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Abstract. It is known that the languages definable by formulae of the logics
FO?[<,9, As[<, S, LTLIF,P, X, Y] are exactly the varietpAx D. Automata for
this class are not known, nor is its precise placement within the dot-dep#r-hie
chy of starfree languages. It is easy to argue fhydt , § is included inAz[<];

in this paper we show that it is incomparable wibii>,)[<], the boolean com-
bination of2,[<] formulae. Using ideas from Straubing’s “delay theorem”, we
extend our earlier work [LPS08] to propose partially-ordered two-detgrmin-
istic finite automata with look-aroung¢2dlg and a new interval temporal logic
called LITL and show that they also characterize the vaidsiy D. We give ef-
fective reductions from LITL to equivalepo2dlaand frompo2dlato equivalent
FO?[<, 9. Thepo2diaautomata admit efficient operations of boolean closure and
the language non-emptinesspui2dlais NP-complete. Using this, we show that
satisfiability of LITL remains NP-complete assuming a fixed look-aroundtie
(Recall that folLTL[F, X], it is Pspackehard.)

Arrich set of correspondences has been worked out betweersdimechanisms for
defining the first-order definable word languages and thdiclagses (a recent survey
is [DGKO8]). In the following, CFA refers to counter-freetamata, SFRE to star-free
regular expressions agp refers to the variety of aperiodic monoids [Pin86].

CFA= SFRE= Ap= FO[<] = LTLU,S| = ITL

Further, Thomas showed [Tho82] that by restricting the tjfiarralternation depth in
the FO[<] formulae a strictiot-depth hierarchy of star-free languages is obtained, see
the paper by Pin and Weil [PW97] for details. For exam@¢X,)[<] is the class of
languages defined by the boolean combinatio® g% ] formulae, which are the ones
which have one block of existential quantifiers followed Imgdlock of universal quan-
tifiers followed by a quantifierless formula.

For theFO formulations below, given an alphab®tnda € A, the unary predicate
Qa(x) holds iff the letter at positiorx is a. The binary predicat&(x,y) denotes the
successor relation on positions, aads, as usual, its transitive closure.

Example 1.Let A= {a,b} be the alphabet described Ipyg % v, Qa(X) V Qp(x),
which will be an additional conjunct below, not explicitlyemtioned.

— @ %" 33y Sx,y) A Qa(x) AQaly) is aB(21)[S formula definingL; = A*aaA'.
- @ et IxTy. Qa(X) AQa(y) AVzZ (x< 2Dy < 2z)is aXp[<] formula definingL;.



— Letgs E' (vx. first(x) S Qa(X)) A (¥x. last(x) > Qu(X))A .
(V%Y. (X<Y) AQa(X) AQa(y) D Iz X <ZAZ< YA Qp(2)))A
(VX Y. (X<Y) AQp(X) AQo(Y) D Iz X<ZAZ<YAQa(2)))

Then, @z is aly[<] formula defining the languade = (ab)*. O

More recently, Tkrien and Wilke [TW98] showed that the 2-variable fragment
FO?[<] [Mor75] (where only two variables occur, quantified any nembf times), is
expressively equivalent to the unambiguous languagesaietyDA of Schitzenberger
[Sch76,TT02] and the subséb[<] in the dot-depth hierarchy. Etessami, Vardi and
Wilke [EVWO02] identified the unary temporal logicTL[F, P] and Schwentick, Térien
and Vollmer [STV02] identifiechartially-ordered 2-way deterministic finite automata
(these are also calldohear [LT0O]) as equivalent formalisms. In [LPS08], we added
to these correspondences a “deterministic” interval temalplogic calledUITL. The
papers [TW98,EVWO02] also characterizE@?[<, S, which can define languages not
definable in the logi&0?[<] such as those in Example 1. For a detailed study of these
logics, see the recent papers of Weis and Immerman [WI07]obKdfleitner and Weil
[KWO09].

PO2DFA = UL = DA=FO?[<] = Ay[<] = LTL[F,P] = UITL
DAxD = F0?[<,S = Ay[<,S = LTL[F,P,X,Y]

It is clear thatAy[<,S C Az[<] since successor can be defined usingnd one
quantifier. In this paper we provide an automaton charaetton and an interval logic
characterization for this class of languages, and we sepiifeom B(Z,)[<], the lan-
guages defined by the boolean combinatiorkgi] formulae. This also shows that
FO?[<,S is apropersubset ofAz[<], as diagrammatically depicted below.

o)<, 9 =F0?[<,S

|_|2[<]

T T

Bo[<] = FO[<] 22[<] B(Z2)[<] — Bs[<]

Our automaton and logic characterizations are bas&hodes expansions [Til76];
the two-sided variant below is inspired by Straubing’s te@oDAx D = DAx LI [Str85].

