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Abstract. It is known that the languages definable by formulae of the logics
FO2[<,S], ∆2[<,S], LTL[F,P,X,Y] are exactly the varietyDA∗D. Automata for
this class are not known, nor is its precise placement within the dot-depth hierar-
chy of starfree languages. It is easy to argue that∆2[<,S] is included in∆3[<];
in this paper we show that it is incomparable withB(Σ2)[<], the boolean com-
bination ofΣ2[<] formulae. Using ideas from Straubing’s “delay theorem”, we
extend our earlier work [LPS08] to propose partially-ordered two-waydetermin-
istic finite automata with look-around (po2dla) and a new interval temporal logic
called LITL and show that they also characterize the varietyDA∗D. We give ef-
fective reductions from LITL to equivalentpo2dlaand frompo2dlato equivalent
FO2[<,S]. Thepo2dlaautomata admit efficient operations of boolean closure and
the language non-emptiness ofpo2dlais NP-complete. Using this, we show that
satisfiability of LITL remains NP-complete assuming a fixed look-around length.
(Recall that forLTL[F,X], it is PSPACE-hard.)

A rich set of correspondences has been worked out between diverse mechanisms for
defining the first-order definable word languages and their subclasses (a recent survey
is [DGK08]). In the following, CFA refers to counter-free automata, SFRE to star-free
regular expressions andAp refers to the variety of aperiodic monoids [Pin86].

CFA≡ SFRE≡ Ap≡ FO[<] ≡ LTL[U,S] ≡ ITL

Further, Thomas showed [Tho82] that by restricting the quantifier-alternation depth in
theFO[<] formulae a strictdot-depth hierarchy of star-free languages is obtained, see
the paper by Pin and Weil [PW97] for details. For example,B(Σ2)[<] is the class of
languages defined by the boolean combination ofΣ2[<] formulae, which are the ones
which have one block of existential quantifiers followed by one block of universal quan-
tifiers followed by a quantifierless formula.

For theFO formulations below, given an alphabetA anda∈ A, the unary predicate
Qa(x) holds iff the letter at positionx is a. The binary predicateS(x,y) denotes the
successor relation on positions, and< is, as usual, its transitive closure.

Example 1.Let A = {a,b} be the alphabet described byφA
def
= ∀x. Qa(x)∨Qb(x),

which will be an additional conjunct below, not explicitly mentioned.

– φ1
def
= ∃x∃y. S(x,y)∧Qa(x)∧Qa(y) is aB(Σ1)[S] formula definingL1 = A∗aaA∗.

– φ2
def
= ∃x∃y. Qa(x)∧Qa(y)∧∀z. (x < z⊃ y≤ z) is aΣ2[<] formula definingL1.



– Let φ3
def
= (∀x. f irst(x) ⊃ Qa(x))∧ (∀x. last(x) ⊃ Qb(x))∧

(∀x,y. ((x < y)∧Qa(x)∧Qa(y) ⊃ ∃z. x < z∧z< y∧Qb(z)))∧
(∀x,y. ((x < y)∧Qb(x)∧Qb(y) ⊃ ∃z. x < z∧z< y∧Qa(z)))

.

Then,φ3 is aΠ2[<] formula defining the languageL2 = (ab)∗. ⊓⊔

More recently, Th́erien and Wilke [TW98] showed that the 2-variable fragment
FO2[<] [Mor75] (where only two variables occur, quantified any number of times), is
expressively equivalent to the unambiguous languages and varietyDAof Scḧutzenberger
[Sch76,TT02] and the subset∆2[<] in the dot-depth hierarchy. Etessami, Vardi and
Wilke [EVW02] identified the unary temporal logicLTL[F,P] and Schwentick, Th́erien
and Vollmer [STV02] identifiedpartially-ordered 2-way deterministic finite automata
(these are also calledlinear [LT00]) as equivalent formalisms. In [LPS08], we added
to these correspondences a “deterministic” interval temporal logic calledUITL. The
papers [TW98,EVW02] also characterizedFO2[<,S], which can define languages not
definable in the logicFO2[<] such as those in Example 1. For a detailed study of these
logics, see the recent papers of Weis and Immerman [WI07], andof Kufleitner and Weil
[KW09].

