
Marking time

Kamal Lodaya

The Institute of Mathematical Sciences, C.I.T. Campus, Chennai 600 113, India.

Email: kamal@imsc.res.in

Tense logics. The traditional viewpoint of logics of time is as a kind of
modal logic, with Kripke models where the accessibility relation is deemed
to specify properties particular to time. We call this tense logic after a classic
survey by John Burgess in the Handbook of philosophical logic [1984]. We
begin by changing the tense logic models to incorporate duration.

Next, we discuss the point-based and interval-based versions of time.
These were studied in Johan van Benthem’s book The logic of time and in
several papers appearing around the same time: Vilain [1982], and Allen
[1983], developed an interval algebra; Moszkowski and Manna [1983], as
well as Schwartz, Melliar-Smith and Vogt [1983], advocated interval-based
reasoning for hardware. The prohibitive complexity of logics which evaluate
propositions at intervals was established by Halpern and Shoham [1991].
Many fragments have been shown to be undecidable (cf. Lodaya [2000]).
Goranko, Montanari, Sciavicco and Bresolin recently showed [2004, 2007]
that a few are decidable by exploiting their resemblance to the point-based
logic. Interval logic has made a resurgence, even making it into industry
standards like PSL/Sugar: Vardi [2006] gives a picture of the history.

We expand the discussion by generalizing from durations to arbitrary
measurements. Two logics, one point-based and another interval-based, are
presented. We sketch a completeness proof for the point-based logic. We
also have a brief section on expressive completeness of these logics.

Temporal and dynamic logics. Zohar Manna and Amir Pnueli [1992]
viewed linear time models as runs generated from a finite transition system
since they were interested in efficient algorithms for verifying time proper-
ties. The Kripke frames were fixed to be the natural numbers, or an initial
segment. We will use the name temporal logic for this “informatic” approach
to time, as Manna and Pnueli did. This transition from tense logic to tem-
poral logic, with automata theory playing a constructive rôle, is detailed in
the chapter by Ian Hodkinson in the second volume of the book Temporal
logic [2000].

Mihir K. Chakraborty, Benedikt Löwe,
Madhabendra Nath Mitra, Sundar Sarukkai (eds.)
Logic, Navya-Nyaya & Applications.
An Homage to Bimal Krishna Matilal.
College Publications London 200? [Studies in Logic ?]; p. 1-19

2 Kamal Lodaya

A duration calculus was developed early on by Zhou Chaochen, Tony
Hoare and Anders Ravn [1991] to reason about timed systems. The book
by Zhou and Michael Hansen [2004] is a good reference. Rajeev Alur, David
Dill and Tom Henzinger [1994, 1993] developed the “informatic” approach
to duration by extending the Manna-Pnueli temporal logic to timed systems.

Again we generalize from durations to arbitrary measurements, and in-
stead of a temporal logic we present a dynamic logic. Decidability is proved
for a future fragment, not for arbitrary measurements but only for dura-
tions, and only when the models are restricted to be finite.

This article. The purpose of this article is expository: to use these in-
formatic ideas and develop tense and temporal logic afresh, this time with
measurement. Many of the definitions and results are new (for instance, we
have never seen a dynamic logic with measurement modalities before), but
they are small generalizations of what has appeared in the literature.

It is not our aim to survey the field of logics dealing with time. Burgess
[1984], and more recently Goranko, Montanari and Sciavicco [2004] and
Vardi [2006] provide many references. The two volumes of Temporal logic
edited by Gabbay, Hodkinson, Reynolds and Finger offer a reasonably up-
to-date compendium of technical details. The articles by Galton [1995],
Hayes [1995] and van Benthem [1995] have a discussion of linguistic details.

Acknowledgements. I thank the organizers of the Logic, Navya-Nyāya
and Applications conference in honour of Bimal Krishna Matilal, January
2007, for inviting me to speak on the occasion, and the hospitality of Ja-
davpur University where the conference was held. An earlier version of the
talk was presented at the workshop on Advances and Issues in Timed Sys-
tems during FSTTCS XXVI, Kolkata, December 2006. I thank Supratik
Chakraborty and Deepak D’Souza for inviting me to speak there, and the
Indian Statistical Institute for their hospitality.

