 4.2. Let A be an MCS.
(i) ~a€eAiffag A
(i) avpeAifaec Aor g€ A.
(i) If F o then a € A.
(iv) fa € Aand + a D B, then 8 € A. O

We will be using these two propositions throughout without explicitly referring
to them.

Proposition 4.3. Let A be an MCS. For some i € {1, ..., n}, s € A and for all
i#4, 1 €A
Proof. Follows from Axiom (A7.a). a

Definition 4.4. Let A and B be MCSs, where 7; € A. Then
A< B2 {¢iala€cA}CB. ]

Proposition 4.5. Let A and B be MCSs, where 7; € A. Then
A<Biff {a|B;a€eB}CA.

Proof.
(=):
Suppose B; o € Band o ¢ A. Then ~ o € A and since 7; € A and A < B,
9; ~ a € B, which is a contradiction.
(=):

Similar to the previous case. a
Proposition 4.6. < is reflexive and transitive.

Proof. Let A be an MCS and let 7; € A. If a € A, then by axiom (A2.3), $;a € A.
Thus < is clearly reflexive.

To show transitivity, assume MCSs A, B and C, where ; € A, 7, € B, A< B
and B X C. If o € A, then ¢;a € B and hence ¢;9;0 € C. By Axiom (A3),
©;a € C. Thus A < C, as required. O

=< is not only a preorder, but is also “backward-connected” within agents. The
following proposition will be useful later.

Proposition 4.7. Let A, B and C be MCSs, where ; € ANB, A<Cand B<C.
Then either A < B or B < A.

Proof. Suppose that we have neither A < B nor B < A. Then there exist formulas
a and (3 such that oA ~ ©;0 € A and BA ~ §;a € B. Since A X C and B < C,
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we have ;(a AB; ~ B) A &;(BAB; ~ a) € C. Hence by Axiom (A4), &;(a A B;
~BAQ(BAB; ~a)) or ;(BAB; ~aAdi(aAB; ~ B)) is in C. Without
loss of generality, assume that the former is in C. By Proposition 3.2(i),
aAB; ~ B A(BAB; ~a) is consistent. By (T2.a, T3.a), we get &;(BA ~ 3)
is consistent. Again using Proposition 3.2(1), #A ~ B is consistent, which is
absurd. a

Lemma 4.8. Let A be an MCS and let ;a0 € A. Then there exists an MCS B
such that B < A and {n, o} C B.

Proof. Consider the set & £ {3| B;3 € A} U {r, a}. It suffices to show that ¥ is
consistent, because in that case we can extend X to an MCS B, and by Proposition
45, B < A.

Let X' £ {n, e, B1, ..., B} be an arbitrary finite subset of . Since 8;4,, ...,
BifBr € A, by Thesis (Tl.a), Bi(B1 A ... ABi) € A. Since §;a € A, by (T4.a),
Oi(ri ANa) € A. Hence, by (T3.a), ©i(i AaAP1 A...AB) € A and must
be consistent. But then, by Proposition 3.2(i), £’ and consequently ¥ must be
consistent. a

Lemma 4.9. Let A be an MCS and let 7; A $;a € A. Then there exists an MCS
B such that A < B and {n;, o} C B.

Proof. Consider the set £ £ {&;3|8 € A} U {n, a}. It suffices to show that T is
consistent because for any MCS B that contains £ we will have, by the definition
of <, that A < B.

Let X' £ {n, a, ©:iB, ..., ©iPr} be an arbitrary finite subset of X. Since 7; as
well as By, ..., Bx € A, applying (A2.a) and (A5.a), 0;0i(B1 A...AB:) € A. By
(T2.a) and (DR2), O;(©:f1 A ... A &ifr) € A. Since 1; and Qs € A, by (T4.b),
Qi(1i Aa) € A. Hence, using (T.3b), the formula  AQi(i AaAQBLA... A1)
€ A and must be consistent. But then, by Proposition 3.2(ii), £’ and consequently
¥ must be consistent. a

Definition 4.10. Let S = (F; <) be a frame. Then

(i) A chronicle on S is a function T which assigns an MCS to each e € E such
that fore € E, r; € T(e) iff e € E;.

Let T be a chronicle on the frame S. Then

(if) T is coherent iff it satisfies for e, ¢’ € E, e < €' = T(e) < T(¢').

(ii) T is prophetic iff whenever e € E; and {ia € T(e), there exists ¢’ € E;
such that e < ¢’ and a € T'(e').

(iv) T is historic iff whenever e € E and §;a € T(e), there exists e’ € E; such
that ¢’ < e and o € T(¢').

(v) T is perfect iff it is coherent, historic and prophetic. O

Definition 4.11. Let S = (E; <) be a frame and T a chronicle on it. The
valuation induced by T, denoted Vr, is given by:

Vec E, Vr(le) £T(e)n P .



132 K. Lodaya, R. Ramanujam & P. S. Thiagarajan

We use Mz to denote (S, Vr). O

Lemma 4.12. Let T be a perfect chronicle on a frame S = (E; <). Then for any
e € E and formula o, a € T'(e) iff Mr, e F a.

Proof. The proof proceeds by induction on the structure of a.

The cases when @ € P’ or «a is of the form ~ 8 or 8; V B2 are routine. Now
assume that o« is of the form B;8.

(=):

Suppose B;8 € T(e), for some e € E. To show Mr, e F B;8, consider
¢’ € E; such that ¢’ < e. We have ; € T(e’). By coherence of T, T'(e') < T(e),
and by Proposition 4.5, 8 € T'(¢’). Then by induction hypothesis, Mz, ¢’ F 3, as
required.

() :

Suppose that 8;0 ¢ T'(e). Then ¢; ~ § € T(e), and since T is historic,
there exists ¢’ € E; such that ¢/ < e and ~ 8 € T(e'). Hence 8 ¢ T(e’'). By the
induction hypothesis, My, ¢’ ¥ 8. Thus, My, e ¥ B;5.

Next assume that o is of the form [J;8. We first consider the case when e € E;.
Then 7; € T(e).
(=):

Suppose O0;8 € T'(e). To show Mr, e F 00;8, consider e’ € E; such that
e < e'. Therefore 7; € T(e’'). By coherence of T, T'(e) < T(e’). Hence, £;00;8 €
T(e'). By the dual of Axiom (A5.b), O;8 € T(e'). Since 7; € T(e'), Axiom (A2.b)
gives B8 € T(e’). By the induction hypothesis, M, ¢’ F .

(=) :

Suppose that 0;8 ¢ T(e). Then ¢; ~ B € T(e), and as T is prophetic,
there exists ¢/ € E; such that e < ¢’ and ~ 8 € T(¢'). Hence 8 ¢ T(e’). By
induction hypothesis, My, e’ ¥ 8. Thus, My, e ¥ 0O0;5.

Now consider the case when e € Ej, (j # 1).
(=):

Suppose 00;8 € T'(e). By Axiom (AS), ©:00;8 € T(e). Since T is historic,
there exists e’ € E; such that ¢’ < e and 0;8 € T(e’). From the previous case, we
know that Mr, ¢’ E ;8 and hence, by the semantics of 00; 3, we have Mr, e F 00; 3.

(<)

Suppose that O0;8 ¢ T(e). Then ¢; ~ § € T(e). By Axiom (A5.b),
Bi®: ~ B € T(e). Now consider any e’ € E; such that ¢’ < e. ; € T(e') and by
coherence of T', T'(e’) < T'(e), and by Proposition 4.5, ¢; ~ g € T'(¢’). From the
previous case, we have Mr, ¢’ F {; ~ 5. Hence My, e ¥ 00;5. ]

Hence in order to show that a formula a is satisfiable, it suffices to construct
a frame S = (E; <) and a perfect chronicle T over S such that o € T(e) for
some e € E. This will be our proof strategy. Firstly we show that a coherent but
imperfect chronicle can be “improved” in some sense. For this we will find it useful
to consider a specific kind of chronicle.
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Definition 4.13. Let S = (E; <) be a frame and 7" a coherent chronicle over S.
T is said to be strict iff for all e, e’ € E, whenever T'(e¢) < T(e') or T(e') < T(e),
we have e < e’ or e’ <e. O

Definition 4.14. Let S = (E; <) be a frame and 7" a coherent chronicle over S.

(1) A live historic requirement is a pair (e, €;a) such that e € E, &;a € T(e)
and there does not exist ¢/ € E; such that ¢’ < e and o € T(¢’).

(ii) A live prophetic requirement is a pair (e, ¢;a) such that e € E;, {;a €
T'(e) and there does not exist e’ € E; such that e < e’ and a € T'(e’).

(iii) A live requirement is either a live historic requirement or a live prophetic
requirement. a

Lemma 4.15. Let § = (E; <) be a frame, é ¢ E and T a strict and coherent
chronicle on S. If (e, €;) is a live historic requirement for T" in S, then there exists
a frame S’ = (E’; <’) and a strict and coherent chronicle 7' over S’ such that

(i) E'=EuU{ée}.

(i) <=<1(ExE).

(i) T=T' [ E.

(iv) (e, €;a) is not a live requirement for 7" in 5.
Proof. Let A = T(e). By Lemma 4.8, there exists an MCS B such that B < A
and {r;,a} C B. Define

&
>

N {EjU{é} if i = j and

E; otherwise .