PO2DFA≡UL ≡ DA≡ FO2[<] ≡ ∆2[<] ≡ LTL[F,P] ≡ UITL

DA∗D ≡ FO2[<,S] ≡ ∆2[<,S] ≡ LTL[F,P,X,Y]

It is clear that∆2[<,S] ⊆ ∆3[<] since successor can be defined using< and one
quantifier. In this paper we provide an automaton characterization and an interval logic
characterization for this class of languages, and we separate it fromB(Σ2)[<], the lan-
guages defined by the boolean combination ofΣ2[<] formulae. This also shows that
FO2[<,S] is apropersubset of∆3[<], as diagrammatically depicted below.

∆2[<,S] = FO2[<,S]
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Π2[<]
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∆2[<] = FO2[<] //
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;;
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Σ2[<] // B(Σ2)[<] // ∆3[<]

Our automaton and logic characterizations are based onRhodes expansions [Til76];
the two-sided variant below is inspired by Straubing’s theoremDA∗D≡DA∗LI [Str85].

Definition 1. Let A be a finite alphabet, A′ = A∪{⊲,⊳} be its extension with two end-
markers⊲,⊳ /∈ A, and Aρ

d = (A′)2d+1 the alphabet whose letters are actually words of
length2d+1 over A. Let w= w1w2 . . .wn be a given word, where wi ∈ A is a letter. Let
aroundd(w, i) = wi−d . . .wi . . .wi+d denote thetwo-sidedd-lookaround stringat position
i. Note that if the position i is near one of the endpoints thenaroundd(w, i) is padded
by repeating the endmarker at that end. We define theRhodes-Straubing d-expansion
of w (and for a language L pointwise) for d≥ 1 to be wρ

d = u1u2 . . .un, where each
ui = aroundd(w, i). This is a word over Aρd. When d= 0 we let wρ

0 be w. For example,
(abcab)ρ

2 is (⊲⊲abc)(⊲abca)(abcab)(bcab⊳)(cab⊳⊳). ⊓⊔



Straubing’s delay theorem shows that a language, or in our context a formulaφ of
FO2[<,S], can be seen as a formulaφ′ of FO2[<] over a Rhodes-Straubingd-expansion
whered is the number of occurrences of successor predicates inφ. Carrying this intu-
ition to automata, we extendpo2dfato partially-ordered 2-way deterministic finite state
automata with lookaround (po2dla) which essentially make transitions on the Rhodes-
Straubing expansion of the word. We also extend our unambiguous interval logicUITL
to an unambiguous interval logic with lookaround called LITL. With some amount of
technical hacking, we are able to show that LITL andpo2dlahave the expressive power
of FO2[<,S].

The resulting automata and interval logic have many interesting features. A signif-
icant property ofpo2dla is that the boolean operations (including complementation)
can be done withinpo2dlawith a linear blowup in size. Language emptiness ofpo2dla
is NP-complete and inclusion betweenpo2dla is CoNP-complete, assuming a fixed
lookaround sizek.

The logic LITL inherits the desirable properties of its ancestor UITL [LPS08]. It
admits unique parsability of models and exploiting this we can provide an efficient
PTIME reduction from LITL topo2dla. This immediately gives us a small model prop-
erty for the logic. Moreover, given a formula of lengthn with alphabet sizem and
lookaround lengthk, we can show that the satisfiability problem is in nondeterministic
time O((mk)×n). Assuming fixed lookaround sizek, satisfiability is NP-complete. By
comparison, the satisfiability of the logicLTL[F,X] is PSPACE-hard, although an action-
indexed version was shown NP-complete by Muscholl and Walukiewicz [MW05].

The rest of the paper is organized as follows: the next section defines our au-
tomata, Section 2 the logic and the reductions from logic to automata and from au-
tomata toFO2[<,S]. Section 3 deals with expressiveness and finally brings us back
from FO2[<,S] to our logic.
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1 Partially-ordered two-way DFA with look-around

Fix an alphabetA and its extensionA′ = A∪{⊲,⊳} with two endmarkers⊲,⊳ /∈ A. Given
w∈ A∗, let dom(w) = {1, . . . , |w|}. In recognizingw, the two-way automaton actually
scans the stringw′ = ⊲w⊳ with letters⊲ and⊳ at positions 0 and|w|+ 1 respectively.
Thus,dom(w′) = {0, . . . , |w|+1}.

