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Abstract

We define a model of labelled product systems of automata
and explore its connections with process calculi and trace
languages. Bisimilarity of labelled product systems is de-
fined using a new definition of bisimulation with renam-
ing. Concurrent µ-expressions are defined to describe la-
belled product systems. This leads to complete axiomati-
zations and algorithms for bisimulation and failure equiva-
lence over labelled product systems, and for equality over
recognizable trace languages.

Process algebra is a large enough field of research to have
come out with its own handbook [8], but does not have the
wide applicability that a field like automata theory does.
Valmari [40] points out that ideas from process algebra can
usefully be applied to verification using automata theory.
Since there are a few textbooks [4, 36, 14], several mono-
graphs (with illustrious authors like Hoare [18] and Milner
[28]) and a fine Turing award lecture by Milner [29], that
this does not commonly happen seems a bit surprising.

One reason could be the lack of comunication between
the two communities. Way back in 1984, Milner considered
the behaviour of finite automata upto Park bisimilarity [34]
rather than the more usual language acceptance, and pro-
vided an inference system which was sound and complete
[27]. There have been axiomatizations of finite-state pro-
cesses thereafter (see the recent [3], for example), but it is
difficult to see how to use them in applications.

To take an example, it is not obvious that if one ex-
tends Milner’s axiomatization with the characteristic ax-
ioms of failure equivalence [10] (which axiomatize finite
processes rather than finite-state ones), one gets a complete
axiomatization for failure equivalence of finite automata. It
is certainly possible to extract such a completeness proof
if one digs through Roscoe’s book [36], but to the not so
diligent reader, it isn’t clear that the laws in the book, de-
signed for the semantic treatment of deadlocks in general,
lead to an algorithm for detecting deadlocks in systems of
communicating automata.

The automata theorists are far from blemishless. They
have little patience for the elaborate spectrum of equiva-
lences for process calculi [16] and they are more interested
in working with a basic formalism and attacking expres-
siveness and decidability questions. Looking at The book of
traces [12], it is difficult to figure out that it has something
to say about systems of communicating automata. (In our
library, this book is classified under physics, which shows
how much we fail to tell even professionals in the business
of information.)

0.1 Summary

We work in the setting of axiomatizations of automaton be-
haviour, with the (wistful?) aim of retaining both audiences.
We start with a simple communicating automaton model fa-
miliar to implementors, labelled product systems. Val-
mari’s systems of co-operating automata [40] are close, but
our model arose in the world of Mazurkiewicz traces [25]
and is inspired by the asynchronous automata defined by
Zielonka [41], and their local presentations by Mohalik
and Ramanujam [31]. We define bisimulation with renam-
ing over (ordinary) automata and use this to define system
bisimilarity over their labelled products. We give a syntax
which is as expressive as the automata. A simple exten-
sion of Milner’s completeness proof [27] gives an axiom-
atization for system bisimilarity of finite labelled product
systems. Since Milner’s proof is a refinement of Salomaa’s
completeness proof for equality of regular languages, we
now work backwards and get an axiomatization for equal-
ity of finite-state trace languages. We also have that system
bisimilarity and failure equivalence are decidable for finite
labelled product systems, and language equivalence is de-
cidable for our expressions. It does not need completeness
proofs to see this, but the proofs are appealingly simple.
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1 Automata, products and labelling

Fix a finite set of locations Loc. Let B be a finite alphabet,
and loc : B → ℘(Loc) map each action to the locations it
is executed in. We wish to define systems of automata at
these locations, with synchronization actions (those c with
|loc(c)| > 1) as the medium of communication, as is com-
mon in process calculi. There is a variety of ways to do this;
here is what suits us.

Definition 1 A rendezvous alphabet (B, loc, 0, |) over Loc
consists of a finite alphabet B containing 0, loc : B →
℘(Loc) a function and | : B × B → B a Loc-respecting
function, that is, satisfying the properties below.

• | is commutative and associative with 0 an absorbing
element.

• loc(0) = ∅ and loc−1(∅) = {0}.

• If r = loc(a) and s = loc(b) are not disjoint, then
a|b = 0.

• If r = loc(a) and s = loc(b) are disjoint and a|b 6= 0
then loc(a|b) = r ∪ s.

• If loc(c) = r ∪ s for disjoint nonempty r and s then
there exist a with loc(a) = r and b with loc(b) = s
such that c = a|b.

