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Abstract. It is well known that modelchecking and satisfiability of Lin-
ear Temporal Logic (LTL) are Pspace-complete. Wolper showed that
with grammar operators, this result can be extended to increase the ex-
pressiveness of the logic to all regular languages. Other ways of extending
the expressiveness of LTL using modular and group modalities have been
explored by Baziramwabo, McKenzie and Thérien, which are expressively
complete for regular languages recognized by solvable monoids and for
all regular languages, respectively. In all the papers mentioned, the nu-
meric constants used in the modalities are in unary notation. We show
that in some cases (such as the modular and symmetric group modali-
ties and for threshold counting) we can use numeric constants in binary
notation, and still maintain the Pspace upper bound. Adding modulo
counting to LTL[F] (with just the unary future modality) already makes
the logic Pspace-hard. We also consider a restricted logic which allows
only the modulo counting of length from the beginning of the word. Its
satisfiability is ΣP

3 -complete.

1 Introduction

In this theoretical paper, we consider the extension of LTL to count the number
of times a proposition holds modulo n. (More generally, in a recursive syntax,
we can count formulas which themselves can have counting subformulas.)

There are many such extensions: Wolper used operators based on right-linear
grammars [21], Emerson and Clarke developed the µ-calculus [2]. Henriksen and
Thiagarajan’s dynamic LTL [8] is an extension based on ideas from process logic
[6]. Harel and Sherman had used operators based on automata for PDL [7].
Another extension has propositional quantification [4], but its model checking
complexity is nonelementary [22]. More recently we have PSL/Sugar, and Vardi
narrates [19] how regular expressions proved to be more successful than finite
automata as far as designers in industry were concerned. Baziramwabo et al [1]
explicitly have countably many MODk

n operators for their logic LTL+MOD.
In work concurrent with ours, Laroussine, Meyer and Petonnet have introduced
threshold counting [11].

Wolper’s grammars, Harel and Sherman’s automata, Henriksen and Thia-
garajan’s regular expressions, all use in effect a unary notation to express n.
Hence stating properties using a large n is cumbersome. Consider a model de-
scribing properties of a circuit (which works very fast) interleaved with events



which take place at regular intervals of time, which can be thought of as hap-
pening over very long stretches of the model.

Our first main theorem is that the Pspace upper bound holds even when
we use binary notation to represent the counting, and this can be carried all the
way to a logic LTL+SYM, derived from Baziramwabo et al [1], which generalizes
LTL+MOD to computation in the symmetric groups Sn. Thus we improve on the
model checking procedure developed by Serre for LTL+MOD [15], which gives
an Expspace upper bound for formulas in binary notation. Unlike Serre, we
do not use alternating automata but ordinary NFA and the standard “formula
automaton” construction in our decision procedure.

The word “succinct” in the title of our paper is used in this simple program-
ming sense of being able to use exponentially succinct notation. There are more
sophisticated ways in which succinctness appears in temporal logics, which we
do not address. A complexity theorist might say that we improve the known
complexity of our logic from pseudo-polynomial space to polynomial space.

We have next a technical result showing that the logic LTL[F]+MOD is
already Pspace-hard. Since LTL[F] is Np-complete, this shows that modulo
counting is powerful.

So we look to weakening the modulo counting. This is done by only allow-
ing the modulo counting of lengths (rather than the number of times a for-
mula holds). We show that the satisfiability problem of this logic, which we call
LTL[F]+LEN, is exactly at ΣP

3 , the third level of the polynomial-time hierarchy,
again irrespective of whether we use unary or binary notation.

We do not know if our work will make any impact on verification [2, 16, 20],
since practitioners already know that a binary counter is an inexpensive addition
to a modelchecking procedure. We think the finer analysis is of some theoretical
interest.

Acknowledgment: We would like to thank N.R. Aravind for suggesting a
simplification of the proof of Theorem 4.

2 Counting and group extensions of LTL

2.1 Modulo counting

We begin by extending the LTL syntax with threshold and modulo counting, and
specialization of the latter to length counting. Generalization to computation in
an arbitrary symmetric group following Baziramwabo, McKenzie and Thérien
[1] is described in the next subsection.