Let a ∈ A′ and letu,v ∈ A∗. We shall considerpatterns of the formuav with an
underlined distinguished position. Given a patternuav and a wordw′, a positioni ∈
dom(w′) matches the pattern, denoted(w′[∗, i,∗] = uav), if the letter inw′ at positioni
is a and this is followed by the stringv (forward lookaround) and also thisa is preceded



by the stringu (backward lookaround). Formally,(w′[∗, i,∗] = uav) iff w′[i] = a and
∀k ∈ dom(v). i + k ∈ dom(w′)∧w′[i + k] = v[k] and∀k ∈ dom(u). i − k ∈ dom(w′)∧
w′[i −k] = u[k]. (When clear from the context,uav will be written asuav).

For a stringu, let Pre(u) andSu f(u) be the set of all prefixes and suffixes (respec-
tively) of u. Given two patternsu1a1v1 andu2a2v2, we say that they areoverlapping iff
(i) a1 = a2, (ii) u1 ∈ Su f(u2) or u2 ∈ Su f(u1), and (iii) v1 ∈ Pre(v2) or v2 ∈ Pre(v1).

1.1 Automaton Definition

Partially ordered two-way DFA were introduced by Schwentick, Thérien and Vollmer
[STV02] to characterize the unambiguous languages. We present a generalization with
forward and backward lookaround. The transitions of the automaton are labelled by
patterns over the alphabet, instead of letters. There is a default else transition associ-
ated with each state which is taken if no other transition is applicable. This makes our
automata total.

Definition 2. A partially ordered 2DFA (po2dla) with lookaround size k over A′ is a
tuple M= (Q,≤,δ,s, t, r) where(Q,≤) is a finite partial order of states with distinct
start, accept and reject states s, t and r where r and t are the only minimal elements
of the poset and s is the only maximal element. LetP be the set of all patterns with
a maximum lookaround of size k, i.e. the set of all uav such that u,v∈ A∗, a∈ A′ and
|u|, |v| ≤ k. The transition functionδ has two types of transitions: thematching tran-
sitions form a partial functionδm : (Q\ {t, r}×P ) → (Q×{L,R,X}) where the first
component q′ of δm(q,u) satisfies q′ < q, and the defaultelse transition is a total func-
tion δelse: (Q\{t, r}) → (Q×{L,R}) where the first component q′ satisfies q′ ≤ q.

Further, for determinism we have that, for all q∈ Q, and u1a1v1,u2a2v2 ∈ P , if
δm(q,u1a1v1) = q1 andδm(q,u2a2v2) = q2 such that q1 6= q2, then u1a1v1 and u2a2v2

are not overlapping. To ensure that the head of the automatondoes not ”fall beyond”
the end-markers, we have an additional syntactic condition:

∀q∈ Q\{t, r} . ∃q′,q′′ ∈ Q. δm(q,⊲) = (q′,R) and δm(q′′,⊳) = (q′′,L). ⊓⊔

A configuration of automatonM running on wordw′ is a pair(q, p) with q ∈ Q, p ∈
dom(w′). The automaton in a configuration(q, p) takes the uniqueδm transition from
q, whose label is matched at the positionp. If such a transition does not exist, then the
automaton takes the default transitionδelsewhere it must change position.

Run The run of the automatonM on a wordw′ and starting at a positionp0, is a
sequence of state-position configurations(q0, p0),(q1, p1)...(qn, pn), where

– q0 = sandqn ∈ {t, r}. The run is accepting ifqn = t and rejecting ifqn = r.
– For all i ≥ 0, if there exists (unique)uav such thatδm(qi ,uav) = (q′,d) for some

(q′,d) and (w[∗, i,∗] = uav), then (a)qi+1 = q′ and (b) pi+1 = pi + 1 if d = R,
pi+1 = pi −1 if d = L andpi+1 = pi if d = X.

– Otherwise,qi+1 = q′, whereδelse(qi) = (q′,d), and pi+1 = pi + 1 if d = R and
pi+1 = pi −1 otherwise.