We can think of the actions in B with a single location
as the local actions, 0 a dummy action representing lack
of communication, and the rest as a rendezvous structure
of synchronized actions built up from local ones using the
function |. We call a nonzero action a global if for every
b, a|b = 0. Thus a global action is either a local action
which does not rendezvous at all, or a “full” synchroniza-
tion, say a1|a2|a3| . . . |ak, whose “partial” subsets (such as
a3, a1|ak, a2|a3|ak) are not global since further rendezvous
can be carried out. We call these partial synchronizations
rendezvous actions.

Having set our alphabets in order, we are now ready for
the basic objects of study in this paper, product systems. We
will later generalize these to labelled product systems.

Definition 2 Let Bi
def
= {a ∈ B | i ∈ loc(a)}. A

product system of automata over the rendezvous alphabet
(B, loc, 0, |) is given by automata Mi = (Pi,→i, p

i
0) over

the alphabet Bi, for each i in Loc, together with a set of
global final states F ⊆ Πi∈LocPi.
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Figure 1. A product system

As usual Pi is a finite set of states, →i the transition rela-
tion and pi

0 the initial state. The figure shows a simple ATM-
bank example. atm and bank are the local initial states, say
at locations 1 and 2. {atm, bank} is the only global fi-
nal state. The nonzero rendezvouses are s = show|chbal,
d = draw|chbal, c = cash|okay and e = error|no.
loc(s) = loc(d) = loc(c) = loc(e) = {1, 2}.

Let G(B) be the global actions in B. A product sys-
tem runs on a word w over G(B), that is, the rendezvous
structure used to generate a synchronization letter is seen as
invisible detail. A run assigns global states Πi∈LocPi to pre-
fixes of w: the empty word is assigned the product formed
from the local initial states, and for every prefix va of w, if
Πi∈Locpi is the global state reached after v, then the state
Πi∈Locqi reached after va satisfies, for every j ∈ loc(a),
pj

a
→iqj in Mi, and for every other j, pj = qj . Thus every

action transforms the states of the locations it affects, the
other states remaining fixed. The run accepts the word if it
ends in a final state in F .

The word s · ticket ·d · c ·s · ticket ·d ·e has an accepting
run in the example.

Since a product system can be simulated by a finite au-
tomaton over the alphabet G(B), its accepted language is
regular. Our product systems are named “extended prod-
uct systems” in Mohalik’s thesis [30] and they are shown to
accept the boolean closure of the regular shuffle languages.
We shorten this name and call the class recognizable shuf-
fle languages. The thesis contains a nice overview of prop-
erties of this class.

We will use two formal models of concurrent behaviour.
The first one is that of Mazurkiewicz trace languages [25],
an extension of the classical notion of languages associated



with automata. Later we will use the more refined notion
of bisimilarity, which is commonly used in process algebra.
We will also make some comments about the intermediate
failure model of [10].

1.1 Mazurkiewicz traces

Let I be an irreflexive symmetric relation over B called in-
dependence defined by aIb if loc(a) and loc(b) are dis-
joint. Let its reflexive transitive closure on B∗ be ∼I , called
trace congruence. For instance, if aIb then wabx ∼I

wbax (a and b commute).

Notice that if a product system has a run (or an accept-
ing run) on a word wabx and aIb, then it has a run (resp.
an accepting run) on the word wbax as well. Hence a rec-
ognizable shuffle language is a recognizable trace language
over (G(B), I) in the sense of Mazurkiewicz [25]. Zielonka
showed that the converse is not true [41].

Intuitively, the global actions are those that are “visible”
at the level of the product automaton, but since CCS has an
alternate approach of making the outcome of a rendezvous
“invisible” by renaming it to τ [28], we leave visibility of
alphabet letters as an orthogonal decision. To implement
this idea, we will now further rename the global actions to
get the visible ones.

Definition 3 A renaming between rendezvous alphabets is
a relation which is Loc-respecting and |-stable: that is, if
aρb then loc(a) = loc(b), and if cρd as well, (a|c)ρ(b|d).

Let ρ be an equivalence relation over a rendezvous
alphabet (B, loc, 0, |) which is a renaming. C =
(G(B)/ρ, loc) is called a distributed alphabet where

loc([a])
def
= loc(a) is well defined by the properties of

ρ.