δ ::= #α | δ1 + δ2 | δ1 − δ2 | cδ, c ∈ N

φ ::= δ ∼ t | δ ≡ r( mod q), q, r, t ∈ N, q ≥ 2, ∼∈ {<,=, >, 6=,≤,≥}
α ::= p ∈ Prop | φ | ¬ α | α ∨ β | Xα | α U β
As usual Fα abbreviates trueUα and Gα is ¬F¬α. We will use the “length”

ℓ to abbreviate #true.
We denote by LTL+MOD the logic whose syntax we defined above. LTL[F]+MOD

is a restriction where the U modality is not allowed and threshold counting δ ∼ t



is not allowed. (Since we will give a lower bound result, we keep the logic weak
and only allow modulo counting.) We also use notation such as LTL[F]+MOD(q)
when the counting is restricted to the modulo divisor q. The constants c, q, r, t
above are given in binary. Our lower bounds continue to hold even when they
are given in unary.

By further restricting the subterm #α in the δ terms to be ℓ only, we get
the logic LTL[F]+LEN which can only count lengths rather than occurrences of
propositions or formulae. (We could similarly define LTL[X,U]+LEN.)

We denote by PROP+LEN the logic obtained by removing even the F modal-
ity from the syntax of LTL[F]+LEN, so we have propositional logic (interpreted
over a word) with some length counting operations.

The semantics for LTL is given by a finite state sequence (or word) M over
the alphabet ℘(Prop). Our results also hold for the usual semantics over infinite
words, but some of the examples are more sensible with finite words, so we will
stick to that in the paper and point out how the arguments need to be changed
for infinite words.

M, i |= p iff p ∈M(i)

M, i |= Xα iff M, i+ 1 |= α

M, i |= α U β iff for some m ≥ i : M,m |= β
and for all i ≤ l < m : M, l |= α

For the counting terms, the interpretation of #α at the index i in the word
M is given by the cardinality of the set {1 ≤ l ≤ i |M, l |= α}. The arithmetic
operations in the syntax of δ are then well defined. Other definitions follow, for
example:

M, i |= δ ≡ r( mod q) iff the cardinality associated with δ at i in M leaves
a remainder r when divided by q.

Even length words can be expressed in LTL[F]+LEN by FG(ℓ ≡ 0( mod 2)).
On the other hand an even number of occurrences of the holding of a proposition
p requires an LTL[F]+MOD formula: FG(#p ≡ 0( mod 2)).

The satisfiability problem for a formula α checks if a word model satisfying it
exists, and the model checking problem for a rooted transition system (or Kripke
structure) K = (S,→, L, s0) and a formula α checks whether all runs of the
transition system are models of α.

Variants: We count from the beginning of the word upto and including the
present point where the formula is being evaluated. Supposing we needed the
number of occurrences of the formula α from the present, before we hit β, to be
divisible by q. We could write this using a disjunction of q possibilities, where
the present count of α ≡ i( mod q) and the count at β is also congruent to i(
mod q).

We are assured by Baziramwabo et al [1] that LTL[X,U]+MOD is expres-
sively complete for the logic FO+MOD of Straubing, Thérien and Thomas [18],
so we stick to their simple syntax. In the appendix, we adapt an argument of
Straubing [17] to show that the corresponding logic LTL[X,U]+LEN is expres-



sively complete for a logic FO[Reg] also defined by Straubing. Thus the counting
extensions we have introduced are related to others defined in a different context.

Laroussinie, Meyer and Petonnet [11] introduce counting in the future by
indexed modalities, such as αUδ=tβ, which counts t occurrences of δ from the
present, maintaining the invariant α, until a future occurrence of β. This is equiv-
alent to an LTL formula which is exponential in the size of the given formula,
since t is written in binary, but expressively within first order logic FO.