!
~
m\
N’
>

T(e') otherwise .

<U{(e1,€)|T(e1) X B and not B X T(e1), e; € E}
U{(,2)|B < T(e), €3 € F}
U{(¢é)} .

Clearly, conditions (i) through (iii) are satisfied. The definition of <’ ensures
that é <’ e, since B < A, by choice of B. Thus, if S’ is a frame and T" is a strict
and coherent chronicle over it, (e, ©;a) cannot be a live requirement for 7" in S'.
To show that S’ is a frame, we have to prove that E{N E} = @, for i # j, and that
<’ is a partial order which is backward linear within agents.

Since é ¢ E, and E} = Ej for j # i, we also have E; N E; = @, for i # j.
Reflexivity of <’ follows from the definition, since < is reflexive.

To see that <’ is antisymmetric, suppose that e; <’ e; and e3 <’ e;. Since
<=<'l (£ x E) is antisymmetric, if €1, e; are both in E, then e; = e5. If e; ¢ E
and ez ¢ E, then e; = e = €. So consider the case when e; ¢ E and e, € E. That
is, ey = é. Since é <’ e2, we have B < T(ez). But e3 <’ é, hence T'(e2) <= B and
not B < T(ez), which is a contradiction. Hence e; ¢ E. So es = é, as required.

To show transitivity of <’, assume that e; <’ e¢s <’ e3. As we have that
<=<'l (E x E), it suffices to consider the case when one of e, €3, e3 equals é.

{B ife’ = ¢, and

A
12
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(ex = é):

We have B < T'(e3) < T(e3). By transitivity of < (Proposition 4.6), B < T'(e3),
and by definition, é <’ e3.

(62 = é)

We have T(e;) < B =< T(e3), and not B < T(e;). Clearly we cannot have
T'(e3) < T(ey) either. (For, otherwise, we get B < T(es) < T'(e1), and by transitiv-
ity of <, we get B < T'(e1).) Thus we get T'(e1) < T(es) and not T'(e3z) < T'(e1).
By coherence and strictness of T', we get e; < e3. Hence e; <’ e3 as well.

(63 = é):

We have T'(e1) < T(e2) < B, and not B < T(ez). Thus we get T'(e;) < B and
not B < T(e;). Hence e; <’ é.

Thus, <’ is a partial order on E’ x E'.

From the definitions of 7" and <, it is easy to see that for any e € E’, e € E}
iff r; € T'(e) and that for any e, e2 € E’,

(*) e1 <’ ez implies T"(e1) < T'(e2), and

(**) if T"(e1) < T'(e2) or T'(e2) X T'(e1) then e; <’ ez or e2 <’ €.

Now, to show that <’ is backward linear within agents, let e;, e; and e3 € B’
such that for some j, {e1,e2} C E}, e1 <’ e3 and e <’ e3. By (*) above, we have
T'(e1) % T'(e3) and T'(ez) < T"(e3). By Proposition 4.7, either T'(e1) < T"(e2) or
T'(e2) X T'(e1). By (**) above, either ey <’ e; or e3 <’ €1, as required.

Thus $' = (E'; <') is a frame and 7" is a coherent and strict chronicle
over it. a

Lemma 4.16. Let S = (E; <) be a frame, é ¢ E and T a strict and coherent
chronicle on S. If (e, {;a) is a live prophetic requirement for T in S, then there
exists a frame S’ = (£’; <’) and a strict and coherent chronicle 7/ over S’ such
that

(i) E'=FEu{e}.

(i) <=<'T(ExE).

(w) T=TI}E.

(iv) (e, ©sia) is not a live requirement for 7" in S’.

Proof. Let A =T(e). 1: A Qi € T'(e), and by Lemma 4.9, there exists an MCS B
such that A < B and {n;, «} C B. Define

&
>

s [JEjU{é} fi=jand
| E; otherwise .
{ B if e/ = ¢, and

3
—~
0\
S’
(>

T(e') otherwise .
<U{(e1, é)|T(e1) X B, e1 € E}
“U{(é,e2)| B < T(ez) and not T(ez) < B, e5 € E}
U{(é @)} .

N
3
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The proof that S’ is a frame and that 7" is a strict and coherent chronicle over
it is similar to the one in the proof of Lemma 4.15. Since T'(e) < B by choice of B,
by definition of </, e <’ é and hence {;a is not a live requirement for 7/ in S’. O

Theorem 4.17. (Completeness)
If F o then F a.

Proof. We show that every consistent formula is satisfiable. Let E = {eo, €1, €2,
...} be a countably infinite set. Fix an enumeration of Ex®, (@, is the set of all
formulas).

Now, let a be a consistent formula. Pick an MCS A containing a. We now
define, for all k£ > 0, S¥ and T*.

S% £ ({eo}, {(eo, €0)}) and T (e0) = A .

Clearly, T° is strict and coherent over S°.

Inductively assume that S* = (E¥; <¥) and T* have been defined, where E¥ =
{eo, €1, ... , ex} and T* is strict and coherent over S*¥. Suppose there are no live
requirements for 7% in S¥. Then set S¥+! = S* and T*+! = T*. Otherwise, among
all the live requirements for T* in S¥, choose the least one in the enumeration of
E x &,, say (e, 8). By Lemma 4.15 and Lemma 4.16, we can extend S* and T* to
a frame S¥*! and a chronicle T**! over it with S¥+1 = (E¥+1; <¥+1) such that

(i) E¥l = FFy {ek+1},

(i) <MI(E* x EF)is <P,

(iii) T*+! | E* = T*,

(iv) T**1 is strict and coherent over S¥*+! and

(v) (e, B) is not a live requirement for 7%+ in Sk+1.

Finally set S = (E; <), where E = |JE*, < = |J <*, and define a chronicle T

k k

over S by:
for e € E, T(e) £ T*(e), where ¢ € E* .

It can be easily checked that T is a perfect chronicle over S. By Lemma 4.12, M7,
eo F a, where Mr = (S, V), Vr being the valuation induced by T. Thus, « is
indeed satisfiable. O

5. Unboundedly Many Agents

So far we have a parametrized collection of classes of frames, where the parameter
is n, the number of asynchronously communicating agents. Correspondingly, we
have a collection of logical languages ®,,. For each n € N, the required sound and
complete axiomatization is obtained by varying the Axiom (A7.a).

We now wish to provide a uniform way of handling these classes of frames,
languages and axiomatizations. Stated differently, we now wish to extend our study
to handle systems of finite but unboundedly many agents. For the frames the
generalization we have in mind is easy to achieve. We postulate a countably finite
set N of names (of agents). In order to tie up smoothly with the results of the
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previous sections we will in fact set A” = N, the set of positive integers. We let i, j,
k range over N. Through the rest of the paper we also let U range over the set of
non-empty fintte subsets of N.

Definition 5.1. A system of asynchronously Communicating Sequential
Agents (ACSA) is a triple (£, <, 1), where
(i) (E, <)is a poset,
(i) n: E — N is a (naming) function such that:
for alle € E, for all j € N,
Lenn~1(j) is totally ordered by <. 0

In what follows we will usually write E; instead of 71(j) for j € N. Note
that an ACSA (E, <, n) with the range of 7 restricted to {1, 2, ..., n} is in fact
an n-ACSA. The notion of local state will remain as before. We will continue to
interpret formulas at the local states of ACSAs.

The required logical language is obtained by postulating a countably infinite set
of type propositions T 2 {r; |7 € N} which is required to be disjoint from P, the
countably infinite set of aiomic propositions. The set of formulas is then inductively
given by:

(i) Every member of PUT is a formula.

(ii) If o and B are formulas then so are ~ a, o V 3, O;a and B;a where i € N.

We thus have a language ®y with an infinite set of modalities. However, since
formulas are finite objects, each formula can refer to only a finite number of agents.

Further, it is easy to see that &y = |J ®,.
neN
A frame is an ACSA S = (E, <, n). A model is a pair M = (S, V) where

S =(E, <, n)is aframe and V: E — 2PY7 is a valuation function such that
for everye € E and every i € N, 7, € V(e) iff e € E;.

Let M = (S, V) be a model with S = (E, <, 7) and ¢ € E and a a formula.
Then M, e F o denotes the notion of « being satisfied at the local state | e in the
model M and is defined exactly as in Sec. 2. We will once again use F a to denote
that « is a valid formula in this new set-up. The derived modalities are defined as
before.

As for an axiomatization, we retain the axiom schemes (A1) through (A6) and
the inference rules (MP), (TGH;) and (TGO;) from Sec. 3. The two latter parts of
(A7) will also be carried over unchanged. However, (A7.a) will no longer be sound.
An equivalent version in the present set-up would require an infinite disjunction.
To get around this problem we first capture the fact that each event can belong to
al most one agent by replacing (A7.a) with an infinite set of azioms: 7; D ~ 7;, for
every pair i, j € N, i #£ ;.

We will “weakly” capture the fact that each event must belong to at least one
agent by introducing a new inference rule. In doing so we will use TYP () to denote
the set of agents referred to by the formula a. This notation can be inductively
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defined as follows:

TYP(p) =@, forpeP.

TYP(7;) = {i}.

TYP(~a) = TYP(a).

TYP(a V B) = TYP(a) U TYP(B).