The outcome of the run is given by the total function[ [M] ] such that for anyw ∈ A∗

andi ∈ dom(w′) is given by[ [M] ](w, i) = (qn, pn), the final configuration of the run. A
word w is accepted byM if the unique run ofM on w′ = ⊲w⊳ starting at position 1 is
accepting. The languageL(M) ⊆ A∗ is the set of words accepted byM. ⊓⊔

Since the states ofM are partially ordered, the only loops allowed are self-loops
on the defaultelse transitions. During a sequence of such self-loop transitions the au-
tomaton moves in the same direction. Moreover, the automaton must change state on
reaching an endmarker. So, because of the partial order, apo2dlacannot loop infinitely:
it has at most|Q|−1 reversals and all its runs are bounded by length|Q|× |w|. Since
δelse is a total function, the automaton always has a terminating run on every word:
hence the automaton is complete.

Example 2.Figure 1 gives thepo2dlafor the languages(ab)∗ andA∗aaA∗. The default
else transitions are shown with just a direction. In the automatonA1, two consecutive
a’s or b’s lead to rejection from states1, and in states2 which is reached at the end of
the word, we check that it ends withb.

s s1
a/X

s2
⊳/L

aa/X

a/X

b/X

r t

⊳/L

AutomatonA1 accepting(ab)∗

s
aa/X

⊳/L

t

r

AutomatonA2 acceptingA∗aaA∗

bb/X

R

R

R

Fig. 1

Proposition 1. The po2dla are closed under sequential composition and Boolean op-
erations, constructible with automata of linear size (number of states).

The proofs follow our earlier paper [LPS08]. Just as we have there, the automata
can be described by a syntax ofextended turtle expressionsgoing beyond those of
Schwentick, Th́erien and Vollmer [STV02]. We omit these because of lack of space.

1.2 Small model property and decision problems

We letINTV(w) = {[i, j] | i, j ∈ dom(w), i ≤ j} be the set ofintervals overw, andw[i, j]
(or w, [i, j] in the next section) denote the factor ofw corresponding to the interval[i, j].



We will extend this notation to open and semi-open intervalsas usual, as well as to their
unions.

Consider apo2dla Mover an alphabetA with n states and a maximum lookaround
of k. Recall thatA′ = A∪ {⊲,⊳} and for w ∈ A∗ we havew′ = ⊲w⊳. Recall also the
defintion ofaroundd(w, i) given in Definition 1. When clear from the context, we will
abbreviate this byaround(w, i) or around(i).

Lemma 1 (Membership).Given a word w∈ A∗, checking whether w∈ L(M) can be
carried out by simulating the automaton in deterministic time O(mnk) where m is the
number of states of M, n is the length of the word w′ and k is the lookaround size.

Proof. Lookaround is handled by maintaining an array of length 2k+ 1 storing the
factor around the current head position. Note that there canbe at mostm−1 reversals
in thepo2dla. The algorithm requires space logm+ logn+(2k+1) log|A′|. ⊓⊔

Now consider the unique run ofM acceptingw. We say that a positionp∈ dom(w′)
is purely-self-looping (PSL) if for all configurations of the form(q, p) in the run having
positionp, the (unique) enabled transition ofM is theself-looping else transition(which
does not result in change of state).

Call an interval[m1,m2] ∈ INTV(w) a tunnel if all j ∈ [m1,m2] are purely-self-
looping (PSL) andaround(w′,m1) = around(w′,m2). If the automaton makes a right
move at positionm1, it continues moving right without change of state till it reaches
m2; and similarly for a left move atm2. The following lemma is a direct result of the
above and the fact thataround(m1) = around(m2).

Lemma 2. Given w′ and a tunnel[m1,m2], let v′ = w′[0,m1)[m2, |w′|] be the word ob-
tained by replacing the tunnel by its last letter. Then, w∈ L(M) iff v ∈ L(M). ⊓⊔

From the above lemma, it is clear that every tunnel in wordw′ can be collapsed into
a single letter preserving membership. Thus, in a word without tunnels, there can be a
consecutive sequence of PSL positions which has length at most |A′|2k+1 (the number
of distinctaround(i)). Every such sequence must be separated by a non-PSL position.
There can be at mostn−1 non-PSL positions in a run since there can be at mostn−1
state changing transitions in ann statepo2dla. Hence, we get the following theorem.

Theorem 1 (Small model).If L(M) 6= /0 then there exists a word w∈ L(M) of length
at most(|A′|2k+1 +1)(n−1). ⊓⊔

Corollary 1. Assuming lookaround k to be constant, the language non-emptiness of
po2dla is NP-complete and the language inclusion of po2dla is CoNP-complete.