2.2 Group extension

Now we follow Baziramwabo, McKenzie and Thérien [1] to generalize the modulo
counting to a kind of computation in symmetric groups. Our syntax above is
extended to allow

φ ::= #G(α1, . . . , αk) = h, h ∈ G
For the semantics, let us define Γ (M, l) = gj if M, l |= ¬α1 ∧ . . .¬αj−1 ∧ αj

for 1 ≤ j ≤ k. Also define Γ (M, l) = 1 (the identity element) if none of the
formulae α1, . . . , αk hold at position l. Then:

M, i |= #G(α1, . . . , αk) = h iff (Πi
l=0Γ (M, l)) = h

This generalizes the modulo counting we were doing earlier, which can be
thought of as working with cyclic groups.

The groups G used in the formulae are symmetric groups specified by their
generators. This extension is called LTL+SYM.

For instance, we could specify the symmetric group S5 (shown in Figure 1)
using a syntax such as

group S5(5) generators (2 3 4 5 1), (2 1 3 4 5)
which specifies a permutation group named S5 with two generators defined as

permutations of the elements (1, 2, 3, 4, 5) mapping these elements to the values
shown. In general we define a group named G with permutations over the set
{1, . . . , n}, n ≥ 2 and generators g1, . . . , gk. Any group can be embedded in a
symmetric group [9], but while using symmetric groups the group operations are
implicit.

Notice that h in the syntax above is a group element, not necessarily a
generator of the group. As with modulo counting, we can have a more succinct
syntax by representing h using binary notation. Using the generators is also a
succinct way of representing groups (see below for a standard argument). For
instance, the symmetric group Sn has n! elements, but can be generated by
2 generators(as shown in example) each generator being a permutation on n
elements. The analogue while doing modulo counting is to use binary notation
to specify the numbers r and q.

Proposition 1. Any group has a generating set of logarithmic size.

Proof. Let G be a group. For an H ⊆ G, we denote by 〈H〉 the group generated
by the elements H. Take an element g0 ∈ G. Let H0 = {g0}. If 〈H0〉 6= G, take g1
from G\〈H0〉, and call H0∪{g1} as H1. Continue doing this until you find an Hk

such that 〈Hk〉 = G. We prove that ∀i ≤ k : |〈Hi+1〉| ≥ 2×|〈Hi〉|. Observe that



since gi+1 /∈ 〈Hi〉, it implies gi+1〈Hi〉 ∩ 〈Hi〉 = φ. Also |gi+1.〈Hi〉| = |〈Hi〉|. But
gi+1.〈Hi〉∪〈Hi〉 ⊆ 〈Hi+1〉. Therefore |〈Hi+1〉| ≥ 2×|〈Hi〉|. Hence 〈Hlog|G|〉 = G.

⊓⊔

The picture below shows the symmetric group Sn (for n = 5) as the transition
structure of an automaton. The language accepted can be defined by the formula
F (Xfalse∧#S5(a, b) = (12 . . . n)) where the specification of S5 with generators
was shown earlier.
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Fig. 1. An automaton representing the symmetric group S5

3 Succinctness comes easy

Our first main theorem shows that the upper bound for LTL satisfiability can be
extended to include the modulo and group counting computations, even when
specified in binary.

Theorem 1. If an LTL[X,U]+SYM formula α0 is satisfiable then there exists
a satisfying model of size exponential in α0 (even using binary notation for the
formula).

Proof. The Fischer-Ladner closure of a formula α0 [5] is constructed as usual,
where we add the following clauses:

1. The closure of #α ≡ r( mod q) includes α and also has #α ≡ s( mod q)
for every s from 0 to q − 1. (Notice that only one of these can be true at a
state.)

2. The closure of #α ∼ t includes α, #α > t and also has #α = c for every
c ≤ t.

3. The closure of #G(α1, . . . , αk) = h includes α1, . . . , αk and also contains the
formulae #G(α1, . . . , αk) = h′ for every element h′ of the group. (Only one
of these can be true at a state.)