TYP(Bia) = TYP(Tia) = TYP(a)U {i}.
We can now state the inference rule (TE) which guarantees that each event belongs
to at least one agent. The rule is similar to those used in [21,22].

V Do
(TE) L LA (where U is such that TYP (a) G U)
o

Observe that U is a non-empty finite subset of N and hence the disjunction is
allowed. Moreover, TYP(«) is a proper subset of U. The proposed axiomatization

A(ACSA) is given below.

Axioms
(A0) All substitutional instances of the tautologies of propositional logic.
(A1) (a)Bi(e D B)D (Bix D HiP) (Deductive closure)

(b) Oi(a D B) D (sa D O:B)
(A2) (@)D (BiaDa) (Local reflexivity)

(®) . O (O;a D a)
(A3) 995 D Yja (Transitivity)
(Ad) ©iaA$BD Qi(aAdP)V (B AGia) (Backward linearity)
(A5) (a) &a D O;9ic (Relating past

(b) Gia D B;Qia and future)
(A6) Do D ¢0ia (Communication)
(A7) (a) Bim (Type axioms)

(b) s D Oimy
(A8) mD~T (i#)) (Disjoint agents)
Inference Rules

o, adf
MP —_
(MP) 3
a
(TGH;) =
a
(TGO;) T
V iDa

(TE) '—e—Ua— (where U is such that TYP(a) ¢ U)

As before we shall use - & to denote the fact that o is a thesis in this new logical
system. The notion of a consistent formula is defined as usual.

Theorem 5.2. (Soundness)
If - athen F a.
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Proof. It is easy to check the soundness of the axiom schemes, axioms and the
first three inference rules. What requires an argument is the soundness of the new
inference rule (TE).

Let a be a formula and U a proper superset of TYP(a), such that the formula

V 7 D a is valid. To prove that « is also valid, we must show that for any model
ieU
M = (S, V), where S = (E, <, 1), and for any ey € E, M, eg F a.

Suppose that n(eg) = j € U. Then M, eg F 7; and hence M, eg F \/ 7;. But

ieU
then \/ 7 D a is a valid formula and hence is satisfied at e in the model M.
ieU

Consequently M, eq F o as well.

Suppose that n(eq) = j ¢ U. Let i € U — TYP(a). The existence of such
an i is assured by the fact that TYP(a) is a proper subset of U. Now define

S' = (E, <, 1) where 7' is given by

i, ifnle)=3j.
Yec E.n'(e) £ j, ifnle)=1i.
n(e), otherwise .

It is easy to check that S’ is a frame. Now define the model M’ = (5’, V') where
V' is given by

(V(e)—{rHu{n}, ifn(e) =7 .
Vee E.V'(e) £ (V(e)— {n}u{n}, ifn(e)=i.
V(e), otherwise .

It is easy to check that M’ is indeed a model.

Claim. For every formula § such that {¢, j} N TYP(6) = @ and every e € E, M,
eE ST M, eF§.

Proof of Claim. By induction on the structure of 8.

Suppose that § € P. Then since V and V' assign identical subsets of P to
identical events, the claim follows.

Suppose that § € T". Let § = 7. Then k ¢ {¢, j}. But this implies that n(e) = k
iff 7/(e) = k and once again the claim follows.

If 6 is of the form ~ + or of the form 6, V é5 then standard arguments lead to
the claim.

If 6 is of the form By or O, k € TYP(6) and hence k ¢ {i, j}. Therefore, for
all e’ € E, n(e’) = k iff /(') = k. Then it is easy to verify that Ve € E. M, eF 6
iff M’ e F é, using the induction hypothesis. This establishes the claim. a

Returning to our soundness proof, by the definition of 7/, 7/(eg) = i € U. Then

M’ eq F 7; and hence M’, e F \/ 7. But then \/ 7 D a is a valid formula and
ieU ieU

hence is satisfied at ep in the model M’. Consequently, M’, eq E . Since {i, j} N
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TYP(a) = @, by the claim above, M, eq F o as well, and thus the inference rule
(TE) is sound. O

Proposition 5.3. If « is consistent then there exists ¢ € N such that o A 7; is also
consistent.

Proof. Suppose not. Then for all i € N, we have - a D ~ 7. Let U = TYP(«)
U {j}, where j ¢ TYP(a). We haveF a D A ~ 7. Thus,F \ D ~ a, and
ieU i€U
using (TE), we get I ~ a, which contradicts tfle consistency of az.E O
It is fairly easy to prove the completeness of our axiomatization using the results
of the previous section. A direct approach to produce a model for a consistent
formula will however yield, in general, a model consisting of an infinite set of agents
even though the consistent formula we started out with could only talk about a
finite number of agents. To eliminate this “slack” we will relativize the notions
concerning chronicles w.r.t. the closure of a formula. This idea will turn out to be
essential in the next section where we axiomatize finitary ACSAs.

Definition 5.4. Let o be a formula.
(i) CL/(a) is the least set of formulas containing « that satisfies the following
conditions:
(a) If i € TYP(a) then 7; € CL/(a).
(b) If ~ B € CL(«) then g € CL/(a).
(c) If B V B2 € CL'(a) then B, B2 € CL'(a).
(d) If B8 € CL/(a) then 8 € CL/(a).
(e) ¥ O0;8 € CL/(«) then 3, ;0,6 € CL'(a).
(ii) The closure of a (denoted CL(«)) is given by:

CL(a) £ CL/(e)U {~ B|B € CL/(a)} . 0

It is easy to check that CL(«) is a finite set for every . (In fact there exists a
constant ¢ such that the cardinality of CL{a) is at most ¢ times the length of the
formula «).

Let A be an MCS. We will say that the MCS A is good if there exists at least
one i € N such that 7; € A. Throughout the completeness proof, we shall restrict
our attention to good MCSs; in fact, we will usually say “an MCS” to mean “a
good MCS”. It is easy to see that the < relation defined in Sec. 4 by:

A< Biff {¢a|la € A}C B

is meaningful on good MCSs. Further, the results Proposition 4.1 through Lemma
4.9 go through smoothly for good MCSs. The proof of Proposition 4.3, however, is
different now, as it appeals to Axiom (A8). A chronicle over a frame (E, <, ) is
a function 7" which assigns a good MCS to each e in E. As before T is said to be
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coherent iff e < ¢’ implies that T'(e) < T'(¢’) for all ¢, ¢’ € E. However, the notions
of historic and prophetic chronicles are now relativized, as given below.

Definition 5.5. Let L be a set of formulas and T a chronicle over the frame
(E, <)
(i) T is L-historic iff whenever e € E and €;8 € T(e) N L then there exists
¢’ € E; such that ¢’ < e and B € T(¢').
(if) T is L-prophetic iff whenever e € E; and ¢;8 € T(e) N L then there
exists e/ € E; such that e < ¢’ and 8 € T'(¢').
(iliy T is L-perfect iff T is coherent, L-historic and L-prophetic. a

Definition 5.6. Let S = (E, <, 1) be a frame, T a chronicle for it and L a set of
formulas. The valuation induced by T for L, denoted V, is given by:

fore € E, Vf(e) £ T(e)N(PUT)NL .

We use M¥ to denote (S, V¥). O

Lemma 5.7. Let T be a CL(a)-perfect chronicle over the frame (E, <, ). Then
for every e € E and every 3 € CL(a), B € T(e) iff MTCL("), eF 8.

Proof. Similar to the proof of Lemma 4.12; the only necessary observation is that
when 0;8 € CL(«), €;0;8 € CL(«) as well. O

Corresponding to L-perfect chronicles, we now have “L-imperfections” in a
chronicle, which can be judged with the help of live L-requirements.

Definition 5.8. Let T be a chronicle over the frame S = (E, <, n) and L a set of

formulas.

(i) A live L-historic requirement is a pair (e, ©;3) such that e € E and
€ € T(e) N L and there does not exist ¢/ € E; such that ¢’ < e and
B € T(e).

(ii) A live L-prophetic requirement is a pair (e, {;8) such that e € E; and
$iB € T(e) N L and there does not exist ¢’ € E; such that e < ¢’ and 8 € T'(¢').

(iii)) A live L-requirement is either a live L-historic requirement or a live L-
prophetic requirement. 0

We can once again verify that the Lemmas 4.15 and 4.16 go through when we
use good MCSs in the context of CL(a)-requirements, for any formula o.

Theorem 5.9. (Completeness)
If Fothenb o

Proof. We will show that every consistent formula is satisfiable. To this end, let a
be a consistent formula. Then according to Proposition 5.3, there exists an i in N
such that o A 7; is consistent. Set & = a A 7;. Fix a countably infinite set of events
E and fix an enumeration eg, €1, ..., of E. Also fix an enumeration of E x CL(&).

The proof proceeds exactly as in the proof of Theorem 4.17; we build up a
sequence of frames and chronicles S* and T* as before. The only changes to be
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noted are:

(a) T%eg) is set to A, where A is any maximal consistent set containing & (and
hence A is good),

(b) given the frame S* and a chronicle T* over it, we choose that live CL(&)-
requirement which has the least index in the enumeration of £ x CL(&).