Proof. The technique is to guess the member word of size(|A′|2k+1 + 1)(n−1) non-
deterministically, and to use the PTIME membership checking algorithm on this. Thus,
non-emptiness is in NP. The non-emptiness problem forpo2dfais shown to be NP-hard
[SP09]. Sincepo2dlaare extension ofpo2dfa, we conclude that their non-emptiness
problem is NP-complete. We also conclude that the language inclusion problem is
CoNP-complete as intersection and complementation ofpo2dlacause only linear blowup
in the automaton size, andL1 ⊆ L2 iff L1∩L2 = /0. ⊓⊔



2 Logic LITL

Interval temporal logic is based on achopoperator which divides an interval into two.
Although this yields succinct formulae, the complexity of satisfiability is nonelemen-
tary. We proposed unambiguous interval temporal logic [LPS08] replacing chops by
marked chop operatorsFa andLa, dividing a given interval at the first/last occurrence
of the lettera. Satisfiability ofUITL is NP-complete. Here we have a simple general-
ization, chopping an interval at the first/last occurrence of a given patternuav.

Fix an alphabetA. Let a ∈ A andu,v ∈ A∗. Let D,D1,D2 range over formulas in
LITL. The abstract syntax of LITL is given below. Here⊤ denotes the formulatrue.

⊤ | pt | D1∨D2 | ¬D | D1FuavD2 | D1LuavD2 | ⊕D | ⊖D

The satisfaction of a formulaD is defined over intervals of a word modelw as
follows. As usual,w |= D iff w, [1, |w|] |= D andL(D)

def
= {w | w |= D} is the language

defined byD. The derived operators∧,⊃,⇔ have their usual definitions.

w, [i, j] |= pt iff i = j
w, [i, j] |= D1FuavD2 iff for some k : k∈ [i, j]. (w[∗,k,∗] = uav) and

for all m : i ≤ m< k. ¬(w[∗,m,∗] = uav) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LuavD2 iff for some k : k∈ [i, j]. (w[∗,k,∗] = uav) and
for all m : k < m≤ j. ¬(w[∗,m,∗] = uav) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= ⊕D iff i < j and w, [i +1, j] |= D
w, [i, j] |= ⊖D iff i < j and w, [i, j −1] |= D

Example 3.The LITL formula⊤Faa⊤ precisely specifies the languageA∗aaA∗. The
formula (pt Fa⊤) ∧ (⊤Lb pt) ∧ ¬(⊤Faa⊤) ∧ ¬(⊤Fbb⊤) specifies the language
(ab)+ over alphabet{a,b}. The first and the second conjunct state that the word begins
with a and it ends withb. The last two conjuncts state that subwordsaa or bb do not
occur within the word.

2.1 Unique parsability and reduction to automata

As for its ancestorUITL [LPS08], every word model of aLITL formula can be uniquely
parsed. Fix an LITL formulaφ. Consider its subformulaψ occuring in contextλ; we
denote this byφ = λ(ψ). For anyw∈ A+, we can uniquely determine ifψ is relevant
in determining truth ofφ over w. Moreover, if relevant, we can uniquely assign an
interval Intvw(ψ) such that the truth value ofψ only over this interval is relevant in
determining the truth ofφ overw. The intervalIntvw(ψ) actually depends only on the
contextλ and not onψ. Moreover, it is possible to constructpo2dlaL(ψ) andR (ψ)
which accept at the left and right interval boundaries ofIntvw(ψ) respectively if the
subformula is relevant. Using these automata, we can further construct an automaton
M(ψ) which accepts ifψ is relevant and it evaluates to true onIntvw(ψ). Exploiting
this unique parsability, the following theorem can be established as a straightforward
generalization of the similar theorem for logicUITL [LPS08].



Theorem 2. For any D∈ LITL we can effectively construct a po2dla M(D) in polyno-
mial time such that w∈ L(D) ⇔ w∈ L(M(D)). The size| M(D) | = O(| D |2).