Observe that with binary notation, the closure of a formula α0 can be expo-
nential in the size of α0, unlike the usual linear size for LTL, since the constants
r, q and h are written in binary notation. A state of the tableau or formula
automaton which we will construct is a maximal consistent subset of formulae
from the closure of α0. However, only one of the potentially exponentially many
formulae of the form #α ≡ s( mod q), 0 ≤ s < q; or of the form #α = c,
0 ≤ c ≤ t, and #α > t; or of the form #G(α1, . . . , αk) = h, h ∈ G; can con-
sistently hold. So a state is also exponential in the size of α0. Here is a formal
argument, using induction on structure of α, that the set of states of the formula
automaton Mα is 2O(|α|). We denote by |q| and |G| for the input size (binary
notation) and by Sα the number of states in Mα.

1. α = p ∈ P . This is trivial.
2. α = β ∨ γ. Sα = Sβ × Sγ ≤ 2O(|β|+|γ|) (By IH)
3. α = ¬β. This is just change of final states in Mβ .
4. α = βUγ. Sα = Sβ × Sγ ≤ 2O(|β|+|γ|)

5. α = #β ≡ r( mod q). Since any atom can have only one formula of this
kind, Sα = Sβ × q ≤ 2O(|β|+|q|)

6. α = #β ∼ t. Since any atom can have only one formula of this kind, Sα =
Sβ × (t+ 1) ≤ 2O(|β|+|t|)

7. α = #G(α1, . . . , αk) = h. Again any atom can have only one formula of this
kind, Sα = Sα1

× · · · × Sαk
× card(G) ≤ 2O(|α1|+···+|αk|+|G|). ⊓⊔

Corollary 1. LTL[X,U]+SYM satisfiability is in Pspace(using binary nota-
tion for the syntax).

Proof. Since the formula automaton has exponentially many states, each state
as well as the transition relation can be represented in polynomial space. By
using moduli in binary and group generators, a state can be updated along a
transition relation in polynomial time. Now we can guess and verify an accepting
path in Pspace. ⊓⊔

Corollary 2. The complexity of the model checking problem of LTL[X,U]+SYM
is NLogspace in the size of the model and Pspace in the size of the formula.

Proof. Let α0 be a formula in LTL[X,U]+SYM and K a Kripke structure.
Theorem 1 shows that for a formula ¬α0 there is an exponential size formula
automaton M¬α0

. Verifying K |= α0 is equivalent to checking whether the inter-
section of the languages corresponding to K and M¬α0

is nonempty. This can
be done by a nondeterministic algorithm which uses space logarithmic in the
size of both the models. Since M¬α0

is exponentially larger than α0 we get the
upper bounds in the statement of the theorem, using Savitch’s theorem. The
lower bounds are already known for LTL [16]. ⊓⊔

We note that these arguments are not affected by whether we consider finite
or infinite word models.



3.1 But modulo counting is hard

Next we consider the logic LTL[F]+MOD. It can express properties which can
be expressed by LTL but not by LTL[F], for example G(p ⇐⇒ ℓ ≡ 1( mod 2))
expresses alternating occurrences of p and ¬p. Our next result shows that the
satisfiability problem for LTL[F]+MOD, even with unary notation, is Pspace-
hard.

Theorem 2. The satisfiability problem for LTL[F]+MOD(2) is Pspace-hard,
even with the modulo formulae restricted to counting propositions.

Proof. Since the satisfiability problem for LTL[X,F] is Pspace-hard [16], it is
sufficient to give a polynomial-sized translation of the modality Xα using count-
ing modulo 2. This is done by introducing two new propositions pE

α and pO
α for

each such formula, and enforcing the constraints below. Let EvenPos abbreviate
ℓ ≡ 0 mod 2 and OddPos abbreviate ℓ ≡ 1 mod 2.

G(α⇐⇒ ((EvenPos ⊃ pE
α ) ∧ (OddPos ⊃ pO

α )))

G((EvenPos ⊃ #pE
α ≡ 0 mod 2) ∧ (OddPos ⊃ #pO

α ≡ 0 mod 2))

Consider pE
α . Its count has to be an even number at every even position. Since

the count increases by one if even positions satisfy α, it has to increase by one at
the preceding odd position. So at an odd position, Xα holds precisely when the
count of pE

α is odd. Symmetrically, at an even position, Xα holds precisely when
the count of pO

α is odd. So we can replace an occurrence of Xα by the formula

(EvenPos ⊃ #pO
α ≡ 1 mod 2) ∧ (OddPos ⊃ #pE

α ≡ 1 mod 2).