A labelled product system of automata M [ρ] over
the distributed alphabet is a product system M over the
rendezvous alphabet together with the labelling function
ρ(a) = [a].

For example, in the automaton in the figure, if we set
(cash|okay) ρ (error|no) and label the equivalence class
null, the product has become nondeterministic.1 The word
s·ticket·d·null·s·ticket·d·null is accepted by the labelled
product, but we have lost the information whether cash was
provided each time a drawing action was performed.

Let ρ(w) be the homomorphic extension to w ∈ C∗. If
a product system M accepts the language L ⊂ G(B)∗, we

1This example was motivated by real life: my bank’s employees were
on strike and some ATMs were offering a null action!

say the labelled product system M [ρ] accepts the language
ρ(L) ⊂ C∗.

Let I be the independence relation over B above ex-
tended to C. Using the properties of ρ, the languages ac-
cepted by labelled product automata continue to be recog-
nizable trace languages over (C, I). But they need no longer
be recognizable shuffle languages.

Theorem 4 Every recognizable trace language is accepted
by a labelled product system.

Proof. The proof is essentially the same as that of Mohalik
and Ramanujam [31]. Every recognizable trace language
is accepted by a Zielonka automaton [41]. Break up each
synchronizing transition t ∈→a of such an automaton into
local transitions t1, . . . , tl, and put all pairs t1|...|tl into the
equivalence class a. 2

Zielonka defined his automata to characterize the recog-
nizable trace languages [41]. They have distributed transi-
tions, which makes them difficult to implement. Mukund
and Sohoni [32] performed a detailed analysis of the com-
municated information and arrived at the gossip informa-
tion which is needed to distribute the transitions into local
ones. This was used to upper bound the complexity of de-
terminization [21]. Mohalik and Ramanujam [31] made the
gossip information static by moving it into an “assumption-
commitment” structure in the rendezvous alphabet.

Our notion of labelling further coarsens these analy-
ses. It is well known in formal language theory that non-
injective letter-to-letter substitution is a powerful operation.
The price to be paid in using it is a weakening of determin-
ism. For example, in the automaton in the figure, if we set
cash|okay = error|no = null, the product has become
nondeterministic.

One can easily make the local automata deterministic,
but since the global labelling of the product can collapse two
actions into one letter, how is that action to be implemented
deterministically in a local manner? We do not have any
easy solutions to offer.

2 Bisimulations, renaming and systems

The branching behaviour of an automaton is its unfolding
as a (possibly infinite) tree from its initial state. Each path
from the initial state ending in a state q (call it a q-path)
is a node of the tree, and a transition (q, a, q′) contributes
an a-labelled edge from this node to the node obtained by
extending the path with this transition to the longer q′-path
ending in state q′. The empty path yields the root node. For
convenience, we assume all states are final.
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Figure 2. A product tree

Since this is too detailed a description, the unfolding is
quotiented by a standard equivalence such as Park bisim-
ilarity [34]. There is a Park bisimulation between an au-
tomaton and its unfolding: each state q of the automaton
is in bisimulation with the nodes which are q-paths. For a
finite automaton, this bisimulation has finite index.

Milner showed that the syntax of regular expressions is
not adequate for describing finite automata upto bisimilarity
[27]. Instead, he used Chomsky’s type 3 grammars where
one works with a system of µ-expressions. If the equations
are guarded,2 the expression µx.e denotes the unique solu-
tion for the equation x = e. Formally, this can be defined
using certain idempotent µ-groves [5, 13, 23], over which
such solutions were shown to exist by Bergstra and Klop
[6]. Here we just give Milner’s axiomatization.

Axiom system M for Park bisimilarity
(Assoc) (e + f) + g = e + (f + g)
(Comm) e + f = f + e
(Idem) e + e = e
(Ident) e + 0 = e
(Assoc) (ef)g = e(fg)
(LeftAbs) 0e = 0
(RightDistr) (e + f)g = eg + fg
(Guard) µx.e = µx.(x + e)
(Fixpt) µx.e = e[µx.e/x]

(GuardInd)
f = e[f/x]

f = µx.e
(provided x guarded in e)

2One of the referees suggested using a more modern treatment like
Kleene algebra [22] for a universal Horn axiomatization.