Proof (sketch).The construction ofM(D) is inductive and proceeds bottom-up on the
structure ofD. ConsiderD = ψ1Fuavψ2. The correspondingpo2dla M(D) first moves to
the left boundary ofIntvw(D), then it checks in a single pass (moving in one direction
only), for the existence of firstuav, and also checks whether it lies within the right
boundary of the intervalIntvw(ψ). It then invokes the automataM(ψ1) andM(ψ2) in
sequence. The details of the construction can be found in thefull paper. ⊓⊔

Decision problems.The above translation gives a PTIME reduction from LITL formula
of sizen to a language equivalent automaton of size (i.e. number of states)O(n2). More-
over, the lookaround size in automaton is at most the patternsize in the LITL formula.
Combining this with NP-complete non-emptiness checking ofpo2dla, we conclude that
satisfiability of LITL is NP-complete assuming a fixed lookaround size. Our previous
paper [LPS08] gave a LOGDCFL procedure for checking membership for logicUITL.
This procedure extends to logic LITL with the same complexity.

2.2 From po2dlato FO2[<,S]

In this section, we outline a language preserving translation frompo2dlato FO2[<,S].
Essentially the automaton is a dag with self-loops added on some nodes. For each
progress edgee=(p,α,q,dir), p 6= q, we defineFO2[<,S] formulaeAte(x) andA f tere(x)
with one free variablex. These formulae satisfy the lemma below. By substituting these
formulae as we go along the dag, we get a formula for the words accepted.

Lemma 3. – ⊲w⊳, i |= Ate(x) iff there exists a partial run of M (starting with(s,1))
which ends in configuration(p, i) and(w[∗, i,∗] = α).

– ⊲w⊳, i |= A f tere(x) iff there exists a partial run ending with last two configurations
(p, j)(q, i) where the last edge of the automaton taken is e.

Construction. It is easy to constructA f tere(x) givenAte(x). For edgee= (p,α,q,dir)

we haveA f tere(x)
def
= ∃y. S(x,y)∧Ate(y) if dir = L; A f tere(x)

def
= ∃y. S(y,x)∧Ate(y)

if dir = R; andA f tere(x)
def
= Ate(x) if dir = X.

Givenα, there is aFO2[<,S] formulaα(x) stating that the positionx matchesα. E.g.

dabc(x)
def
= b(x)∧ (∃y. S(y,x)∧a(y)∧ (∃x. S(x,y)∧d(x))) ∧ (∃y. S(x,y)∧c(y)).

Now we give the construction ofAte(x), by induction on the depth of the edge.
Consider an edgee= (p,α,q,dir) where the labels of other progress edges from state
p areα1, . . . ,αk. Let the incoming progress edges top bee1, . . . ,er . We consider here
the case thatδelse(p) = (p,R), i.e. a self-loop scanning rightwards. The caseδelse(p) =
(p,L) is symmetric.

Ate(x)
def
= α(x)∧∨ei∈{e1...er}[

(∃y. y≤ x∧A f terei (y))∧
(∀y. y < x⇒ ((¬α(y)∧¬α1(y)∧ . . .∧¬αk(y))∨

(∃x. y < x∧A f terei (x))))]



For the start states we assume that there is a dummy incoming edgeeinit such that
A f tereinit (x) is a formula which holds exactly at position 1 inw. The formulaφ(M) for
the whole automatonM is the disjunction of the formulaeAtei (x) for each incoming
edgeei to the accepting statet. Note that the size ofφ(M) is exponential in size ofM.

Theorem 3. Every po2dla can be effectively reduced to a language equivalent formula
of FO2[<,S] of exponential size.

Hence, using Theorem 2, every LITL formula can be effectively reduced to a language
equivalentFO2[<,S] formula, but a direct quadratic translation from LITL toFO2[<,S]
generalizing the one in [Shah07] can also be worked out. In this paper, Theorem 5 will
show that we can go fromFO2[<,S] to LITL.

3 Games and expressiveness

We now investigate the expressiveness ofFO2[<,S] with respect to the dot-depth hier-
archy. Since a successor predicate can be replaced by< with an additional nesting of a
quantifier, we get thatFO2[<,S] ⊆ ∆3[<].