Since α is used only once in the translation, this gives a blowup of the occurrence
of Xα by a constant factor. With one such translation for every X modality, the
reduction is linear.

No threshold counting formulas ℓ ∼ t are used in this reduction, as required
in the definition of the syntax. ⊓⊔

4 Length modulo counting

We now consider the weaker counting formulae ℓ ≡ r( mod q), where ℓ abbre-
viates #true. So we can only count lengths rather than propositions, which was
something we needed in the Pspace-hardness proof in the previous section.

Note that the language of alternating propositions p and ¬p is in LTL[F]+LEN.
It is known [16, 3, 12] that a satisfiable formula in LTL[F] has a polynomial sized
model. Unfortunately LTL[F]+LEN does not satisfy a polynomial model prop-
erty. Let pi be distinct primes (in unary notation) in the following formula:

F((ℓ ≡ 0( mod p1)) ∧ (ℓ ≡ 0( mod p2)) ∧ · · · ∧ (ℓ ≡ 0( mod pn))).



Any model which satisfies this formula will be of length at least the product of the
primes, which is ≥ 2n. We show that the satisfiability problem of LTL[F]+LEN
is in ΣP

3 , the third level of the polynomial-time hierarchy.
We give a couple of technical lemmas concerning the logic PROP+LEN which

will be crucial to our arguments later.

Lemma 1. Let α be a PROP+LEN formula. Then the following are equivalent.

1. (∀w, |w| = n =⇒ ∃k ≤ n : w, k |= α)
2. (∃k ≤ n,∀w : |w| = n =⇒ w, k |= α)

Proof. (2 =⇒ 1) : This is trivial.
(1 =⇒ 2) : Assume that the hypothesis is true but the claim is false. Let
S = {w | |w| = n}. Pick a w ∈ S. By the hypothesis ∃i ≤ n : (w, i) � α and
we can assume that there exists some w′ ∈ S such that (w′, i) 2 α. If this is
not true then we have a witness i, such that ∀w ∈ S : (w, i) � α. Let ui be
the state at the ith location of w′. Replace the ith state in w by ui without
changing any other state in w. Call this new word w′′. Now (w′′, i) 2 α. Again
by the hypothesis, ∃j ≤ n : (w′′, j) � α. By the same argument given above,
∃w′′′ : (w′′′, j) 2 α. We can replace the jth state of w′′ by the the jth state from
w′′′ which makes the resultant word not satisfy α at the jth location. We can
continue doing the above procedure. Since n is finite after some finite occurence
of the above procedure, we will get a word v such that ∀k ≤ n : (v, k) 2 α. But
this implies the hypothesis is wrong and hence a contradiction. ⊓⊔

Our next result is the following. Given a PROP+LEN formula α and two
numbers m,n in binary, the problem BlockSAT is to check whether there exists
a model M of size m+ n such that M,m |= Gα.

Lemma 2. BlockSAT can be checked in ΠP
2 .

Proof. The algorithm takes as input a PROP+LEN formula α, along with two
numbers m,n in binary. Observe that since n is in binary we cannot guess
the entire model. The algorithm needs to check whether there exists a model
w satisfying α at all points between m and m + n, in other words, whether
∃w : ∀k : m ≤ k ≤ m + n, |w| = n ∧ w, k |= α. Take the complement of this
statement, which is ∀w, |w| = n =⇒ ∃k : m ≤ k ≤ m + 1, w, k |= ¬α. By
the previous Lemma 1 we can check this condition by a ΣP

2 machine. Hence
BlockSAT can be verified by a ΠP

2 machine. ⊓⊔

4.1 Succinct length modulo counting can be easier

We show that satisfiability of LTL[F]+LEN can be checked in ΣP
3 , showing that

this restriction does buy us something.
Before proceeding into an algorithm, we need to introduce a few definitions.

Let α be a formula over a set of propositions P , SubF (α) its set of future
subformulae, prd(α) the product over all elements of the set {n | δ ≡ r mod n
is a subformula of α}.