2.1 Unfoldings of product systems

Trees are the yardstick for measuring branching behaviour.
The definition below is a variant of the more general defini-
tion of systems of communicating agents [24].

Definition 5 A product tree T = (N, dist, {Ha | a ∈ C})
over the distributed alphabet (C, loc) is a bounded-degree
directed hypergraph with nodes labelled by dist : N →
Loc and hyperedges Ha labelled by a ∈ C, satisfying the
conditions below. Let Ti

def
= (dist−1(i), Hi

a) be the di-
rected graph with the edge relation uH i

av iff u is a source
and v a target of a hyperedge in Ha.

• Each a-hyperedge has exactly one source node and one
target node labelled by a location in loc(a).

• Each Ti is a tree.

Basically a product tree is |Loc| trees connected up by
“synchronization” hyperedges. It is not difficult to see that
the unfolding of a product system will be a product tree U
with each Ui having q-paths as nodes for states q of the i’th
automaton, a set of such nodes q1, . . . , ql in different com-
ponent trees being taken by an [a1| . . . |al]-labelled hyper-
edge to the set of nodes q′1, . . . , q

′
l when there are transitions

(qi, ai, q
′
i) in the component automata. The figure shows the

initial part of the unfolding of our example product system.

While this is sufficient, it is again too detailed. So we
need to quotient it by a suitable equivalence.

One of the characteristics of Park bisimilarity is that it
preserves language equivalence. Since there are several dif-
ferent alphabets at play, we need a more flexible version
here. We use a mild generalization which allows renam-
ing and collapses to the usual definition when the alphabets
are the same and the renaming is the identity function. A
more sophisticated kind of renaming bisimulation is used
by Kiehn and Arun-Kumar [20], in a different context.

Definition 6 A renaming bisimulation (R, ρ) between two
automata (Pi,→i, pi), i = 1, 2 with edges labelled by al-
phabets B1 and B2 respectively, is a relation R ⊆ P1 × P2

with a renaming ρ such that:

• The initial state p1 is related by R to p2.

• If pRq and p
a
→1p

′ in P1, then there are b, q′ such that
aρb and q

b
→2q

′ in P2 and p′Rq′.

• Symmetrically, if pRq and q
b
→2q

′ in P2, then there are
a, p′ such that aρb and p

a
→1p

′ in P1 and p′Rq′.



Now we can define our notion of branching behaviour.

Definition 7 Let M1[ρ1],M
2[ρ2] be product systems over

the alphabets G(B1), G(B2) respectively, with the la-
bellings ρ1, ρ2 taking these alphabets to the distributed al-
phabet (C, loc). The product systems are said to be system
bisimilar if there are renaming bisimulations between pairs
of local automata M1

i ,M2
i over the alphabets B1

i , B2
i re-

spectively, for each i in Loc.

A product system M = (Pi,→i, pi), i ∈ Loc, is system
bisimilar to its product tree unfolding U (a product tree is
also a product system, possibly an infinite state one) given
by the renaming bisimulations between the automata Pi and
the trees Ui, which take states q to nodes corresponding to
q-paths. This sanity check confirms that system bisimilarity
nicely generalizes Park bisimilarity over ordinary automata.

2.2 Syntax for labelled product systems

We now turn to syntax. A straightforward extension of Mil-
ner’s syntax is sufficient for our purposes.

Definition 8 Concurrent µ-terms over the distributed al-
phabet C = (G(B)/ρ, loc) are defined as below by be-
ginning with Milner’s µ-expressions, and allowing a single
level each of parallel composition and renaming (letter-to-
letter substitution). Concurrent µ-expressions are a little
more general.

r ::= 0 | X | a · r1 | r1 + r2 | µX.r1

p ::= r | p1||p2

t ::= p | t[c/b]
e ::= t | a · t | e1 + e2

The µ-expressions r are over the action alphabet G(B).
The substitutions rename a letter b in G(B) to a letter c in
C. The metavariables t and e define the concurrent µ-terms
and concurrent µ-expressions respectively.

Our basic syntax to match labelled product systems are
the concurrent µ-terms. The concurrent µ-expressions are
intermediate forms which arise in the axiomatization which
comes a little later below.