Definition 1. Let A be a finite alphabet,’A= AU {>,<} be its extension with two end-
markers>, < ¢ A, and Ag = (A)2+1 the alphabet whose letters are actually words of
length2d + 1 over A. Let w=w;ws... W, be a given word, wherejve A is a letter. Let
aroundy(wW,i) =wj_q...W...wiq denote thewo-sidedd-lookaround stringt position

i. Note that if the position i is near one of the endpoints thesund;(w,i) is padded
by repeating the endmarker at that end. We defineRiinedes-Straubing d-expansion

of w (and for a language L pointwise) ford 1 to be v@ = UilUy...Un, Where each

u; = aroundy(w,i). This is a word over % When d= 0 we let v@ be w. For example,
(abcab¥ is (>>abc)(rabca) (abcab (bcab) (caba<). O



Straubing’s delay theorem shows that a language, or in auegba formulap of
FO?[<,9, can be seen as a formugaof FO?[<] over a Rhodes-Straubimgexpansion
whered is the number of occurrences of successor predicat@s@arrying this intu-
ition to automata, we exterb2dfato partially-ordered 2-way deterministic finite state
automata with lookaroung¢2dlg which essentially make transitions on the Rhodes-
Straubing expansion of the word. We also extend our unambigjinterval logidJITL
to an unambiguous interval logic with lookaround called LIWith some amount of
technical hacking, we are able to show that LITL go@dlahave the expressive power
of FO?[<,S.

The resulting automata and interval logic have many intergg$eatures. A signif-
icant property ofpo2dlais that the boolean operations (including complementation
can be done withipo2dlawith a linear blowup in size. Language emptinespo2dla
is NP-complete and inclusion betwepn2dlais CoNP-complete, assuming a fixed
lookaround sizé.

The logic LITL inherits the desirable properties of its astoe UITL [LPS08]. It
admits unique parsability of models and exploiting this vea provide an efficient
PTIME reduction from LITL topo2dla This immediately gives us a small model prop-
erty for the logic. Moreover, given a formula of lengthwith alphabet sizen and
lookaround lengtlk, we can show that the satisfiability problem is in nondetarstic
time O((mK) x n). Assuming fixed lookaround size satisfiability is NP-complete. By
comparison, the satisfiability of the lodid@ L[F, X] is PsPACEhard, although an action-
indexed version was shown NP-complete by Muscholl and Vialikz [MWO05].

The rest of the paper is organized as follows: the next sed&fines our au-
tomata, Section 2 the logic and the reductions from logicummata and from au-
tomata toFO?[<,S. Section 3 deals with expressiveness and finally brings gk ba
from FO?[<, S to our logic.
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1 Partially-ordered two-way DFA with look-around

Fix an alphabef and its extensio&’ = AU {>, <} with two endmarkers,< ¢ A. Given
w e A%, letdomw) = {1,...,|w|}. In recognizingw, the two-way automaton actually
scans the string/ = w« with letters> and< at positions 0 andw| + 1 respectively.
Thus,domw) = {0, ..., |w| + 1}.

Let ac A’ and letu,v € A*. We shall considepatterns of the formuav with an
underlined distinguished position. Given a patteav and a wordw/, a positioni €
domw) matches the pattern, denoted [, i, ] = uav), if the letter inw’ at positioni
isaand this is followed by the string(forward lookaround) and also théds preceded



by the stringu (backward lookaround). Formallyw/[x,i,*] = uav) iff w[i] =a and
vk € domv). i +k € domw) AW[i+ k] = vk] andVk € dom(u). i —k € domw') A
w[i — k] = u[k]. (When clear from the contexiav will be written asuay).
For a stringu, let Pre(u) andSu f(u) be the set of all prefixes and suffixes (respec-
tively) of u. Given two patternsiia;vi andusagvz, we say that they areverlapping iff
() a1 = ay, (i) uy € Suf(up) orup € Suf(uy), and (iii) vy € Pre(v) or v, € Pre(vy).