Paritosh Pandya and I collaborated itinerantly on a paper on measure-
ment logics, which finally got written [2006]. Many of the definitions in the
present article arise from that work. As a consequence of his expertise on
timed systems, Paritosh had to put up with a dense barrage of questions
during the interval I was preparing for the Kolkata talks, towards the end of
2006. At the Matilal conference a little later, Johan van Benthem expressed
interest in the development of sampled time models. R. Ramanujam started
off a lively discussion on “time” in timed systems while I was writing this
article. Sunil Simon enlightened me on the fine points of alternating timed
automata. To all of them, thank you.

Marking time 3

1 Duration frames and measurement models

Definition 1 (Dutertre). A duration domain (D,+, 0, <) is a linearly or-
dered monoid which is cancellative (if x+ y = x+ z or y + x = z + x then
y = z) and zerosumfree (if x+ y = 0 then x = y = 0).

In this article we will only work with duration domains which are Abelian.
Common examples of duration domains are the natural numbers and the
nonnegative reals.

Definition 2. A (point) duration frame T = (T,≺, d) is a nonempty linear
order T = (T,≺) (the underlying flow of time) with a symmetric order-
preserving distance function d from T × T into a duration domain D.

We will also define interval duration frames. The general definition fol-
lows the one in van Benthem’s book [1983].

Definition 3. An interval duration frame I = (I,⊂,�, d) is a nonempty
poset (I,⊂) with greatest lower bounds, together with a partial order �
and a distance function d : I → D into a duration domain D which are
monotonic with respect to ⊂. That is, if w ⊂ x � y ⊃ z then w � y,
d(w) ≤ d(x) and d(y) ≥ d(z).

Given a point frame T = (T,≺, d), we can construct an interval frame
Int(T) = (I,⊂,�, d) by letting I be the nonempty convex subsets of T , ⊂
be inclusion, x1 � x2 iff for every t1 in x1, t2 in x2, t1 ≺ t2 and d(x) = d(b, e)
where b and e are the beginning and ending points (or limit points) of the
interval x. This interval frame is also atomic: for every x there is x1 ⊂ x,
such that if x0 ⊂ x1 then x0 = x1.

Given an atomic interval frame I = (I,⊂,�, d), we can construct a
point frame Pt(I) = (T,≺, d) by letting T be the set of atoms of I, ≺ be
� restricted to T and d(b, e) = inf{d(x) | b, e ⊂ x}.

The theorem below was proved for tense frames, but extending it to
duration frames is not difficult.

Theorem 4 (van Benthem). An atomic interval frame I is isomorphic
to Int(Pt(I)).

Let us consider a more specific example. If we take T to be a strict
linear order, we can define its intervals to be the usual “open intervals”
(t1, t2) = {t | t1 ≺ t ≺ t2}. It is an easy exercise to list the 5 possible point-

4 Kamal Lodaya

interval relations (Vilain [1982]). Hamblin [1969] and Allen [1983] showed
that all 13 interval-interval relations are definable using ⊂ and � (the first
two below). The converses of these six and the identity relation make up
the total.

� (t, u) during (v, w) if v ≺ t and u ≺ w,

� (t, u) before (v, w) if u ≺ v.

� (t, u) overlaps (v, w) if t ≺ v ≺ u ≺ w.

� (t, u) meets (v, w) if u = v.

� (t, u) begins (v, w) if t = v and u ≺ w.

� (t, u) ends (v, w) if v ≺ t and u = w.

1.1 A signature of measurements

Let Prop be a set of propositions. Let Σ = {m1,m2, . . . } be a signature of
measurement function symbols (of arity 2). Σ always contains the distin-
guished function ` which will be used to measure the length of an interval
of time. We will abbreviate the signature {`} to `.

Definition 5. A measurement model M = (T , θ) is a duration frame with
a behaviour θ : (Prop → T → {0, 1}) × (Σ → (T × T) → D) such
that θ(`)[b, e] = d(b, e). An interval measurement model is given by M =
(Int(T), θ).

A behaviour consists of a valuation, a boolean function of time which we
write as θ(p), together with an interpretation of the measurement signature,
with θ(m)[b, e] giving the value of the measurement function m ∈ Σ on the
interval [b, e]. The behaviour is defined in this way so that it allows Σ to
depend on the propositions: the Duration calculus book [2004] has examples
of measurements

∫
p, which give the total duration for which a proposition

p holds in a given interval.