Let M be a model. We define witness index in M for α as {max{j |M, j |=
Fβ} | Fβ ∈ SubF (α) and ∃i : M, i |= β}. A state at a witness index is called a
witness state. We say Fβ is witnessed at i if i = max{j | M, j |= Fβ}. Call all
states other than witness states of M as pad states of M for α.

We define a model M to be normal for α if between any two witness states
of M (for α) there are at most prd(α) number of pad states. We claim that if α
is satisfiable then it is satisfiable in a normal model.

A normal model of α will be of size ≤ |SubF (α)| × prd(α), which is of size
exponential in α. So guessing the normal model is too expensive, but we can guess
the witness states (the indices and propositions true at these states), which are
polynomial, verify whether the F requirements are satisfied there, and verify if
there are enough pad states to fill the gap between the witness states. We will
argue that we can use a Π2 oracle to verify the latter part. The proof is given
below.

Theorem 3. Modelchecking and satisfiability of LTL[F]+LEN can be checked
in ΣP

3 (with binary notation).

Proof. First of all we observe that modelchecking M |= α reduces to the satis-
fiability of a formula φM ⊃ α using a standard construction (for example, see
[13]).

Now let α be satisfiable. We guess the following and use it to verify whether
there exists a normal word satisfying these guesses.

1. Guess k indices (positions), u1 < u2 < ... < uk, where k ≤ |SubF (α)| and
∀i, ui ≤ prd(α).

2. Guess the propositions true in the states at these k indices.
3. Guess the propositions true at the start state (if already not guessed).
4. For each of the k indices guess the set of Fβ ∈ SubF (α) which are wit-

nessed there. Let the conjunction of all formulae witnessed at uj be called
βj . (Certain future formulae need not be true in any state in the word.)

We need to verify that there exists a word model M which is normal for α
and which satisfies the guesses. Observe that the positions 1, u1 + 1, ..., uk−1 + 1
in M should all satisfy certain G requirements (the model starts from index 1).
If we have guessed that a future formula Fβ0 is not satisfied in the model, then
the entire word should also satisfy its negation G¬β0. Similary at state ui + 1,
G ∧i

j=0 ¬βj should be true.
To verify that all the F,G requirements are satisfied at the witness states (the

ui indices we guessed), we start verifying from the last state uk. All modalities
can be stripped away and verified against the propositions true at this state and
the location of the state. To verify Fβi at an intermediate state, we know that
only those beyond the current index have been verified in future witness states.
We reduce the verification of the rest to that of a pure PROP+LEN formula by
making passes from the innermost subformulae outward, which can be done in
polynomial time. A more formal description of this algorithm would need to keep
track of the formulae satisfied and not satisfied in the future at every witness
state.



To verify that the pad states between two witness states satisfy the current
set of Gβ requirements, we need to check that the pad states should satisfy their
conjunction

∧
β. Stripping modalities which have been verified, this is a pure

PROP+LEN formula γ. What we now need to verify is that at position ui + 1,
we want a word of length ui+1−ui−1 which satisfies Gγ. From Lemma 2, we see
that this is the BlockSAT property, checkable in ΠP

2 . The algorithm we have
described is an Np procedure which uses a ΠP

2 oracle and hence is in ΣP
3 . ⊓⊔

This algorithm needs to be somewhat modified when considering satisfiabil-
ity for infinite word models. First of all, we observe that we can restrict ourselves
to considering “lasso” models where we have a finite prefix followed by an infi-
nite loop, and for convenience in dealing with modulo counts, we can take the
length of the loop body to be a multiple of prd(α). The procedure described
above essentially works for the prefix part of the model, but we have to devise a
further procedure which handles the requirements in the loop part of the model.
Since the key to this procedure is the verification of BlockSAT , which remains
unchanged, the extended procedure for satisfiability over infinite word models
can also be carried out in ΣP

3 and Theorem 3 continues to hold.

4.2 Satisfiability of length modulo counting is hard

In this section we show that the satisfiability problem for LTL[F]+LEN is ΣP
3 -

hard, even if we use unary notation and finite word models. We denote by β[φ/p]
the formula got by replacing all occurences of the proposition p by φ.