1.1 Automaton Definition

Partially ordered two-way DFA were introduced by Schweqtithérien and Vollmer

[STV02] to characterize the unambiguous languages. Weptasgeneralization with
forward and backward lookaround. The transitions of thematon are labelled by
patterns over the alphabet, instead of letters. There idalielse transition associ-

ated with each state which is taken if no other transitiorpjgliaable. This makes our
automata total.

Definition 2. A partially ordered 2DFA (po2dlg with lookaround size k over A is a
tuple M= (Q,<,9,s,t,r) where(Q, <) is a finite partial order of states with distinct
start, accept and reject states s, t and r where r and t are thlg minimal elements
of the poset and s is the only maximal element.2dte the set of all patterns with
a maximum lookaround of size k, i.e. the set of all sach that uv € A*, ac A" and
[ul,|v] < k. The transition functiod has two types of transitions: theatching tran-
sitions form a partial functio®n : (Q\ {t,r} x ?) — (Q x {L,R X}) where the first
component ‘gof &m(q, u) satisfies < g, and the defaukélse transition is a total func-
tion dgise: (Q\ {t,r}) — (Q x {L,R}) where the first component satisfies < g.

Further, for determinism we have that, for allgQ, and yaivy, agvs € P, if
Om(0, urarv1) = g1 and dm(Q, UzazVo) = o2 such that g # gz, then yaiv, and wayvs
are not overlapping. To ensure that the head of the automdt@s not "fall beyond”
the end-markers, we have an additional syntactic condition

vge Q\{t,r}.3d,q" € Q. dn(qg,>) = (d,R) and dm(q”,<) = (¢, L). O

A configuration of automatoM running on wordw’ is a pair(g, p) with g€ Q, p €
domw'). The automaton in a configuratidn, p) takes the uniquéy, transition from

g, whose label is matched at the positipnif such a transition does not exist, then the
automaton takes the default transitidyse Where it must change position.

Run The run of the automatorM on a wordw' and starting at a positiopg, is a
sequence of state-position configuratidas po), (01, P1)--.(Gn, Pn), Where

— (o =sandag, € {t,r}. The run is accepting i, =t and rejecting ifg, =r.

— For alli > 0, if there exists (unique)av such tha®dy(q;,uav) = (q,d) for some
(d,d) and (w[x,i,*] = uav), then (@)g+1 =¢q and (b)pi1=p+1ifd=R
pri=pi—lifd=Landpii1=pifd=X.

— Otherwise,qi11 = ¢, wheredgsdqi) = (,d), andpi;1 = pi+1if d =R and
pi+1 = pi — 1 otherwise.



The outcome of the run is given by the total functidM]] such that for any € A*
andi € domw) is given by[[M]](w,i) = (dn, Pn), the final configuration of the run. A
word w is accepted by if the unique run oM onw = >w« starting at position 1 is
accepting. The language(M) C A* is the set of words accepted M. O
Since the states d¥l are partially ordered, the only loops allowed are self-bop
on the defaultlse transitions. During a sequence of such self-loop transstite au-
tomaton moves in the same direction. Moreover, the autamaiost change state on
reaching an endmarker. So, because of the partial orge2@dacannot loop infinitely:
it has at mostQ| — 1 reversals and all its runs are bounded by ler@hx |w|. Since
delse IS a total function, the automaton always has a terminatimgan every word:
hence the automaton is complete.

Example 2.Figure 1 gives th@o2dlafor the language&ab)* andA*aaA’". The default
else transitions are shown with just a direction. In the @nationA;, two consecutive
a’s or b’s lead to rejection from stat®, and in states, which is reached at the end of
the word, we check that it ends with

Automatorf, acceptingA*aaA’

Automaton4; acceptingab)*
Fig.1

Proposition 1. The po2dla are closed under sequential composition andeBmobp-
erations, constructible with automata of linear size (nembf states).

The proofs follow our earlier paper [LPS08]. Just as we haeed, the automata
can be described by a syntax eftended turtle expressiongjoing beyond those of
Schwentick, Tkrien and Vollmer [STV02]. We omit these because of lack atsp

1.2 Small model property and decision problems

We letINTV(w) ={]i, ] | i, ] € domw),i < j} be the set ofhtervals overw, andwii, j]
(orw,[i, j] in the next section) denote the factonetorresponding to the intervil j].



We will extend this notation to open and semi-open interaalasual, as well as to their
unions.