In this article we will only work with measurement functions which are
symmetric. We can impose further conditions on the measurement func-
tions, such as making them additive, order-preserving or anti-order-preserving,
as required. Moreover, we require that the measurement ` is always inter-
preted by the distance function.

Marking time 5

2 Measurement logics

The formulae of point measurement logic, defined below, allow tense modal-
ities and future and past modalities which are simple generalizations of the
usual tense modalities to measurement. This logic is a generalization of the
metric tense logic defined by Burgess [1984] and MTL defined by Koymans
[1990], which only dealt with the length signature `.

Throughout this article we will use χ as a parameter for a set of com-
parison operations, for example Punct = {<,=, >,≤,≥} is called the set
of punctual comparisons. Eq = {=} is the set of equality comparisons. The
set of Weak comparisons is defined so that equality comparisons are not
definable in the logic, for example {≤, >}. This use of parameters is from
a paper with Pandya [2006].

In the syntax below, the metavariable m gives the value of the function
m during the interval of interest. The actual value of m is not accessible in
the syntax, but only a guard: a comparison of m with a constant c. We use
−m to denote that the interval is to be oriented going into the past.

Definition 6 (Point measurement logic χMTL[Σ]).

α ::= p ∈ Prop | ¬α | α ∨ β | α U β | α S β |
〈−m ∼ c〉α | 〈m ∼ c〉α, m ∈ Σ, ∼∈ χ, c ∈ D

Satisfaction is inductively defined as usual.

M, t |= p iff θ(p)[t] = 1
M, t |= α U β iff ∃v ≺ t : M,v |= β and ∀l : t ≺ u ≺ v : M,v |= α
M, t |= α S β iff ∃r ≺ t : M, r |= β and ∀s : r ≺ s ≺ t : M, r |= α
M, t |= 〈−m ∼ c〉α iff ∃s ≺ t : θ(m)[s, t] ∼ c and M, s |= α
M, t |= 〈m ∼ c〉α iff ∃u � t : θ(m)[t, u] ∼ c and M,u |= α.

We define the future and past modalities using U and S (e.g. 3α
def=

trueU α), but they are also definable using the length operators, e.g. 3α is
〈` > 0〉α or 〈` ≥ 0〉α, depending on whether the modality is to be strict or
not. We take the comparisons <,=, > as basic and ≤,≥ as abbreviations.

It is also possible to define in the logic until and since operations which
specify a measurement comparison. For example, if the requirement β
should occur after a measurement ≥ c and α is to hold until then, this
can be written [m < c]α ∧ 〈m = c〉(α U β). If the measurement is ≤ c, the
formula can be written as (α U β) ∧ 〈m ≤ c〉β.

6 Kamal Lodaya

Here is an example of reasoning, adapted from Burgess [1984].

Suman: Have you heard? Jagan is going to
Alabama this September.
Sameen: He won’t get in without a visa. Has
he remembered to apply for one?
Suman: Not yet, as far as I know.
Sameen: Visa queues might even take a month
to clear. He’ll have to do so by July.

〈m = 9〉jga
¬3(jga ∧ ¬3- jgv)
¬3- jav ∧ ¬jav
jgv ⊃ 〈−m ≤ 2〉jav
∴ 〈m ≤ 7〉jav.

Here are some well known axioms for validity of tense logic (see Burgess
[1982, 1984]), recast into the measurement framework. We mostly provide
the future axioms, leaving the reader to supply the mirror image axioms for
the past. There are some specific axioms for the comparisons.

[m ∼ c](α ⊃ β) ⊃ ([m ∼ c]α ⊃ [m ∼ c]β),
[−m ∼ c](α ⊃ β) ⊃ ([−m ∼ c]α ⊃ [−m ∼ c]β) K