Again, as before, the countable componentwise union yields the desired frame
S and it can be easily checked that the chronicle T over S defined by

Ve € E.T(e) £ T*(e) where e € E*

is a CL(&)-perfect chronicle over S with o € T(eg). Hence by Lemma 5.7, we have
CL(&)
MEY® ek a. O

We noted earlier that |J®, = ®y. What is more interesting is that such an

equation holds also for thg satisfiable formulas of these languages. Let SAT(n-
ACSA) and SAT(ACSA) be as given below:

SAT(n-ACSA) {a € @, | a is satisfiable in a model based on an n-ACSA}.
SAT(ACSA) {a € ®y | « is satisfiable in a model based on an ACSA}.
Then the method of constructing models for consistent formulas in ®y leads at once

to the following result.

Corollary 5.10. T SAT(n-ACSA) = SAT(ACSA). O
n

f> 1>

While we have used the rule (TE) to ensure that we always work with good
MCSs, it is not necessary for completeness. To capture the effect of the rule in the
model construction process, one has to relativize the notion of a chronicle so that
the condition (7; € T(e) iff ¢ € E;) needs to be maintained only for r; € CL(a).
Completeness proofs of this kind will be found in Part II.

6. Finitary Frames

In this section, we consider the problem of axiomatizing finitary n-ACSAs (and
later, finitary ACSAs). A finitary n-ACSA is one in which every event has a finite
past. The motivation for studying such frames is clear: if n-ACSAs were to be used
to give the semantics of n asynchronously communicating sequential programs, we
would expect the semantics to yield only finitary structures. Moreover, finitariness
implies well-foundedness and hence induction principles based on well-foundedness
become available for proving properties of n-ACSAs [2].

Definition 6.1. A finitary n-ACSA is an n-ACSA (Ey, ..., E,; <), such that |e
is a finite set for every e € E = | E;.

We will continue to work with the language ®,, defined in Sec. 2. By a frame
we will mean a finitary n-ACSA and by a model, we will mean a pair (S, V') where
S is a finitary frame and V is a valuation as before. The semantics of the various
modalities will continue to remain the same.
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The axiom system A(fin-n-ACSA) is defined to be A(n-ACSA) enriched by the
additional axiom schemes:

(A9) (a) ©iaD Gi(aABi(~aDB; ~a)) (Well-founded agents)
(b) ©ia D 9i(aAB;B; ~ a) (j #1) (Well-founded communications)

The first of the two axioms rules out infinite descending chains of i-events and
the second rules out infinite descending chains of communication. Interestingly,
both axioms are indexed versions of well-known axioms for well-founded structures
in modal logic [23]: (A9.a) is a weak form of the Grz axiom for reflexive structures,
while (A9.b) derives from the W axiom for irreflexive structures. Note that B; is a
reflexive operator and B;H; (when j # i) is an irreflexive operator in our system.

Proposition 6.2. (A9) is sound.

Proof. (Soundness of (A9.a)).

Assume some model M = (S, V), where S = (E; <) and e € E such that M,
e ¥ (A9.a).

We have M, e F ;a AB;(a D € (~a A ;a)). Thus, for some ¢; < e, e; € E;,
M, e1 F aABi(a D ©i(~ a A $a)), and hence M, e F §;(~ a A §;a). Now we
can find e; € E; such that e; < eq and M, e2 F ~ a A §;aABi(a D €i(~ a A §;a)),
where ez < e1. Since M, e1 F o and M, es F ~ «, e3 # e; and thus e; < e;.
We proceed now to find an es such that e3 < e; and M, es F a A Bij(a D &
(~ a A ©;a)). Cleatly, e3 < e;. We have returned to the situation as in e; and
hence can repeat the construction to get the desired infinite descending chain.

(Soundness of (A9.b)).

Assume some model M = (S, V'), where S = (E; <) and e € F such that M,
e ¥ (A9.b).

We have M, e F §;a AB;(a D €9;a) with i # j. Thus, for some e; < e, we
have e; € E; and M, e; F a AB;i(a D ©;9;a), and hence M, e; F ©;9;0. Now we
can find e € Ej such that e; < e; and M, e3 F ©;aAB;(a D €;9ia). Since e; € E;
and ez € Ej, e2 # e;. We proceed now to find an ez in E; such that eg < e; and
M, e3 F aAB;i(a D €;9ia). Clearly, es < e3. We have returned to the situation as
in e; and hence can repeat the construction to get the desired infinite descending
chain. O

Thesishood is to be understood relative to the larger axiom system we now
have. I o denotes that « is a thesis in .A(fin-n-ACSA). The only additional thesis
required to prove completeness is:

(T7) Qia D Q;(a/\ A EJ'E,' ~aABi(~aDB; ~a))
J#i
Derivation.
(1) /\ Ej B;aDB; /\ EJ' B; a (A3)

i#i it
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(2) ©iaD ¢ (a A A B;B;i ~ a) (A9.b, similar to T6)
J#s
(3) i C &; (Cl A B; /\ EjE,' ~ a) (l, 2, DR3)
j#i
(4) Gia C Qi(aAB;Bi(~aDB; ~a)) (A9.a, A3, DR3)
(5) Sia D 9 (aAEi(jQ;E]Ei~0AE‘(~&DE‘~0)))
(3, 4, T6, Tl.a)
(6) Q;iaD §; (a/\T,'/\E,' (j/,};'EjEi ~aAEI.~(~aD E,-~a)))
(5, T4.a)

(7) SiaD §; (a A /\ EjE,' ~al E,’(~ adB;~ a)) (6, A2.a, DRB)
J#i

In the rest of this section, by a;, we shall denote the formula o A A B;85;
13
~ a ABi(~ a D B; ~ a). We have the thesis F &;a = ;0. *

We now proceed to show that A(fin-n-ACSA) is complete for finitary n-ACSAs.
The proof will proceed along the same lines as in Sec. 4.

It should firstly be noted that the model constructed in the proof of Theorem
4.17 may not be finitary. It turns out that a good deal of work must be put in,
using (A9.a) and (A9.b), in order to ensure that finitariness is maintained during
the model construction process. Below we present a proof, where we ensure that
once the past of an event is determined, it will not be changed ever again in the
process of killing a requirement.

Hereafter we shall say MCS to mean a maximal consistent set of formulas in
the enlarged system. We assume the same ordering < between MCSs. Propositions
4.5 to 4.9 go through without any change. However, we shall find occasion to use
a stronger form of Lemma 4.8. This is due to the fact that we now need to work
with a strengthened notion of historic chronicles.

Let S = (E; <) be a frame and T a chronicle over S. Let e, ¢/ € E and €;a €
T(e). Then e’ kills the requirement (e, 9;a) in S for T if ¢’ < e, {n, a} C T(¢')
and for any MCS C containing {r;, o} and satisfying C < T'(e) it is the case that
T(e') < C. (e, €ia) is said to be a live historic requirement for the chronicle T in
the frame S = (E; <) if €;a € T(e) and there does not exist an ¢’ € E which kills
(e, €ia) in S for T. T is said to be historic iff there is no live historic requirement
in S for T.

Thus in some sense T'(e’) is the “virtually earliest” MCS that contains {;, o}
and is “earlier than” T'(e).

The notion of a prophetic chronicle remains unchanged. Recall the relativized
notions of historic and prophetic chronicles w.r.t a set L of formulas introduced in
the previous section. L-historic chronicles are to be understood now in terms of
the stronger notion of a historic chronicle introduced above. The definition of an
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L-prophetic chronicle remains unchanged. Naturally, an L-perfect chronicle is one
which is coherent, L-historic in the new sense and L-prophetic.

The relativized notion of a live L-historic requirement, where L is a set of formu-
las, is defined accordingly. The definition of a live prophetic requirement is the same
as the one used in Sec. 4. The relativized notion of an L-prophetic requirement is
defined in the obvious way.

Lemma 6.3. Let A be an MCS and let §;a € A. Then there exists an MCS B
such that B < A, {r;, o} C B and for all MCSs C < A,if {r;,a} CC,B =< C.

Proof. Consider the set
2 {y|Gi(aABiy) € A}U{m, o} .

Suppose ¥ is consistent. Then we can extend ¥ to an MCS B. To show B < A, let
BeEB. &3¢ A B; ~f8€ A, and hence B;H; ~ 8 € A. Since ;o € A, we get
Si(aANB; ~B)€ A, and so ~ 3 € £ C B, a contradiction. Thus B < A.

To show consistency of L, consider an arbitrary finite subset of X, say, &' £
{7, ---, Y, 7i, a}. It suffices to prove that ' is consistent. ¢;(a AB;71), ...,
Qi(a AB;vi) is in A by definition of £. €;(a AB;71 A... AB;7;) € A by thesis
(T6). Hence &;(i A\aAB;v1 A...AB;ivi) € A by thesis (T4.a). We get Oi(ri A a A
71 A...Avk) € A by axiom (A2.a) and (DR3) and hence s Aa A y1 A ... A yi is
consistent. That is, L’ is consistent, as required.

Now consider an MCS C such that C < A and {r, «} C C. We have to
show that B < C. Suppose not. Then there must be a formula § € B such that
Bi~6€C. ThusaAB; ~ 6§ € C, and since C < A, ;(aAB; ~ §) € A. By
construction, ~ § € ¥ C B, which is a contradiction. Hence B is the required

MCS. O

In the previous section we define the closure of a formula in $y. Here we must
do the same for formulas in ®,,. Let o € ®,,. Then CL/(a) is the least subset of &,
containing « which satisfies the following conditions:

{n, 12, ..., T} C CL/(a).