Consider gpo2dla Mover an alphabeA with n states and a maximum lookaround
of k. Recall thatA’ = AU {>,<} and forw € A* we havew = >w<. Recall also the
defintion ofaround;(w,i) given in Definition 1. When clear from the context, we will
abbreviate this bproundw,i) or aroundi).

Lemmal (Membership).Given a word we A*, checking whether w L(M) can be
carried out by simulating the automaton in deterministingi Qmnk) where m is the
number of states of M, n is the length of the wofdand k is the lookaround size.

Proof. Lookaround is handled by maintaining an array of lengkht-2l storing the
factor around the current head position. Note that therebeaait mosm— 1 reversals
in thepo2dla The algorithm requires space logt-logn -+ (2k+ 1) log|A’|. a

Now consider the unique run & acceptingv. We say that a positiop € domw/)
is purely-self-looping (PSL) if for all configurations of the forniq, p) in the run having
positionp, the (unique) enabled transitionldfis theself-looping else transitio(which
does not result in change of state).

Call an interval[my,mp] € INTV(w) a tunnel if all j € [my,mp] are purely-self-
looping (PSL) andaroundw,my) = aroundw,my). If the automaton makes a right
move at positiory, it continues moving right without change of state till iaches
mp; and similarly for a left move at,. The following lemma is a direct result of the
above and the fact tharound(m,) = around(m).

Lemma 2. Given w and a tunnel[my, mp], let V = w/[0,my ) [y, |W/|] be the word ob-
tained by replacing the tunnel by its last letter. Therg W(M) iff v € L(M). O

From the above lemma, it is clear that every tunnel in wef¢tan be collapsed into

a single letter preserving membership. Thus, in a word wittionnels, there can be a
consecutive sequence of PSL positions which has length ait|mq)2k+1 (the number

of distinctaround(i)). Every such sequence must be separated by a non-PSL positio
There can be at most— 1 non-PSL positions in a run since there can be at mest
state changing transitions in arstatepo2dla Hence, we get the following theorem.

Theorem 1 (Small model).If L(M) # 0 then there exists a word & L(M) of length
at most(|A'|**+1 + 1)(n—1). 0

Corollary 1. Assuming lookaround k to be constant, the language nonteesst of
po2dla is NP-complete and the language inclusion of poXifadNP-complete.

Proof. The technique is to guess the member word of ¢j28%t1 + 1)(n— 1) non-
deterministically, and to use the PTIME membership chegkigorithm on this. Thus,
non-emptiness is in NP. The non-emptiness problempdé@dfais shown to be NP-hard
[SP09]. Sincepo2dlaare extension opo2dfg we conclude that their non-emptiness
problem is NP-complete. We also conclude that the languagiesion problem is
CoNP-complete as intersection and complementatigo@élacause only linear blowup
in the automaton size, and C L, iff LyNLy = 0. O



2 Logic LITL

Interval temporal logic is based orchopoperator which divides an interval into two.
Although this yields succinct formulae, the complexity afisfiability is nonelemen-
tary. We proposed unambiguous interval temporal logic #Seplacing chops by
marked chop operatois, andL,, dividing a given interval at the first/last occurrence
of the lettera. Satisfiability ofUITL is NP-complete. Here we have a simple general-
ization, chopping an interval at the first/last occurrenica given patternuav.

Fix an alphabef. Leta € A andu,v € A*. Let D,D4,D, range over formulas in
LITL. The abstract syntax of LITL is given below. Hefedenotes the formulaue.

T ‘ pt ‘ D1V D> | -D ‘ DlFL@,Dz ‘ DlLu@/Dz ‘ ¢D | &b

The satisfaction of a formul® is defined overdinftervals of a word model as
follows. As usualw = D iff w,[1,|w|] =D andL(D) €' {w|w/}=D} isthe language
defined byD. The derived operators, D, < have their usual definitions.

wfi, j] = ptiff i = |
W, [i, j] = D1FuaD2 iff for some k: ke i, j]. (w[x,k, «] = uav) and
forall m:i <m<Kk. —(w[x,m,x*] =uav) and
W, [I’k] ): D1 ande[k,” ): D2
W, [i, j] = D1Lya/D2 iff for some k: ke i, j]. (w[*,k, %] = uav) and
forall m: k<m< j. =(w[*,m, ] = uav) and
W, [i,K] = D1 andw; K, j] = D2
w,[i,j] F @D iff i<jandwl[i+1,j]=D
w,[i,j] FeDiff i<jandwli,j—1 =D

Example 3.The LITL formula TR T precisely specifies the languagéaaA’. The
formula (pt RRT) A (TLp pt) A =(TFaaT) A —(Thyp T) specifies the language
(ab)* over alphabefa,b}. The first and the second conjunct state that the word begins
with a and it ends withb. The last two conjuncts state that subwoadsor bb do not
occur within the word.