Let QBF3 be the set of all quantified boolean formulae which starts with
an existential block of quantifiers followed by a universal block of quantifiers
which are then followed by an existential block of quantifiers. Checking whether
a QBF3 formula is true is ΣP

3 -complete. We reduce from evaluation of QBF3

formulae to satisfiability of our logic.

Theorem 4. Satisfiability for LTL[F]+LEN is hard for ΣP
3 , even if unary no-

tation is used for the syntax.

Proof. Let us take a formula β with three levels of alternation and which starts
with an existential block.

β = ∃x1, ..., xk∀y1, ..., yl∃z1, ..., zmB(x1, ..., xk, y1, ..., yl, z1, ..., zm)

We now give a satisifability-preserving LTL[F]+LEN formula β̂ (which can have

constants in unary notation) such that β in ΣP
3 -SAT iff ∃w, (w, 1) � β̂.

Take the first l prime numbers p1, ..., pl. Replace the yjs by ℓ ≡ 0( mod pj).

Let the resultant formula be called α. We give the formula β̂ below. It is a
formula over the x and z propositions.

β̂ = G( B[ℓ ≡ 0( mod pj)/yj ]) ∧ F(∧l
j=1ℓ ≡ 0( mod pj)) ∧

k∧

i=1

(Gxi ∨ G¬xi)



Thanks to the prime number thorem we do not have to search too far (By the
prime number theorem, asymptotically there are l primes within l log l and hence
finding them can be done in polynomial time.) for the primes, and primality
testing can be done in polynomial time.

Suppose the quantified boolean formula β is satisfiable. Then there is an
assignment v to the xis which makes the Π2 subformula (∀∃ part) true. Consider
the formula γ = β[v(xi)/xi]. We can represent an assignment to the yjs by an l
length bit vector. There are 2l different bit vectors possible. For each bit vector
s we can obtain the formula γs, by substituting the yjs with the values from
s. But since β is satisfiable, each of the γss are satisfiable. Hence for all these
formulae there is a satisfying assignment Zs : [m] → {0, 1} to the variables zr,
for r = 1,m.

We are going to construct a word model M which will satisfy β̂. Take its
length to be n ≥ Π l

j=1pj so that the future requirement is satisfied (2nd for-
mula). In every state of the word, let the proposition xi take the value v(xi).
Now we define at state t the valuation of zr, r = 1,m, as follows. Let s be the
bitstring represented by (t mod p1 = 0, t mod p2 = 0, ..., t mod pl = 0). Set
the evaluation of zr in the tth state of M to be Zs(r).

Once we do this for all t ≤ n, we find thatM, t � β[ℓ ≡ 0( mod pj)/yj ][v(xi)/xi].

And because n ≥ Π l
j=1pj we haveM, 1 � β̂. We have thus shown that there exists

a word model satisfying β̂.
For the converse, suppose there is a word model M of length n which satisfies

β̂. Then n ≥ Π l
j=1pj . Set a valuation v for the x’s as v(xi) = true iff M, 1 � xi.

We have to now show that the formula γ = β[v(xi)/xi] is satisfiable for all 2l

assignments to the yjs. That is, for all 2l assignments to the yj ’s there is an
assignment to the zrs which make γ true. Suppose s is a bitstring of length
l representing an arbitrary assignment to the yj ’s. Take a t ≤ n, such that s
equals the bitstring (t mod p1 = 0, t mod p2 = 0, ..., t mod pl = 0). Such a t
exists because n is long enough. Let Zs(r) be the valuation of the zr in the tth

state of M . This assignment to zr makes the formula α true when the yj ’s are
assigned according to s. Hence β is satisfiable. ⊓⊔

5 Discussion

We observed in this paper that when LTL is extended with threshold and modulo
counting, it does not matter if the specification of the thresholds and moduli is in
succinct notation. More generally this holds for computation within a finite sym-
metric group. This seems to have escaped the notice of verification researchers
until now.

Are there other families of automata, where a “standard” enumeration of
their states and transitions can be represented in logarithmic notation, and for
which the Pspace bound will continue to hold? We also ask how far these ideas
can be extended for pushdown systems.