Milner’s inductive Kleene-like construction [27] gives a
finite automaton M(ri) for µ-expressions ri. To add on
parallel composition for the term r1|| . . . ||rn we first set
Loc = {1, . . . , n} and define a loc function mapping let-
ters of the alphabet according to the expressions in which
they occur. For each letter a occurring in more than one

expression, we define a| . . . |a = a in the rendezvous struc-
ture. Putting together the individual automata gives a prod-
uct system M . Now for each substitution [b/a] we set aρb
in a renaming ρ, to get a labelled product system M [ρ].

For the converse direction, we use closed concurrent µ-
terms (those with no free variables).

Theorem 9 Closed concurrent µ-terms describe the be-
haviour of labelled product systems upto system bisimilar-
ity.

Proof. Let the automata Mi = (Pi,→i, pi), i ∈ Loc form
a labelled product system M [ρ] over (C, loc). From Mil-
ner’s proof [27], we have a closed µ-expression ei such that
M(ei) is Park bisimilar to Mi for each i ∈ Loc. For each
global action a1| . . . |al in the rendezvous structure, we re-
place the letters a1, . . . , al in the expressions by a fresh let-
ter b to get a new expression e′i with M(e′i) renaming bisim-
ilar to Mi. The product M is system bisimilar to the parallel
composition of the expressions e′i. For each ρ-equivalence
class of a global action c ∈ C we add the substitution [c/b]
for each b in the equivalence class. Let σ1, . . . , σm be all
the substitutions. (e′1|| . . . ||e

′
n)[σ1] . . . [σm] is the desired

concurrent µ-term e with M(e) system bisimilar to M [ρ].
2

2.3 System bisimilarity and failures

By adding Milner’s expansion axiom [28] to the theory
of Park bisimilarity, we reduce parallel composition to sum
and axiomatize system bisimilarity over finite product sys-
tems. The axiom system below (using the broader syntax of
concurrent µ-expressions) can derive associativity and com-
mutativity of parallel composition.

Axioms MS for system bisimilarity
(M) All valid equalities of M
(Subst) a[σ] = σ(a)
(Comp) e[σ1][σ2] = e[σ1 ◦ σ2]

(Expan) Let p =
∑

i

aipi +
∑

j

cjp
′
j

and q =
∑

k

bkqk +
∑

l

clq
′
l,

with the ai, bk local actions which are global,
and the cj , cl local actions which rendezvous.
Then:
(p||q)[σ] =

∑

i

ai((pi||q)[σ]

+
∑

k

bk((p||qk)[σ])

+
∑

cj |cl=cjl 6=0

cjl[σ](p′j ||q
′
l)[σ]



Theorem 10 The axiom system MS over closed concurrent
µ-terms is sound and complete for system bisimilarity of
finite labelled product systems.

Proof. Soundness of the expansion axiom follows from the
definition of system bisimilarity. The completeness tech-
nique is a well-known extension of [1, 37] to process calculi
[27]. We sketch the completeness proof.

Let the closed concurrent µ-terms e and f over (C, loc)
denote bisimilar systems M(e),M(f). The syntax does not
allow || to occur within µ-terms, so the axioms of µ-groves
can be applied to reduce each µ-term in e and f to a sum of
concatenation form, where each concatenation is a guarded
prefix, that is, the left hand term of the concatenation is a
single action and the right hand term (called a derivative)
is a closed concurrent µ-term. At the outer level, the com-
position axiom is used to make one renaming out of all the
substitutions. Now the expansion axiom, followed by the
substitution axiom if necessary, can be applied to reduce
the parallel composition of a guarded sum of prefixes to a
guarded sum of prefix form. Hence e and f are both reduced
to guarded sum of prefix form which is a closed concurrent
µ-expression.

By using additional equations if necessary, the deriva-
tive can be replaced by a variable. Since the bisimulation
is of finite index, only finitely many new equations need
to be added. In fact, the number of equations needed is
polynomial in e and f , with the degree of the polynomial
the number of parallel operators, which is upper bounded
by the alphabet size, a constant. As the pairs of automata
are Park bisimilar, the summands with their prefixes must
match, and equality is derivable. 2

Further, as shown in [16], other weaker equivalences
such as failure equivalence [10] can be axiomatized by
adding a few characteristic axioms.3

Axioms FMS for failure equivalence
(MS) All valid MS equalities
(F1) a(bx + u) + a(by + v) = a(bx + by + u) + a(by + v)
(F2) ax + a(y + z) = ax + a(x + y) + a(y + z)

Corollary 11 The axiom system FMS over concurrent µ-
terms is sound and complete for failure equivalence of finite
labelled product systems.