If ~ g € CL'(a) then 8 € CL/(a).

If §1 V B2 € CL/(«) then 81, B2 € CL'(a).
If B:8 € CL'(a) then g € CL/(a).

If O;8 € CL'(a) then 8, ;0,8 € CL/(a).

The closure of «, denoted CL(a), is then given by:

CL(a) £CL/(a)U{~ B|B € CL/(a)} .
We again have a CL(a)-perfect chronicle inducing a model.

Lemma 6.4. Let 4 be a formula and let L = CL(y). If T is an L-perfect chronicle
on a frame S = (E; <), then for any e € E and for any formula o € L, o € T(e) iff
ME eFa.

Proof. As for Lemma 5.7. O
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To show that a consistent formula is satisfiable, we fix a consistent formula ag
and construct a CL(aq)-perfect chronicle on a frame S. While doing so, every time
we extend the “current” frame by adding an event e we also add a finite set of
“past” events of e, which is fixed once and for all. The bulk of the proof will be
devoted to constructing this fixed past of a new event. First let us observe that a
frame can always be “historically” improved.

Lemma 6.5. Let S = (E; <) be a frame, é ¢ E and T a strict and coherent
chronicle on S. If (e, ©;a) is a live historic requirement for 7" in S, then there exists
a frame S’ = (E’; <’) and a strict and coherent chronicle T" over S’ such that

(i) E'=EuU{e}.

(i) <=<'1(ExE).

(i) T=T'1E.

(iv) é kills the requirement (e, ;) in S’ for T”.

Proof. Similar to the proof of Lemma 4.15, except that instead of appealing to
Lemma 4.8 to find MCS B, we use Lemma 6.3 to get the virtually “earliest” B. O

Now we can turn to the task of constructing the fixed finite past of a new
event as dictated by the historical requirement generated by a finite set of formulas.
Finiteness will be achieved by ensuring that live requirements, once killed, do not
come up again. We crucially use the thesis (T7) for this; recall that a; denotes the
formulaa A A B;B; ~a AB; (~aDB; ~a).

J#
Proposition 6.6. For any MCSs A and B, if A < B, a € A and o; € B, then
o; € A

Proof. Let 7 € A. By axioms (A3) and thesis (T1.a), the formula
Ek(/\EjE;~Ot/\E,’(~aDE;~a))€B.
J#i

Therefore, since A < B, the formula A B8;~a A Bi(~ o D B; ~ a) € A. But
i

a € A as well, and thus a; € A. a

Proposition 6.7. Let T be a coherent chronicle over S = (E; <). Then for any e

and €’ in E, if ¢’ kills the requirement (e, ©;a) for T in S, then o; € T(¢’).

Proof. Suppose e kills (e1, €ia). €ia € T(e1) and by (T7), €ia; € T(e;) as
well. By Lemma 6.3, there exists C < T'(ey), such that {r;, o;} C C. But then
{7, @} C C also and since ey kills (¢1, €;a), T(e2) < C. But a € T(e;) and a; € C;
by Proposition 6.6, o; € T(e3). 0

Proposition 6.8. Let S = (E; <) be a frame and T a coherent and strict chronicle
over S. Let ey, ea € E such that e; < e; and (e1, €;a) is not a live requirement for
T in S. Then (ez, €;a) is also not a live requirement for T in S.

Proof. Assume the hypothesis. If &;a ¢ T(e;), we are done. So assume that
Oia € T(ez). Since ez < ey and T is coherent, we get ©;a € T(e1). But (e1, &)
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is not a live requirement for T in S, so there exists eg € E which kills (e;, ¢;a).
Since €;a € T'(e3), by Lemma 6.3, there exists an MCS B such that B < T'(e2),
{7, a} C B. But T(e2) < T'(e1), hence B < T'(e;). But eg kills (e, €;a); therefore
T(e3) X B. By transitivity, we get T'(e3) < T'(e3).

By strictness of T, either eg < €5 or e3 < e3. In the former case, it is easy
to show that e3 kills (e2, ©;a), since if an MCS C has a and C < T'(ez), then
C <X T(ey) as well, so T'(ez) < C. Assume the latter case. Since ez kills (e1, €;a),
by Proposition 6.7, a; € es. Now ez < e3, so by coherence, T(e2) < T'(es). If
ez € Ej, j # 14, Bi ~ a € T(ey), contradicting ©;a € T(ez). Thus e; € E;. Then
the formula (~ o D B; ~ «) is contained in T'(ez), therefore to avoid a contradiction
o must be in T'(ez). We now show that e itself kills (ez, §;a).

We already have that {r;, a} C T(e2). Let D be an MCS such that D < T'(ep)
and {7, a} C D. Since T'(e2) < T(e1), we get D < T(e1). But eg kills (e1, §:a), so
T(es) < D, and by transitivity, T(e2) < D. Thus (e, €;) is not a live requirement
for T'in S. a

Lemma 6.9. Let A be an MCS and L a finite set of formulas. Then there exists
a finite frame S = (E; <) and an L-historic, strict and coherent chronicle T over S
such that for some ey € E, T(eg) = A and such that

(i) for alle € E, e < eo.

(it) for all e € E — {eo}, there exists a formula ;& € LN A such that {r;, a} C
T(e).

Proof. We construct S inductively below. Let E be a countably infinite set. To
begin the construction pick eg € £ and let S° £ ({eo}, {(eo, €0)}) and define T° by
setting T°(eo) £ A. T° satisfies conditions (i) and (ii) above, and T° is a coherent
and strict chronicle over S°.

Assume inductively that S* = (E*, <*) and T* are defined, where T* is a
coherent and strict chronicle over S* satisfying conditions (i) and (ii) above. Let
e € E* such that (e, €;a) is a live L-historic requirement for 7% in S*. By Lemma
6.5, there exists a frame S’ = (E'; <’) such that E' = E* U {¢}, for some é €
E' — E*¥, < C <’ and T is coherent and strict over S’. To show that S’ and T"
satisfy conditions (i) and (ii), let ¢’ € E'. If ¢ € E*, by induction hypothesis,
e/ < ep. Otherwise, ¢’ = é. Since é <’ ¢ and ¢ < eor, we have é <’ eg. Consider
e € E' — {eo}. If ¢ € E¥, we again get (ii) by induction hypothesis. Otherwise
e = é. é kills (e, ©;a). Since ;o € T¥(e)N L, e < eg and T* is coherent,
i € T¥(eg) N L = T%(eg) N L. Thus ;0 € ANL and {7, e} C T'(é). Set
Sk+1 - (EI; 5,): T+l — .

If there is no such live historic requirement for 7% in S*, then set S*t! = §*
and T*+! = T*,

Define S = (E; <), where E = | JE* and < = |J <*. Define the chronicle T

k k

on S by T(e) £ T*(e), for ¢ € E*. Clearly, T is a coherent, strict and L-historic
chronicle over S, as required.
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It only remains to be shown that S is a finile frame. To prove this consider a
tree structure defined on E as follows:
e is the root of the tree, and
ey > eg iff for some k, (€1, ©;a) was the chosen live L-requirement at stage k
and E¥*! = E¥ U {e;}. (In this case, we write e; >* e5).
The tree structure here refers only to the construction of S using S* and not to the
< ordering on the n-ACSA which is in general not a tree.

Since L is a finite set, this tree is finitely branching. Further, it is easy to see
that the tree covers E. Hence, to prove finiteness of E, it is sufficient (by Kénig’s
Lemma) to prove that every path in this tree is finite. For this, we need to show that
along every path in the tree, after a finite depth, there are no more live requirements.
To this end, define

L(e, k) £ {&ia € LNT*(e)| (e, €ia) is a live requirement for T* in S*}.
Clearly, for all e, for all k¥ > 0, L{e, k) is finite and bounded by the size of L.

Claim 1. For all e, L(e, k) D L(e, k+ 1), k > 0.

Claim 2. Let e; >* e5. L(eq, k) D L(e2, k+1).

The first claim trivially follows from the observation that <¥C <*+!. For Claim
9, observe that T**! is coherent and strict and hence by Proposition 6.8, we have
L(ey, k+ 1) D L(ea, k + 1). Further L(ey, k) O L(e, k+ 1) from Claim 1 and by
construction, L(ey,k) # L(ey, £+ 1).

Now let e3 >— e3 > ... be a path in the tree. Then there exist kj, ko, ...
such that e; >*1 e; >-F2 .., where we have ... > k3 > k1. By claims above,
L(ey, k1) 2 L(ez, k2) 2 ..., forming a strictly descending chain, which cannot be
infinite, since L is finite. Thus every path in the tree is finite and hence S is finite,
and the lemma is proved. O

Given a historic chronicle, to kill a prophetic requirement, we add as many
events as necessary to get a historic chronicle, in such a way that the past of events
in the given frame is unaltered; for every new event added, a fixed finite past as
dictated by the historic requirements generated by a suitable subset of CL(¢ag) is
attached.

Lemma 6.10. Let S = (E; <) be a finite frame and T a coherent and L-historic
chronicle over S, where L is a finite set of formulas. If (eg, ¢;a) is a live prophetic
requirement for T in S, then there exists a finite frame $’ = (E’; <’) and an
L-historic and coherent chronicle 7" over S’ such that

(i) E'= EUE", where E” is finite and disjoint from E.