2.1 Unique parsability and reduction to automata

As for its ancestoUITL [LPS08], every word model of @l T L formula can be uniquely
parsed. Fix an LITL formulap. Consider its subformule occuring in contexi; we
denote this byp = A(g). For anyw € A", we can uniquely determine i is relevant
in determining truth ofp over w. Moreover, if relevant, we can uniquely assign an
interval Intw, () such that the truth value af only over this interval is relevant in
determining the truth of overw. The intervalintv,, (W) actually depends only on the
contextA and not ony. Moreover, it is possible to construpb2dla £(W) and R ()
which accept at the left and right interval boundariednif,, (W) respectively if the
subformula is relevant. Using these automata, we can fudhestruct an automaton
M () which accepts i is relevant and it evaluates to true vy, (). Exploiting
this unique parsability, the following theorem can be d&thbd as a straightforward
generalization of the similar theorem for lodidTL [LPSO08].



Theorem 2. For any De LIT L we can effectively construct a po2dla®) in polyno-
mial time such that w £(D) < we £(M(D)). The sizd M(D) | = O(| D |?).

Proof (sketch)The construction oM (D) is inductive and proceeds bottom-up on the
structure oD. ConsideD = Y1 F,aW2. The correspondingo2dla M(D) first moves to
the left boundary ofntv, (D), then it checks in a single pass (moving in one direction
only), for the existence of firahav, and also checks whether it lies within the right
boundary of the intervaitv,(W). It then invokes the automatd (1) andM(2) in
sequence. The details of the construction can be found ifuthgaper. ad

Decision problemsThe above translation gives a PTIME reduction from LITL forlen
of sizento a language equivalent automaton of size (i.e. numbeatésO(n?). More-
over, the lookaround size in automaton is at most the pasiemin the LITL formula.
Combining this with NP-complete non-emptiness checkingo&fdlg we conclude that
satisfiability of LITL is NP-complete assuming a fixed loo&@and size. Our previous
paper [LPS08] gave adGDCFL procedure for checking membership for logiETL.
This procedure extends to logic LITL with the same compiexit

2.2 Frompo2dlato FO?[<, S

In this section, we outline a language preserving tramsictiom po2diato FO?[<, 5.
Essentially the automaton is a dag with self-loops addedamnesnodes. For each
progress edgee= (p,a,q, dir), p# g, we defindF0?[<, § formulaeAt(x) andA fter(x)
with one free variable. These formulae satisfy the lemma below. By substitutireg¢h
formulae as we go along the dag, we get a formula for the wardspded.

Lemma 3. —pw«,i = Ate(x) iff there exists a partial run of M (starting witts, 1))
which ends in configuratiofp, i) and (W[, i, ] = a).
— pW«, i = Aftere(X) iff there exists a partial run ending with last two configuceis
(p,j)(a,i) where the last edge of the automaton taken is e.

Construction. It is easy to construdh fters(x) givenAte(x). For edgee = (p,a,q, dir)
we haveA fterg(x) def 3y. S(x, y) AAte(y) if dir =L; Afters(x) def 3y. Sy, x) AAL(y)
if dir = R andAfters(x) % At(x) if dir = X.
Givena, there is &0?[<, § formulaa (x) stating that the positionmatchesu. E.g.
def
dabe(x) = b(X) A (Fy. S, X) Aaly) A (3x SxY) Ad(X) A (Fy. SxY) Ac(y)).

Now we give the construction oits(X), by induction on the depth of the edge.
Consider an edge= (p,a,q,dir) where the labels of other progress edges from state
p areds,...,0k. Let the incoming progress edgespdee;,...,e. We consider here
the case thaleisd(p) = (P, R), i.e. a self-loop scanning rightwards. The caged p) =
(p,L) is symmetric.

def
Ate(x) = (I(X) /\\/eie{ei...er}[
(Jy. y <xAAfterg (y)A
(VY y <x= ((ma(y) A=oa(y) A... A=ok(y))V
(X y < xAAfterg (x))))]



For the start state we assume that there is a dummy incoming edge such that
Afterg,, (X) is a formula which holds exactly at position 1wn The formulag(M) for
the whole automatoM is the disjunction of the formulagtg (x) for each incoming
edgeg to the accepting state Note that the size ap(M) is exponential in size dl.