Theorem 4. (i) Π2[<] 6⊆ FO2[<,S]
(ii) Σ2[<] 6⊆ FO2[<,S]

(iii) FO2[<,S] 6⊆ B(Σ2)[<]

To prove the above results, we use Ehrenfeucht-Fraı̈sśe games [Fra50,Ehr61]. The
signature has unary predicatesQa,Qb,Qc and< andS are the binary predicates, with
their usual definitions. LetSigbe a signature, andu,v be two word structures overSig.
An EF gameG(u,v, p, r) is a game played by 2 players, theSpoilerandDuplicator,
over the word modelsu,v. A play of the game hasr rounds with each player playing
p pebbles. The pebbles are colored withp different colors, each player having exactly
one pebble of each color.

In each round theSpoiler picks (any) one of the words, and places hisp peb-
bles on it. TheDuplicator then places his correspondingp pebbles on the other word.
Duplicator wins the game if at the end ofr rounds there exists a partial isomorphism
between the pebble positions, with respect to all the relations ofSig. Note that this can
only happen if each of the intermediate configurations is also a partial isomorphism.
Weis and Immerman [WI07] proved the following version of the Ehrenfeucht-Fräısśe
theorem.

Definition 3. Two words u,v are said to be r-FO2[<,S] equivalentif for any FO2[<,S]
formulaφ with quantifier depth≤ r, u |= φ ⇔ v |= φ, and p-B(Σ2)[<] equivalentif for
anyB(Σ2)[<] formulaφ with ≤ p variables, u|= φ ⇔ v |= φ.

Lemma 4. (a) Two word models u,v over the signature[<,S] are r-FO2[<,S] equiva-
lent iff for the game G(u,v,2, r), the Duplicator always has a winning strategy.
(b) Two word models u,v over the signature[<] are p-B(Σ2)[<] equivalent iff for the
game G(u,v, p,2), the Duplicator always has a winning strategy.



Proof (of Theorem 4).We note that sinceFO2[<,S] is a boolean closed logic, (i) of
the theorem will imply (ii) (or vice versa). We consider words over the alphabetA =
{a,b,c} described by a conjunctφA = ∀x(Qa(x)∨Qb(x)∨Qc(x)).
(i) We consider the language(ac∗bc∗)∗. This language may be expressed by the con-
juncts below giving aΠ2[<] formula:
∀x(∀y(y < x⇒ x = y)) ⇒ Qa(x)
∀x∃y(Qb(y)∧ (x > y⇒ Qc(x)))
∀x∀y((Qa(x)∧Qa(y)∧x < y) ⇒ (∃z.(x < z< y∧Qb(z)))) and
∀x∀y((Qb(x)∧Qb(y)∧x < y) ⇒ (∃z.(x < z< y∧Qa(z))))

For somer > 0, consider two word models over the signature[<,S]:
u : (acrbcr)2r , andv : (acrbcr)rbcr(acrbcr)r

Here,u∈ (ac∗bc∗)∗ andv /∈ (ac∗bc∗)∗. We can show that for any 2-pebble, r-round EF
gameG(u,v,2, r), theDuplicator always has a winning strategy, and henceu,v arer-
FO2[<,S] equivalent. This is evident from the observation that the two b’s in v that do
not have ana between them are separated byr c’s and hence can be duplicated by the
rth bcr in u. It is straightforward to see that any of the moves ona’s or b’s by theSpoiler
can be duplicated in the other word. So the language(ac∗bc∗)∗ cannot be expressed in
FO2[<,S].
(iii) We show that the language given by the LITL formula(¬(⊤Fbb⊤))Faa⊤ is not
definable inB(Σ2)[<]. Over the signature[<], we first claim that no formula using less
thanpvariables can distinguish in one round between the wordsu1 =(ab)pbb(ab)paa(ab)p

andv1 = (ab)paa(ab)pbb(ab)p. This is because any subsequence of lengthp in one
word can be matched in the other word.

Now consider the pair of wordsu2 = up
1 andv2 = vp

1 formed by takingp copies of
the earlier ones. Now any placement ofp pebbles in one word can be matched in the
other word so that the subwords of length at mostp−2 between any two pebbles (or a
pebble and an end of the word) are the same. This means that Duplicator has a winning
strategy for the second round as well.