() <=<'T (ExE).

(i) T=T' [ E.

(iv) (eo, Qi) is not a live requirement for 7" in 5.

(v) forallee E, {e'|e’ <e} ={e|e/ <'e}.

Proof. Let eg € E and let (eg, {ia) be a live prophetic requirement for 7" in the
frame S. Let A = T(eo). 7: AQia € T(eo), and by Lemma 4.8, there exists an MCS
B such that A < B and {n, a} C B.
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Let L' 2 (BN L) — A. L' is a finite set and by Lemma 6.9, there exists a finite
frame Sp = (Ep; <p) and a coherent and L’-historic chronicle T over Sp with an
é € Ep such that Tg(é) = B and

(a) for all e € Eg, e < é&.

(b) for all e € Eg — {€}, there exists a formula ©;a € L’ such that {r;, a} C
Tg(e).

Without loss of generality, assume ENEp = @. Define S’ = (E’; <') and T' as
given below:

E'£EUEp;
<'2<U<pU{(e, e2)|e1 < eq, €3 € Ep and T(e1) < Tr(e2)};
T'(e) £ T(e), for e € E, and Tg(e), fore € Ep .

Note that € kills the requirement (e, {;a) in S’ for T” provided we show that S’
is a frame and T" is a coherent and L-historic chronicle over S’.

Further, from the definition of <', it is clear that we cannot have e; <’ e;, where
e1 € Epande; € E. Henceforalle e E, ¢/ <eiff e’ <'e. Also < = <'| (Ex E).

Clearly, from the coherence of T and T and the definition of </, we have
e1 <’ ea = T"(e1) < T'(e2). Though we have not yet established that S’ is a frame,
we refer to this property as coherence of 7.

Further, since T" and T" are chronicles and EN Ep = @, we have e € E] iff
7 €T'(e), for all e € E'.

To check reflexivity of <’, consider ¢ € E’. Then either e € E,or e € Eg. In
either case, we have e < e or e <p e and hence ¢ <’ e.

To see that <’ is antisymmetric, suppose that e} < e; and e; <’ e;. Since
< =<'I(E x E), if {e1, e2} C E, €1 = eg, since < is antisymmetric. If 1, ex ¢ E,
then {e;, e2} € Ep and hence e; = e3 since <p is antisymmetric. So consider the
case when e; ¢ F and ez € E. But then e; <’ e; is impossible, by definition of <’.
Similarity, the case when e; ¢ E and e; € E is also impossible.

To check transitivity of <’, consider e; <’ e5 <’ e3. If {e1, €3, e3} C E, e; <’ €3,
by transitivity of <, since < = <'| (£ x E). Hence at least one of e, e, €3
is in Eg. If e € Ep, then by definition of <’, {ej, €3, e3} C Ep, and since
<p = <'| (Eg x Eg), e1 <' e, by transitivity of <p. If e € Ep, we have
e1 <’ e3 <p e3, hence e; < e and by coherence of T and Ty, T(e;) <X Tg(ez) <
Tg(es). By transitivity of <, T(e;) < Tg(es), and hence by definition of <,
e1 <' e3. If e3 € Ep, we have €¢; < e5 <’ e3, and hence by coherence of T and T,
T(e1) X T(e2) X Tp(es). Again by transitivity of <, we have T'(e1) < Tg(es), and
by definition e; <’ e3, as required.

Note that if e; € E, e1 < €g, e2 # € and e2 € Ep, we cannot have Tg(ez) <
T(e1). This is because, by condition (b), there exists ;8 € L’ such that {r;, 8} C
Tg(e2). If Tp(e2) X T(e1), we get ©;8 € T(ey). If 7v € T(e;), since T(e1) =
T'(eo), we get 9198 € T(eo) and hence by transitivity, we get ©;8 € T(eo) = A,
contradicting the fact that ;8 € L' = (BN L) — A.
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Now, to check backward linearity of <' within agents, assume events e; and e,
in E} for some j and e3 € E' such that ¢; <’ e3 and €3 <' e3. If e3 € E, then
{e1, €2} C E, and by backward linearity of <, either e; <’ e; or e; <’ e;. Hence
let e3 € Eg. If both ¢; and , are in Eg, we are done since <pg is backward linear.
If {e1, es} C E, by definition of <, ¢; < e and e; < eg; again, by backward
linearity of <, either e; < e or e3 < e;. The only remaining case is when one
of e; and e, is in E and the other is in Ep. Let e; € E and {ez, e3} C Eg. If
es = €, then we must have ez = é as well, so e; < e3. Therefore, let e; # €. We
have T'(e;) < T(eo) < Tp(€) and Tg(ez) =X Tr(€). Hence by Proposition 4.7, either
T(e1) < Tp(es) or Tp(ez) % T(e1). By the remark in the previous paragraph, the
latter case is impossible. But the former case ensures that e; <’ e3, as required.

Thus, S’ = (E’; <') is a finite frame and T” is a coherent chronicle over it. It
only remains to show that 7” is L-historic.

Let e € E'. If e € E and €;8 € T(e) N L, since T is L-historic, we can find
required e’ € E such that ¢’ < e. Now let e € Eg and let ;8 € Tg(e) N L. Since
Tg(e) < Tp(é), we have ;8 € BN L. If ;8 ¢ A, then &;8 € L' and since Tp is
L'-historic, we get required e’ in Ep.

Otherwise, let ;8 € A. Since T is L-historic, there exists e; < ep such that
ey kills the requirement (eq, ©;8) for T in S. Now ©;8 € Tg(e), and hence there
exists an MCS D such that D < Tg(e) and {r;, 8} C D. We have T(e;) < T5(¢é)
as well as D < Tg(e). Hence either D < T{(e;) or T(e1) % D. In the former case,
D < T'(eo) as well; but e; kills (eo, 958), so we have T'(e1) < D. Thus in either case
we have T'(e1) < D. By transitivity, T'(e;) < Tg(e) and by construction, e; <’ e.
Further for arbitrary D < Tg(e) such that {r;, @} C D, we have already shown
that T'(e;) < D. Thus e; kills (e, ;) as well. Hence, 7" is L-historic.

This completes the proof of the lemma. O

Theorem 6.11. (Completeness)
If F o then F a.

Proof. We show that every consistent formula is satisfiable. Let E = {eo, €1, €2,
...} be a countably infinite set. Fix an enumeration of Ex ®,,, where ®,, is the set
of all formulas in the language.

Now, let a be a consistent formula. Fix L = CL(a). Pick an MCS A containing
a. We now define, for all k£ > 0, S* and T%. By Lemma 6.9, there exists a finite
frame S° and a coherent and L-historic chronicle T over it.

Inductively assume that S*¥ = (E¥; <*) and T* have been defined, where E* =
{eo, €1, ..., ex} and T* is L-historic and coherent over S¥. Suppose there are no
live requirements for 7% in S*. Then set S¥+! = S* and T**+! = T*. Otherwise,
among all the live requirements for T in S*, choose the least one in the enumeration
of E x ®,, say (e, B). B is a live prophetic requirement. By Lemma 6.10, we can
extend S* and T* to a frame S*¥+! = (E*+!; <¥+1) and a chronicle T*+! over it
such that

(i) E*'=E*U{ex41,---, €k4m}, for some m > 0,
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() T E* =T

(iii) T*+! is L-historic and coherent over S¥**! and

(iv) (e, P) is not a live requirement for T%+! in Sk+1,

Finally set S = (E; <), where E = |JE*, < = |J <*, and define a chronicle T
k 3

over S by:
for e € E, T(e) £ T*(e), where ¢ € E* .

It can be easily checked that 7" is an L-perfect chronicle over S. Further, for any
e € E*, {¢’'| ¢’ <* e} is finite and equals the set {¢'|e’ <*t! e}. Thus every event
has a finite past in S. Now, by Lemma 6.4, ME, eo F o, where M¥ = (S, V), VE
being the valuation induced by T and L. Thus, « is indeed satisfiable. g

We have so far considered only finitary n-ACSAs. Finitary ACSAs can be
axiomatized in a similar manner. The logical language is then ®y as defined in
the last section. Define

A(fin-ACSA) £ A(ACSA) + (A9) .

(Note that (A9.b) now stands for infinitely many axioms, one for each pair of distinct
iand jin N.)

Theorem 6.12. A(fin-rACSA) is sound and complete for the class of finitary
ACSAs.

Proof. It is easy to check that the axiom system is sound for finitary ACSAs. For
completeness, let ag be a consistent formula. Using (TE) we can find a 7;, for some
i € N, such that ag A 7; is consistent. Let L = CL (g A ;). Define n to be the
maximum of {j|r; € L}. Clearly, L C ®,. The proof that ap is satisfiable in a
finitary n-ACSA proceeds exactly as given earlier in this section, except that we now
restrict ourselves to good MCSs; recall that a good MCS is one which has at least
one 7;. Axiom (A8) ensures that a good MCS has exactly one type proposition. We
can check that all the results 6.3 through 6.10 hold when we confine our attention
to good MCSs. a

As before, let SAT(fin-n-ACSA) denote the set of formulas satisfiable in models
based on finitary n-ACSAs and SAT(fin-rACSA) denote the set of those satisfiable
in models based on finitary ACSAs. Once again, we have the equation between
satisfiable formulas:

Corollary 6.13. SAT(fin-ACSA) = |J SAT(fin-n-ACSA). O

7. Shared Events

We have so far maintained the condition that each event belongs to exactly one
agent. We would like to relax this requirement and allow events to be shared by
agents.