Theorem 3. Every po2dla can be effectively reduced to a language etgrnivéormula
of FO?[<, S of exponential size.

Hence, using Theorem 2, every LITL formula can be effecyiveduced to a language
equivalenfFO?[<, S formula, but a direct quadratic translation from LITLR®?[<, S
generalizing the one in [Shah07] can also be worked out.isnpidwper, Theorem 5 will
show that we can go froi0?[<, S to LITL.

3 Games and expressiveness

We now investigate the expressivenes§0Ff[<, S with respect to the dot-depth hier-
archy. Since a successor predicate can be replacedviith an additional nesting of a
quantifier, we get thafO?[<, S C Ag[<].

Theorem 4. (i) MNy[<] Z FO?[<,9
(i) Z2[<]Z FO?[<,9
(i) FO?[<,§ ¢ B(Z2)[<]

To prove the above results, we use EhrenfeuchitsBajames [Fra50,Ehr61]. The
signature has unary predicai®g, Qp, Q; and < andSare the binary predicates, with
their usual definitions. LeBigbe a signature, andl v be two word structures ovéig
An EF gameG(u,V, p,r) is a game played by 2 players, tBgoilerandDuplicator,
over the word models,v. A play of the game has rounds with each player playing
p pebbles. The pebbles are colored witkifferent colors, each player having exactly
one pebble of each color.

In each round th&poiler picks (any) one of the words, and places pipeb-
bles on it. TheDuplicator then places his correspondipgebbles on the other word.
Duplicator wins the game if at the end ofrounds there exists a partial isomorphism
between the pebble positions, with respect to all the m@iatdbfSig Note that this can
only happen if each of the intermediate configurations is algartial isomorphism.
Weis and Immerman [WI07] proved the following version of ther&hfeucht-Frisse
theorem.

Definition 3. Two words wv are said to be FO?[<, § equivalentf for any FO?[<, S
formula@with quantifier depth< r, u = @< v = @, and pB(Z,)[<] equivalentf for
any B(Z)[<] formulagwith < p variables, U= @< v = @.

Lemma 4. (a) Two word models,w over the signaturé<, § are r-FO?[<, § equiva-
lent iff for the game @u,V,2,r), the Duplicator always has a winning strategy.

(b) Two word models,w over the signaturg<] are p-B(Z2)[<] equivalent iff for the
game Gu,v, p,2), the Duplicator always has a winning strategy.



Proof (of Theorem 4)We note that sinc§Oz[<,S] is a boolean closed logic, (i) of
the theorem will imply (ii) (or vice versa). We consider werdver the alphabet =
{a,b,c} described by a conjungiy = Vx(Qa(X) V Qp(X) V Qc(X)).
(i) We consider the languadac*bc*)*. This language may be expressed by the con-
juncts below giving d1;[<] formula:
IX(VY(y <x=x=Y)) = Qa(X)
Vx3AY(Qu(y) A (X >y = Qe(X)))
VXYY((Qa(X) AQa(y) AX<Y) = (Fz(x<z<yAQp(2)))) and
Px7Y((Qu(X) A Qo(y) AX < Y) = (32(x < 2< YA Qa(2))))

For some > 0, consider two word models over the signatjxeS]:
u: (adbc)?, andv: (ac’bc ) bd (acbd )"
Here,u € (ac'bc’)* andv ¢ (ac'bc)*. We can show that for any 2-pebble, r-round EF
gameG(u,v,2,r), theDuplicator always has a winning strategy, and hence arer-
FO?[<, S equivalent. This is evident from the observation that the tis in v that do
not have ara between them are separatedrhys and hence can be duplicated by the
rth bd in u. Itis straightforward to see that any of the movesasror b's by theS poiler
can2 be duplicated in the other word. So the langu@gébc*)* cannot be expressed in
FO7[<,S.
(i) We show that the language given by the LITL formgta(TF,pT))Faa T is not
definable inB(X,)[<]. Over the signaturg<], we first claim that no formula using less
thanp variables can distinguish in one round between the words(ab)Pbb(ab)Paa(ab)P
andv; = (ab)Paa(ab)Pbb(ab)P. This is because any subsequence of length one
word can be matched in the other word.