Since for everyp, the first wordu2 is not in the language given by(¬(⊤Fbb⊤))Faa⊤
and the second wordv2 is in the language, this shows that anyB(Σ2)[<] formula (using,
say,p variables) fails to define the language. ⊓⊔

3.1 Using unambiguity on Rhodes-Straubing expansions

We now show that the expressiveness ofFO2[<,S] is no more than that of LITL. Since
the proofs of the lemmas are refinements of those in [TW98], they are omitted here. Let
RSd be the set of all words obtained as Rhodes-Straubingd-expansions (see Definition
1) of words overA, i.e. letRSd = (A∗)

ρ
d. Our use of it is reminiscent of the rôle of

Dyck languages in CFLs.

Lemma 5. If a language L is defined by an FO2[<,S] sentence with at most r quantifier
alternations and upto d successor formulas, then its d-expansion Lρ

d is the intersection
of RSd with a language definable by a sentence of FO2[<] with at most r quantifier
alternations.

The letters occurring in a wordx (more generally, in a set of words) are called its
content. We will use‖x‖ to denote the size of the content ofx. If the lettera is in ‖x‖,



the left a-chop of x is vawwherex = v1av2 anda is not in the content ofv1 (not in ithe
content ofv2, respectively, for aright a-chop).

Definition 4 (Thérien and Wilke). Let n≥‖x,y‖. Any two words x and y are said to be
n,0-equivalent. Two words x and y are n,k+1-equivalentif they have the same content
and for every letter a in the content, if their left a-chops are x1ax2,y1ay2 respectively,
then x1 and y1 are n−1,k+1-equivalent and x2 and y2 are n,k-equivalent, as well as
a symmetric condition for right chops. The n,k-choppable languages are those which
are a union of n,k-equivalence classes. Theunambiguously choppable languages are
those which are n,k-choppable for some n,k > 0.

The next result combines the earlier proposition with the result of Th́erien and Wilke
[TW98] that anFO2[<]-definable language is unambiguously choppable.

Corollary 2. If a language L is defined by an FO2[<,S] sentence with upto d successor
formulas, then its d-expansion Lρ

d is the intersection of RSd with an unambiguously
choppable language.

We now traverse the path back to our logic LITL.

Theorem 5. The languages defined by sentences of FO2[<,S] can be defined in LITL.

Proof. From Corollary 2, we know that for anFO2[<,S]-definable languageL (using
d successors) over the alphabetA, its Rhodes-Straubingd-expansionLρ ⊆ RSd is un-
ambiguously choppable over the alphabet(A′)2d+1. We construct LITL formulae for
{w | wρ ∈ Cρ} and for eachn,k-equivalence classCρ ⊆ Lρ, by induction onn andk.
Taking the disjunction of the formulae for the finitely many equivalence classes saturat-
ing Lρ gives an LITL formula forL.

For the base case, ann,0-equivalence class determines a contentB of letters over
(A′)2d+1. The language recognized by words which map to this equivalence class isB∗,
defined by the intersection below. AlthoughB∗ is a language over(A′)2d+1, the LITL
formula is over the alphabetA since existence of a letteruav in wρ is equivalent to
validatingw |= trueFuavtrue.

– For lookaroundsuav∈ (A′)2d+1\Bwithout padding, the conjunct is¬(trueFuavtrue).
– For⊲iaubv∈ (A′)2d+1\Bwherei > 0 and|au|+ i = d, the conjunct is¬(ptFaubvtrue).
– Foruavb⊳i ∈ (A′)2d+1\Bwherei > 0 and|vb|+ i = d, the conjunct is¬(trueLuavbpt).

For the induction step, ann,k+1-equivalence class determines a contentB as well
as a set of left and rightα-chops forα ∈ B. The required formula for ann,k + 1-
equivalence class is given by the following intersection, where in both cases we go
through the endmarker analysis above and shift position as required.

– FormulaeD1FαD2 (D′
1LαD′

2, respectively) and all allowed left (right, resp.)α-
chops, where the lookaroundsα range over the content.

– Negations of such formulae for theα-chops in(A′)2d+1 which are not allowed.

The formulaeD1,D2,D′
1,D

′
2 for n,k-classes over contentB and forn−1,k+1-classes

over contentB\{α} are obtained from the induction hypothesis. Consider for instance
that xρ = vραwρ is a left α-chop over a Rhodes-Straubing expansion. The induction
hypothesis gives usv |= D1 and w |= D2 and so we havex |= D1FαD2 using α as a
lookaround rather than a letter. ⊓⊔
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