Proof. For completeness, after applying the expansion and
renaming axioms and reducing to a sum of prefixes, a graph
saturation procedure corresponding to the two failure ax-
ioms above is applied [7] to get a stronger normal form from
which equality is derivable. 2

3As pointed out by a referee, this is failure equivalence restricted to
processes without any hiding operator or τ actions.

As argued by Kanellakis and Smolka [19], bisimilarity
can be checked using a polynomial time partition refine-
ment algorithm. This result extends to system bisimilarity.

Theorem 12 System bisimilarity of finite labelled product
systems can be checked in polynomial time.

Proof. The partition algorithms can be run for each of the
local automata with the renaming. The size of the prod-
uct system is the sum of the sizes of a constant number of
local automata and a labelling which is upper bounded by
a constant, both constants depending on the alphabet. The
number of global states of the product system is polynomial,
with the degree of the polynomial again depending on the
alphabet. Hence the algorithms work in polynomial time.
2

Corollary 13 Failure equivalence of finite labelled product
systems over a distributed alphabet (C, loc) with |C| ≥ 2 is
complete for polynomial space.

Proof. To the system bisimilarity algorithm, the graph sat-
uration procedure of [7] can be added to give a polynomial
space algorithm. Checking failure equivalence for automata
over alphabets of size at least 2 is already hard for polyno-
mial space [19]. 2

The gist of what we have done so far is that the en-
tire framework of calculi over finite-state processes extends
smoothly from ordinary finite automata to finite labelled
product systems. The weakening of determinism that we
discussed earlier does not affect the theory of bisimilarity
since determinism is not its primary concern. This has been
known for some time, but the explicit connection to product
systems made here is new.

We now take a step back to language theory, and obtain
an equational theory for recognizable trace languages.

3 Mazurkiewicz trace languages

Aanderaa [1] and Salomaa [37] gave the axiomatization
below for equality of regular languages using the “no empty
word property” (NEWP). This is a syntactically checkable
condition equivalent to a 6= 1 + a.4 The main change from
our earlier axiom system M is the addition of left distribu-
tivity and right absorption. Completeness is proved by re-
ducing to isomorphism over the minimal deterministic finite
automaton.

4As pointed out by a referee, a more modern treatment uses a universal
Horn axiomatization and the theory of Kleene algebras [22], which we
do not go into here.



Axiom system R for regular expressions
(Assoc) (e + f) + g = e + (f + g)
(Ident) e + 0 = e
(Comm) e + f = f + e
(Idem) e + e = e
(Assoc) (ef)g = e(fg)
(Ident) e1 = 1e = e
(Absorp) e0 = 0e = 0
(Distr) (e + f)g = eg + fg
(Distr) e(f + g) = ef + eg
(Guard) e∗ = (1 + e)∗

(Fixpt) e∗ = 1 + ee∗

(Fixpt) e∗ = 1 + e∗e
(GuardInd) Let e have the NEWP. Then:

x = ex + f

x = e∗f
;

x = xe + f

x = fe∗

3.1 Syntax for recognizable trace lan-
guages

We extend regular expressions to trace languages by adding
synchronized shuffle and renaming operators as before; we
also need to add union at the outer level since we have to
deal with final states, which we had omitted for convenience
from our systems so far.

Definition 14 (Grabowski; Garg and Ragunath)
Concurrent regular terms and concurrent regular expres-
sions over the distributed alphabet C = (G(B)/ρ, loc) are
defined as below. The regular expressions r are over the
action alphabet G(B). The substitutions substitute a letter
c in C for a letter b in G(B). The metavariables t and e
define the concurrent regular terms and concurrent regular
expressions respectively.

r ::= 0 | 1 | a | r1 · r2 | r1 + r2 | r∗1
p ::= r | p1||p2

s ::= p | s1 + s2

t ::= s | t1[c/b]
e ::= t | a · t | e1 + e2

Since regular expressions and finite automata define the
regular languages over G(B), the parallel composition, sum
and substitution ensure that concurrent regular expressions
and finite labelled product systems with final states and re-
naming define the same trace languages. By Theorem 4
these are the recognizable trace languages. (The theorem
does not hold for labelled product systems without global
final states.)