The motivation for this comes about when we try to represent joint actions by
agents. A typical example of this is a “handshake” in systems with synchronous
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communication [9,10], i.e. where all communicating agents have to wait until they
can synchronize and perform a joint action. In our producer-consumer example of
Sec. 1 (Fig. 3), for instance, we might require the producer and the consumer to
interact synchronously with a buffer. We would represent this by allowing events
shared by the producer and buffer and by the consumer and buffer respectively. A
system may allow both synchronous and asynchronous communication; for instance,
the consumer may asynchronously request items from the producer, but will have
to wait for them to be delivered via the buffer.

Definition 7.1. A system of n Communicating Sequential Agents (n-CSA) is
a tuple (Ey, Eg, ..., E,; <) such that:
(i) (E; <) is a poset, where E = |J Ej, and
J

(ii) foralle e E,for 1 <i<n,
le N E; is totally ordered by < . (]

Note that we have just dropped the requirement that Ey, Fs, ..., E, be disjoint
from Definition 1.2.

As before, we shall let S, S’, ... range over n-CSAs and often write S = (E; <)
assuming an implicit definition of the agents E;, ..., E, such that E = | E;.

Note that every n-ACSA is also an n-CSA; thus CSAs can model l;oth syn-
chronous and asynchronous communication.

The axiom system A(n-CSA) is defined by retaining the axioms and inference
rules of A(n-ACSA), ezcept that axiom (A7.a) is now relaxed to (A7’.a) as shown:
(A7) (@)nV..Vn (n-agents)

(b) E,-‘r,-
(c) i Dn

Consistency and theses are now defined with respect to the new axiom system.
Note that in the new axiom system, formulas like 7y A 5 are consistent; this formula
specifies an event shared by agents 1 and 2. Similarly, ¢; (7; A a) (where j # i)
specifies a synchronization event in the past where a held.

The soundness of axiom (A7 .a) is trivial. The completeness proof closely follows
that in Sec. 4. In the rest of this section, we point out some of the finer points to
be considered.

Firstly, we relax Proposition 4.3 to assert that an MCS A can have more than
one type proposition:

Proposition 7.2. Let A be an MCS. For some i € {1, ..., n}, i, € A.
Proof. Follows from axiom (AT .a). O
The definition of the semantic ordering is rewritten as:

Definition 7.3. Let 4 and B be MCSs. Then

A<'B2 {$ia|riAa€e A} CB. a
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Since more than one type proposition may belong to A, this seems to be a
stronger ordering. The following observation shows that it is not.

Proposition 7.4. Let A, B be MCSs and let 7, 7; € A. Then

{Giala € A} C B iff {Qja|la€ A} CB.

Proof. Assume that the left-hand side is true and that 8 € A. Since 7; € A, by
Axiom (A2.a), ©;6 € A. By assumption, €;9;8 € B. By Axiom (A3), ;3 € B.
The other case is symmetric. O

Clearly, <’ remains reflexive, transitive and backwards connected within an
agent. The next results to be proved are the new versions of Lemma 4.8 and 4.9.

Lemma 7.5. Let A be an MCS and let ;0 € A. Then there exists an MCS B
such that B <’ A and {n, a} C B.

Proof. The proof of Lemma 4.8 showed that, given A as above, there is an MCS B
where {r;, a} C B and {$;8|8 € B} C A. But by Proposition 7.4, this is enough
to show that B <’ A. a

In an analogous manner, we can prove:

Lemma 7.6. Let A be an MCS and let 7; A {;a € A. Then there exists an MCS
B such that A <’ B and {r;, a} C B. O

The definitions relating to chronicles and live requirements and the chronicle
construction remain unchanged. A model can be extracted from a perfect chronicle
as before. The earlier completeness proof can therefore be used. Consider, for
example, Lemma 4.15, which “kills” a live historic requirement. The required MCS
is obtained by invoking Lemma 4.8, in place of which we now appeal to Lemma 7.5.
For the construction, always add a new event to all the agents it should belong to.
Thus the initial frame S° is defined by letting ey belong to all agents j such that
7; € T(eo). Similarly, the structure E’ is defined in terms of E as:

g alEU {é} if j € T(é), and
iT\Ej otherwise .

This ensures that the requirements of a chronicle are satisfied. Proceeding thus,
we can prove:

Theorem 7.7. The axiom system .A(n-CSA) is sound and complete for the class
of n-CSAs. a

Finitary frames

We now consider finitary n-CSAs, i.e. those satisfying the condition that every
event has a finite past.

The axiom system A(fin-n-CSA) is given by adding the following scheme to
A(n-CSA):



Temporal Logics for Communicating Sequential Agents: I 153

(A9) (a) ©ia D &(aABi(~aDB;~a)) (Well-founded agents)
(b) €ia D &i(a ABj(~ 1 D B; ~a)) (Well-founded communication)

Earlier, we used Axiom (A9) to ensure finitariness:

(A9) (a) ¢ia D Qi(aABi(~aDB; ~a))

(b) ©ia D Qi(aAB;Bi~a) (G #1)

(A9.b) is unsound when shared events are allowed. For instance, if the event e is
shared by agents 1 and 2, it must satisfy the formula &7 AB;i(m1 O €:¢111)),
contradicting the validity of (A9.b). As we explained in Sec. 6, (A9.b) ruled out
infinitely descending chains of communication events. (A9.b) rules out infinite
descending chains of asynchronous communication events. (A9.a) itself is strong
enough to rule out an infinite chain of shared events in which agent i participates,
so it is retained unchanged.

To show soundness of (A9'.b), suppose not. Then we have a model M = (S, V),
where § = (F; <) is an n-CSA. Then there exists e; € E such that M, e; F
Sia A Bi(a D 9j(~ 7i A ©ia)). Hence there is an e; € E; such that e; < e; and
M, ez F aAQj(~ i A9a). So there is an es € E; such that e3 < ey and M,
es F~ 1; A dja. Since e; € E; and e3 ¢ E;, e3 # e3. Next we find an e4 € E; such
that M, e4 F aAQj(~ 1: Ad;a). Note that e3 # e4, and hence the argument from e;
can be repeated again to yield an infinite descending chain of events, contradicting
the fact that e; had a finite past.

The completeness proof follows the one given in Sec. 5 in the same manner as
the completeness proof for n-CSAs given earlier followed that of Sec. 4. Firstly the
required thesis now is:

(T7/) Oia D §; (aA(j\Ej((Ti D~ a) = a)) .

The derivation of ('T7’) is easy and follows the same lines as that of (T7). Given
Propositions 7.4 to 7.6, we can verify that the results 6.3 through 6.5 hold when
we use the semantic ordering <’ on MCSs. Now let o; £ a AAB;((m D ~a) D

i
B; ~ a). With this notation, Propositions 6.6 and 6.7 go through easily for MCSs
ordered by <’. We now prove the analog of Proposition 6.8.

Proposition 7.8, Let S = (E; <) be a finitary n-CSA and T' a coherent and strict
chronicle over S. Let e1, e € E such that e; < e; and (e1, ©;e) is not a live
requirement for T in S. Then (e;, ©;a) is also not a live requirement for T in S.

Proof. Assume the hypothesis and let e; € E such that ez kills (e;, ©;a). If
O;a ¢ T(e3), we are done. Otherwise, there exists an MCS C such that C <’ T'(es),
{7, a} C C. By coherence of T, we have T'(e2) =’ T(e1) and hence C <’ T(e1).
But e3 kills (e1, €ia); therefore, T'(e3) <’ C. By transitivity, we get T'(e3) <’ T'(e2).

By strictness of T, either ez < e3 or e3 < e3. In the former case, it is easy
to show that es kills (e2, ©;a), since if an MCS C has o and C =<’ T(ez2), then
C =/ T(e1) as well, so T'(e3) =X’ C. Assume the latter case. Since e3 kills (e1, €;a),
by the analog of Proposition 6.7, a; € es. Now ez < es, so T(e2) %' T(e3). Hence
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M,esF (i D~a)DB;~a.Ife; ¢ E;, M, e3 F ~ 7; and hence M, e F B; ~ a,
contradicting the fact that ;o € T(e;). Hence e; € E;. Again, if M, es F ~ o,
then we get a contradiction, and thus M, e; F a. That is, a € T(es). Now, if D
is an MCS such that D <’ T'(e3) and {7, o} C D, since T(e;) =’ T(e;), we get
D < T(eq). But eg kills (e1, €;a), so T(eg) X' D, and by transitivity, T'(e;) <’ D.
Thus ey kills (ez, €5a). a

Note that the completeness proof in Sec. 6 uses (A9) and (T7) only in proving
results 6.6 to 6.8. Since these results follow for n-CSAs, we can easily verify that
the results 6.9 through 6.11 hold in the new set-up. The definitions of CL(a) and
requirements are the same and the proof construction yields a finitary n-CSA.

Note that (A9’.b) is sound for the frames in Sec. 6 and the above proof could be
used to provide completeness there as well, but we preferred to use a simpler axiom

for n-ACSAs.