Now consider the pair of wordg, = uf andv, = vf formed by takingp copies of
the earlier ones. Now any placementmpebbles in one word can be matched in the
other word so that the subwords of length at mpst2 between any two pebbles (or a
pebble and an end of the word) are the same. This means that&aphas a winning
strategy for the second round as well.

Since for evenyp, the first wordus is not in the language given By ( TFyp T))Faa T
and the second worng is in the language, this shows that @B ,)[<] formula (using,
say, p variables) fails to define the language. ad

3.1 Using unambiguity on Rhodes-Straubing expansions

We now show that the expressivenes&6F|<, S is no more than that of LITL. Since
the proofs of the lemmas are refinements of those in [TW98}, &ne omitted here. Let
RS be the set of all words obtained as Rhodes-Strautiegpansions (see Definition
1) of words overA, i.e. IetRS = (A*)f. Our use of it is reminiscent of théle of
Dyck languages in CFLs.

Lemma 5. If alanguage L is defined by an FQx, § sentence with at most r quantifier
alternations and upto d successor formulas, then its d-esijoa LS is the intersection
of RS with a language definable by a sentence of?RQ with at most r quantifier
alternations.

The letters occurring in a word (more generally, in a set of words) are called its
content. We will use||x|| to denote the size of the content)oflf the letterais in ||x|,



theleft a-chop of x is vawwherex = viaw anda s not in the content of; (not in ithe
content ofv,, respectively, for aight a-chop).

Definition 4 (Thérien and Wilke). Let n> ||x,y||. Any two words x and y are said to be
n, 0-equivalent. Two words x and y arelk- 1-equivalenif they have the same content
and for every letter a in the content, if their left a-chops agaxy, y1ay, respectively,
then % and y are n— 1, k+ 1-equivalent and xand y, are n k-equivalent, as well as
a symmetric condition for right chops. Thekrchoppable languages are those which
are a union of nk-equivalence classes. Thaambiguously choppable languages are
those which are rk-choppable for some k > 0.

The next result combines the earlier proposition with tiseiiteof Therien and Wilke
[TW98] that anFO?[<]-definable language is unambiguously choppable.

Corollary 2. Ifalanguage L is defined by an BQ<, § sentence with upto d successor
formulas, then its d-expansiorﬁlis the intersection of RSwith an unambiguously
choppable language.

We now traverse the path back to our logic LITL.
Theorem 5. The languages defined by sentences of[FQS can be defined in LITL.

Proof. From Corollary 2, we know that for aRO?[<, §-definable languagk (using
d successors) over the alphalketits Rhodes-Straubind-expansionLP C RS is un-
ambiguously choppable over the alphab#t)2d+1. We construct LITL formulae for
{w|wP € CP} and for eacm,k-equivalence clas8f C LP, by induction onn andk.
Taking the disjunction of the formulae for the finitely mamuésalence classes saturat-
ing LP gives an LITL formula forl.

For the base case, am0-equivalence class determines a contwuff letters over
(A)24+1 The language recognized by words which map to this equicalelass ig*,
defined by the intersection below. Althoug is a language ovefA')24*1, the LITL
formula is over the alphabe since existence of a letterav in wP is equivalent to
validatingw = trueRatrue.

— For lookaroundsiav € (A')24+1\ Bwithout padding, the conjunct is(trueR s true).
— Fors'aubv € (A')?+1\ Bwherei > 0 andjau| +i = d, the conjunct is+(ptRaumtrue).
— Foruavhd' € (A')29+1\ Bwherei > 0 and|vb| +i = d, the conjunct is-(trueLyaypt).

For the induction step, amk+ 1-equivalence class determines a conias well
as a set of left and righti-chops fora € B. The required formula for an,k + 1-
equivalence class is given by the following intersectiohere in both cases we go
through the endmarker analysis above and shift positioe@sned.

— FormulaeD1FyD, (D}LyD5, respectively) and all allowed left (right, resm}
chops, where the lookaroundsange over the content.
— Negations of such formulae for tlechops in(A')24+1 which are not allowed.