A patent weakness is that LTL+SYM specifications are far from perspicuous,
but we look to demonstrate an idea, and it will take examples from practice to



provide useful patterns for the more expressive logic using specification of group
properties.
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A Expressiveness of LTL[X,U]+LEN

In this appendix, we show that the logic LTL[X,U]+LEN is as expressive as
first order logic with regular numerical predicates FO[Reg]. This is standard
first order logic on word models, with binary predicate symbols for order and
equality x < y and x = y, and unary predicate symbols Qa(x) and x ≡ r(
mod q), for every letter a in the alphabet and for r, q ∈ N, q ≥ 2. For more
details on this logic, see Straubing’s book [17].

First, a lemma. Its converse also holds but we do not need it.

Lemma 3 (Straubing). Let L ⊆ A∗ be a regular language. If L ∈ FO[Reg]
then L is recognized by a morphism ηL to a monoid M , such that ∀t > 0, every
semigroup contained in ηL(At) is aperiodic.

Theorem 5. A property of words is expressible in FO[Reg] iff it is expressible
in LTL[X,U]+LEN.

Proof. There is a standard translation from an LTL[X,U]+LEN formula, which
is essentially the definition of the semantics of the modalities of LTL[X,U]+LEN
using an FO[Reg] formula. To prove the other direction, we use the lemma above
and the same proof strategy as in Straubing’s book [17].

Using the lemma, given a morphism η : A∗ →M and a language L = η−1(X)
such that X ⊆M and ∀t > 0, every semigroup contained in ηL(At) is aperiodic,
we have to show that L can be expressed by an LTL[X,U]+LEN formula.

Consider the following sequence which contains finitely many distinct sets.

η(A), η(A2), ...,

and hence ∃k, r > 0 : ∀p ≥ k, η(Ap) = η(Ap+r) and hence for a p which is a
multiple of r, we have η(Ap) = η((Ap)+) = S is a semigroup of M . From the
property of η, S is aperiodic. Let B = Ap and let us define β : B∗ → S1 by
setting ∀b ∈ B∗ : β(b) = η(b). Now

L =
⋃

0≤|w|<p

wLw

where
Lw = {u ∈ (Ap)∗ : wu ∈ L}.

Assume that each of the Lw can be expressed by an LTL[X,U]+LEN formula
φw. Let φw[k] be a formula which accepts words whose length is shifted by k.
This is inductively defined and the only nontrivial clause is (ℓ ≡ i( mod p))[k] =
ℓ ≡ i+ k( mod p).

If w = a1a2...ak, wLw can be defined by the following formula.

a1 ∧

k−1∧

i=1

Xiai+1 ∧ Xkφw[k]



Taking some finite union over such languages we will be able to express L by
an LTL[X,U]+LEN formula.

It remains to show how we can obtain the formula for each language Lw.
Consider a word v ∈ B∗. It belongs to Lw iff

β(v) ∈ {m ∈ S1 : m.η(w) ∈ X}

Thus Lw considered as a subset of B∗ is recognized by an aperiodic monoid.
By the results of Schützenberger [14] and Kamp [10] we know that any language
accepted by a homomorphism to an aperiodic monoid can be expressed by an
LTL formula and hence Lw can be expressed by an LTL formula ψ over the
alphabet B. We give an inductive construction τ from an LTL formula over B∗

to an LTL[X,U]+LEN formula over A∗ as follows. Let b = a1...ap ∈ B∗. Then

τ(b) = (ℓ ≡ 0 mod p) ∧ a1 ∧

p−1∧

i=1

Xiai+1

τ(¬α) = ¬τ(α)

τ(α1 ∧ α2) = τ(α1) ∧ τ(α2)

τ(Xα) = (ℓ ≡ 0 mod p) ∧ Xp+1τ(α)

τ(α1Uα2) = ((ℓ ≡ 0 mod p) =⇒ τ(α1))Uτ(ℓ ≡ 0 mod p ∧ α2)

Thus τ(ψ) defines Lw. ⊓⊔