CSAs

We can also generalize n-CSAs to allow for systems with unboundedly many
agents. This is done in exactly the same way as in Sec. 5.

Definition 7.9. A system of Communicating Sequential Agents (CSA) is a
triple (E, <, 1), where
(i) (E, <)is a poset,
(i) 7: E — 2V is a (naming) function such that: for all e € E, for all j € N,
(a) n(e) is a nonempty finite subset of N,
(b) len E; is totally ordered by < for every j € N, where E; 2 {e €
Elj € n(e)}. o
The axiom system A(CSA) is formed by dropping (A8) from A(ACSA). It is easy
to check that the new axiom system is sound over CSAs. Completeness necessitates
some minor changes.
The definition of a chronicle has to be weakened.

Definition 7.10. An 7-chronicle on a CSA § = (E, <, 1) is a function T which
assigns an MCS to each e € E such that

for every e € U n(e), = € T(e) iff i € n(e) . O
e€E

The definitions of coherent, L-historic, L-perfect 7-chronicles and the corres-
ponding L-requirements are as in Sec. 5. An 7n-chronicle induces a model as before.

Definition 7.11. Let S = (E, <, 1) be a frame, T an 7n-chronicle on it and L a set
of formulas. The valuation induced by T for L, denoted V¥, is given by:

fore € E, VE(e) 2T(e)Nn(PUT)NL.

We use M¥ to denote (S, VF). a
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Lemma 7.12. Let T be a CL(a)-perfect n-chronicle over the frame (E, <, n).
Then for every e € E and every 8 € CL{a), B € T(e) iff M;EL("), eF B a

For construction of a relativized perfect chronicle, we need to confine our atten-
tion to good MCSs as in Sec. 5. Observe that results 7.4 to 7.6 go through for good
MCSs. While killing a live requirement (L-historic or L-prophetic, with L a finite
set of formulas), the new event é is added to finitely many agents as follows:

n(€)={jlm €T(e)NL}.

This ensures that T” is an 7’-chronicle and the lemmas for killing requirements can
be proved.

Now, given a consistent formula ag, use the rule (TE) to find 7; such that ag A7
is consistent. Let L = CL(ap A 7;) and A be an MCS containing ag A 7. A is good.
In the initial step of the construction, we set E° = {eo}, <%= {(eo, €0)}, T%e0) = A
and 1°(eo) = {i| s € ANL}. T is an n°-chronicle over the frame (E°, <%, 5%). By
the remarks above, we can proceed as before and construct inductively an L-perfect
n-chronicle T over a frame S. Then using Lemma 7.12 we get:

Theorem 7.13. A(CSA) is sound and complete for the class of CSAs. )

Let SAT(CSA) denote the set of formulas in ®y satisfiable over CSAs and let
SAT(n-CSA) denote the set of formulas in ®, satisfiable over n-CSA, for n € N.
Note that the proof above builds an n-CSA where n is the maximum of {j |7; € L}.
Hence we again have an equation on satisfiable formulas.

Corollary 7.14.

SAT(CSA) =|_J SAT(n-CSA) . a

For the subclass of finitary CSAs, we define the axiom system A(fin-CSA) £
A(CSA) + (A9'). Soundness of the axiom system is routine and the strategy for
completeness consists in constructing a finitary CSA as a model for a consistent
formula. This can be done exactly as we outlined earlier in this section, but with
n-chronicles. All those results hold for good MCSs.

We conclude the section with the relevant equation on satisfiable formulas, where
we use the obvious notation.

Corollary 7.15.

SAT(fin-CSA) = |_J SAT(fin-n-CSA) . 0

8. Discussion

We have introduced in this paper several classes of distributed systems, which
can be compactly represented by Fig. 4, where the arrows represent inclusions.
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finitary
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’ —
finitary
n-CSAs  _- n- CSAS
7
fumtory -7 ~ ACSAs
ACSAs
- S
7 -
“finitary 7 n-ACSAs
n-ACSAs

Fig. 4. Hierarchy of CSAs.

The figure above represents a (strict) hierarchy of CSAs. The hierarchy actually
extends through 1-CSAs, 2-CSAs, ... to CSAs, and similarly for the other classes.
Let C range over the classes shown above.

The logical languages we introduced were @, for the bounded (n-)agent systems,
and their union @y for the unbounded agent systems. For each class of CSAs C we
provided sound and complete axiomatizations .A(C) in the appropriate ® language.
For C ranging over CSAs, ACSAs, finitary CSAs and finitary ACSAs, we showed
that SAT(C), the satisfiable formulas in the unbounded class, are exactly the union
of SAT(n-C), the satisfiable formulas in the n-bounded class.

While we have used indexed modalities here, Parikh [24] has pointed out that
one can eliminate them by using the usual tense modalities (¢ and ¢) along with
the type propositions. On the other hand we can also consider indexed tense logic
without type propositions. In Part II of this paper, we consider these and other
alternatives to the logic studied here. There we present languages of varying ex-
pressive power in all of which the class of CSAs can be axiomatized.

Other logical languages are also of interest. As far as tense logic goes, indexed
versions of next-state, now, until and other operators as well as the path operators
of branching-time logic [5] can be considered, but it is not clear how they should be
interpreted. More interestingly, explicit operators can be used to express conflict
and concurrency [22,25,26]. The full class of event structures has been axiomatized
in this fashion [22].

One major technical question which remains is that of decidability. We conjec-
ture that all the logics we have considered are decidable.

As mentioned in the Introduction, temporal logics are extensively used to specify
properties of distributed systems and model checkers have been built for verification
purposes. We intend to explore the convenience of specifying protocols in indexed
tense logics like the one studied in this paper and study the complexity of model
checking such logics.
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Many subclasses of CSAs are of interest. Sequential systems, where no two
events are concurrent, and systems of deterministic agents can be axiomatized by
simple extensions of the logics given here. A more interesting subclass is one where
the agents are allowed to be nondeterministic, but communication follows a deter-
ministic behaviour. Another restriction which would be expected of systems is that
of finite branching.

Partial order computational models for which modal logics have been used in-
clude nets [27] and event structures [22,25]. We show in the Appendix that CSAs
can be obtained by enriching event structures with the notion of agents. General
partial orders have been considered by Pinter and Wolper [12] and Katz and Peled
[13].

It is straightforward, though tedious, to take a concurrent programming lan-
guage such as TCSP [9] or CCS [10] and give semantics to its programs in terms of
CSAs. One can then use our logics to reason about the behaviour of these programs.
However, it would be far more satisfactory to have a proof system which reasons
compositionally at the level of the program syntax. That seems to be somewhat
elusive at present.
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Appendix

We show that n-ACSAs can be mapped to the class of n-agent event structures
introduced in [11] and vice versa. We also show that CSAs can be mapped to event
structures [7].

Definition A.1. [7]

An event structure is a triple (E, <, #) where (F, <) is a poset and # is an
irreflexive symmetric relation such that
(I) Ve, e, e3 € E. e1 # ez and e3 < e3 implies e; # e3. O

Definition A.2. [11]
An event structure (E, <, #) is sequential if
(S) Vei,ez,€ E.eq <egorez<e;oreF#es |
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Definition A.3. [11]
Letn €N, E=E\U...UE,. (Ey, ..., E;; <; #) is an n-agent event structure
if (E, <, #) is an event structure and
(l) E,-ﬂEjzﬂ,forigéj.
(ii) (E;, <, #:)is a sequential event structure for every ¢, where <; = <[ (E;x
E,') and #,‘ = # r (E,‘ X E,').

(iil) # = {(e1, e2)| 3. (e, e) € #i. €] < ey, €, < €3} 0
Proposition A.4.

Let (E1, ..., En; <; #) be an n-agent event structure. Then (Ey, ..., E,; <)
is an n-ACSA.
Proof.

We only need to verify the backwards linearity condition. Solet e;, e5 € E;, € €
E,e; < eand ez <e By (S),e1 epores <eyoreyFey If e; #ez, then by
the (I) condition on the underlying event structure, e # e, which contradicts the
irreflexivity of #. Hence €, < e3 or es < e1, as desired. O

Proposition A.5.
Let (B, ..., Ep; <) be an n-ACSA.
Define #i 4 (Ei x E;) —(€£U?>), and
# 2 {(e1,e2) | Ti. I(ey,eb) € #i. € < e, b < ez}
then (Ey, Ea, ..., Epn; <; #) is an n-agent event structure.

Proof. Let £ = E; U...U E,. We only need to demonstrate that (E, <,#) is
an event structure. (E, <) is a poset and # is easily seen to be irreflexive and
symmetric. It remains to establish condition (I); so suppose e; # ez and ez < es.
Then for some i, (e}, e5) € #; such that €] < e1, ¢4 < e2. But then e < e3 and
hence ey # es. O

Corollary A.6. Let (E, <, n) be a CSA and E; = n~1(3), for all i, and # as defined
in Proposition A.6. Then (E, <, #) is an event structure.

Using Propositions A.5 and A.4, a bijection can be constructed between the
class of n-ACSAs and the class of n-agent event structures. Corollary A.6 allows
construction of a map from the class of CSAs to that of event structures. In the
reverse direction, given an event structure (E, <, #), it is possible to have many
different naming functions 7 such that (E, <, n) is a CSA. For instance, given E a
countable set, we can let each event be an agent by itself. Hence CSAs have more
information built into them than event structures.