The formulaeD1, Dy, D/, D5 for n,k-classes over conteBtand forn— 1,k + 1-classes
over contenB\ {a} are obtained from the induction hypothesis. Consider fstaince
that xP = vPawP is a left a-chop over a Rhodes-Straubing expansion. The induction
hypothesis gives us = D; andw = D, and so we have = D1FqD> usinga as a
lookaround rather than a letter. ad



References

[DGKO8]
[ENr61]
[EWO00]
[EVWO2]
[Fra50]
[Imm98]
[KWO09]
[LPSO08]

[LTOO]

[Mor75]
[MWO5]

[Ping6]
[PW97]

[Sch76]
[STVO02]
[Shah07]
[SPO9]
[Str85]

[TTO2]

[TW98]

[Tho82]
[Til76]

[WI07]

V. Diekert, P. Gastin and M. Kufleitner. A survey on small fragments of first-order logic
over finite words/nt. J. Found. Comp. S¢il9(3), 2008, 513-548.

A. Ehrenfeucht. An application of games to the completeness problem for formalized
theories Fund. Math49, 1961, 129-141.

K. Etessami and T. Wilke. An until hierarchy and other applications of an Ehrenfeucht-
Frais€ game for temporal logidnf. Comput.160, 2000, 88—108.

K. Etessami, M.Y. Vardi and T. Wilke. First-order logic with two variables and unary
temporal logic/nf. Comput.179, 2002, 279-295.

R. Fraissé. Sur une nouvelle classification des §yses de relationsCompt. Rend.
230, 1950, 1022—-1024.

N. Immerman. Descriptive complexitySpringer, 1998).

M. Kufleitner and P. Weil. OnFO? quantifier alternation over wordByoc. 34th MFC$
Novy Smokovec, R. Kralovi¢ and D. Niwihski, eds.),LNCS 5734 (Springer, 2009),
513-524.

K. Lodaya, P.K. Pandya and S.S. Shah. Marking the chops: an unambiguous temporal
logic, Proc. 5th IFIP TCSMilano (G. Ausiello, J. Karhuméki, G. Mauri and L. Ong,
eds.),IFIP Serie273 (Springer, 2008), 461-476.

C. Loding and W. Thomas. Alternating automata and logics over infinite worBgoc.
3rd IFIP TCS Sendai . van Leeuwen, O. Watanabe, M. Hagiya, P.D. Mosses, T. Ito,
eds.),LNCS 1872, 2000, 521-535.

M. Mortimer. On language with two variablegeit. Math. Log. Grund. Math21,
1975, 135-140.

A. Muscholl and I. Walukiewicz. An NP-complete fragment dfTL, Int. J. Found.
Comp. Scil6(4), 2005, 743-754.

J.-E. Pin. Varieties of formal languag€North Oxford, 1986).

J.-E. Pin and P. Weil. Polynomial closure and unambiguous produtsgory Comput.
Syst.30, 1997, 383—-422.

M.-P. Schiitzenberger. Sur le produit de concahation non ambigu§emigroup Forum
13,1976, 47-75.

T. Schwentick, D. Thérien and H. Vollmer. Partially-ordered two-way automata: a new
characterization of DAProc. 5th DLT 01 Vienna V. Kuich, G. Rozenberg and

A. Salomaa, eds.),LNCS 2295, 2002, 239-250.

S.S. Shah. FO? and related logics, Master's thesis (TIFR, 2007).

S.S. Shah and PK. Pandya, An automaton normal form for UITL, Technical Report
STCS-TR-SP-2009/1 (Computer Science Group, TIFR, 2009).

H. Straubing. Finite semigroup varieties of the form V*DJ. Pure Appl. Algebra
36(1), 1985, 53-94.

P. Tesson and D. Thérien. Diamonds are forever: the variety DSemigroups, al-
gorithms, automata and languagés.M.S. Gomes, P.V. Silva and J.-E. Pin, eds.),
(World Scientific, 2002), 475-500.

D. Thérien and T. Wilke. Over words, two variables are as powerful as one quantifier
alternationFO? = 5, N MMy, Proc. 30th STOCDallas, 1998, 41-47.

W. Thomas. Classifying regular events in symbolic logit;SS25(3), 1982, 360-376.
B. Tilson. Complexity of semigroups and morphisms, Chapter XlI®:fEilenberg,
Automata, languages and machirigAcademic Press, 1976).

P. Weis and N. Immerman. Structure theorem and strict alternation hierarchyo?
onwordsProc. CSl, LausanneJ Duparc and T. Henzinger, eds.) LNCS 4646, 2007,
343-357.