Ochmański defined a syntax for recognizable trace lan-
guages several years ago [33]. Our new syntax is equivalent,
but matches labelled product systems rather directly.

The axiom system RS for regular expressions with shuf-
fle and renaming is defined by adding axioms to the system
R above exactly as the system MS was defined by adding
axioms to the system M. Hence we obtain an axiomatization
of the equational theory of recognizable trace languages,
which was not known earlier.

Theorem 15 The axiom system RS over concurrent regular
terms is sound and complete for equality of recognizable
trace languages.

Proof. Left-distributivity, right-zero and the star axioms
can be seen to be sound for regular languages. For com-
pleteness, as in the completeness proof of MS (Theorem
10), the substitution and expansion axioms are applied to
reduce terms to guarded sum of prefix form. Because of
left-distributivity we have a stronger normal form with the
additional property that there is at most one summand for
every prefix action. As in the completeness of equality
for regular languages [1, 37], again variables can be used
for derivatives to get a finite system of equations, with the
guardedness ensuring the NEWP for each equation, and the
induction rule of R applied to yield a derivation of equality.
2

The equational theory of the larger class of rational trace
languages is undecidable under fairly mild conditions (see
[9] for a survey). It is not even known to be computably enu-
merable [23]. The recognizable trace languages accepted
by our finite labelled product systems are included in the
unambiguous rational trace languages for which equiva-
lence is decidable [9]. This result is strengthened below by
suitably modifying the algorithm for system bisimulation to
provide one for trace language equivalence.

Theorem 16 Trace language equivalence of finite labelled
product systems over a distributed alphabet (C, loc) with
|C| ≥ 2 is complete for polynomial space.

Proof. As argued in the proof for bisimulation equivalence
(Theorem 12), the number of global states of the product
system is polynomial in its size. From the fact that there
is a polynomial space algorithm for equality of regular lan-
guages, we can put together a nondeterministic polynomial
space algorithm, which is polynomial space by Savitch’s
theorem. For the lower bound, that the language equiva-
lence of NFA for an alphabet of size 2 is hard for polyno-
mial space is a classical result [39]. 2

By treating the number of components as a constant, the
state space of a labelled product system is polynomial in
its size. So the upper bound in the theorem above could
have been easily obtained, but we have not seen it anywhere
earlier.



4 Remarks

We believe the key idea of separating out bisimulation at
the component and system levels has applications to formal
methods. Current verification technology seems to manage
quite well with polynomial space algorithms.

There are a few immediate directions for future work.
We have not considered silent (epsilon- or tau-) actions at
all. Technically, the extension to weak bisimilarity is not
difficult. By allowing a rendezvous structure which allows
renaming to τ we can model the hiding operator of CSP [18]
as well as the semantics of CCS synchronization [28]. But
these are two different ideas: one hiding the local actions
and the other hiding the global ones.

Failure equivalence, and the corresponding refinement
order, are especially interesting in this setting. The FDR
model checker [35] uses a two-level approach which com-
bines both these ideas. As one of the referees pointed out,
much of the power of the failures model in analyzing dead-
locks is derived from abstracting out τ actions [36]. So
should there be one kind of weak system bisimulation or
should one allow for more?

A translation of our ideas to CSP syntax [18] seems
worthwhile. A distinguishing feature of CSP is its sepa-
ration of local and global choice. In our formalism, this
is somewhat trivialized by the location function. If a CSP
expression describes a finite-state process, our work sug-
gests that a static analysis might be useful to connect it to
a labelled product system with an appropriate rendezvous
structure.

This brings us to the principal weakness of labelled prod-
uct systems: they have a “flat” structure. We would like
to extend our automaton-based approach to richer system
structure, matching regular behaviour over a calculus like
[3]. The study of process calculi with localities [11], with
their corresponding enrichment of bisimulation, could be a
starting point.

On the theoretical side, Sénizergues has given a
formidable proof of DPDA equivalence, and Stirling has
demonstrated that it can be viewed more simply through
the prism of process algebra [38]. Since no models of prod-
ucts of DPDA exist, it seems ambitious to extend the current
work to pushdown processes, but it might be worthwhile to
take on the simpler model of input-driven DPDA (more re-
cently called visibly pushdown automata), for which ef-
ficient algorithms are known [26, 2].
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