α ⊃ [` ∼ c]〈−` ∼ c〉α, α ⊃ [−` ∼ c]〈` ∼ c〉α symmetry

〈m < c1〉α ⊃ 〈m < c1 + c2〉α, 〈m > c1 + c2〉α ⊃ 〈m > c1〉α monotonicity

3α ≡ 〈m < c〉α ∨ 〈m = c〉α ∨ 〈m > c〉α linearity

〈` = c〉α ⊃ [` = c]α unique length

α ⊃ 〈m = 0〉α, 〈` = 0〉α ⊃ α reflexivity

〈m ∼ c1〉〈m ∼ c2〉α ⊃ 〈m ∼ c1 + c2〉α transitivity

〈m ∼ c1 + c2〉α ⊃ 〈m ∼ c1〉〈m ∼ c2〉α density

〈m ≤ c1〉α ∧ 〈m ≤ c1 + c2〉β ⊃ connectedness
〈m ≤ c1〉(α∧ 〈m ≤ c1 + c2〉β)∨ 〈m ≤ c1〉(α∧ β)∨ 〈m ≤ c1〉(β ∧ 〈m ≤ c1〉α)

α U β ≡ β ∨ ((α ∧ α U β) U β) until

α U false ⊃ false unless

Completeness for the tense fragment is claimed in Burgess [1984, Section
6.1]. We stretch the claim to the measurement setting below. For com-
pleteness of the fragment with equality comparisons and duration domains
which are ordered abelian groups, see Montanari and de Rijke [1997].

Claim 7. There is a complete axiomatization for χMTL[Σ].

A formula mentions finitely many measurement functions Σ0 ⊆ Σ and
finitely many constants D0 ⊆ D in finitely many guards. We always include
` in Σ0. The guards implicitly divide the product duration domain D

|Σ0|
0

Marking time 7

into finitely many regions r1, . . . , rn. For example a region might be 5 <
` < 7,m1 > 8,m2 = 3. The idea of regions is from Alur and Dill [1994].

Define for each region ri, an accessibility relation ≺i which is compatible
with the constraints in the region. For example, the accessibility relation for
our example region will ensure that for every formula of the kind [` > 5]α,
[` < 7]α, [m1 > 8]α or [m2 = 3]α in Γ, α ∈ ∆. Using the connectedness
axioms, we can show that at least one of the ≺i relations will hold between
any pair of mcs Γ,∆.

Using these ideas, a Henkin construction can be performed, ensuring that
a linear order is maintained. We spell out one detail in the lemma below
which provides an mcs satisying a future measurement requirement. It il-
lustrates that modalities like 〈5 < ` < 7 ∧m1 > 8 ∧m2 = 3〉α, or even those
which check that a measurement lies in an interval such as 〈m ∈ [b, e]〉α, are
not required for proving completeness.

Lemma 8. If a maximal consistent set Γ has 〈m ∼ c〉α then there is a
compatible region ri and a maximal consistent set ∆ �i Γ containing α.

Proof. It is sufficient to show that for some d ∈ D0, the set of formulae
Γ− = {γ | [m ∼ c]γ ∧ [` ∼ d]γ ∧ 〈` ∼ d〉α ∈ Γ} ∪ {α} is consistent. The
same argument will be repeated for the other measurements in Σ0, and the
resulting consistent set will be expanded to a maximal consisistent set ∆
using a Lindenbaum lemma. The comparisons between m and c, ` and d
and so on constitute the region ri. Hence ∆ �i Γ by construction.

So suppose Γ− is not consistent. Then it has a finite inconsistent subset
whose conjunction we denote by γ̂ ∧ α. By supposition and the K axiom,
〈m ∼ c〉(γ̂ ∧ α) ∈ Γ.

Consider the smallest d1 in D0 under the duration order. By the linearity
axiom, one of 〈` < d1〉(γ̂ ∧ α), 〈` = d1〉(γ̂ ∧ α), 〈` > d1〉(γ̂ ∧ α) is in Γ.

Suppose, for example, it is not the first two but the third. Then Γ also
has [` ≤ d1]¬(γ̂ ∧ α).

Now we proceed to the next d2 in the D0 ordering. Using monotonicity
and linearity, we ask whether γ̂ ∧ α lies within the interval (d1, d2) or at d2

or beyond.

Continuing in this way, we will home in on a suitable d in D0 and arrive
at a contradiction with the consistency of Γ. q.e.d.

8 Kamal Lodaya

2.1 Interval measurement logic

An interval measurement logic can also be defined. The logic below was
defined in a paper with Pandya [2006] and is used here because it matches
a first order logic, as will be seen later. As in the case of the point logic, we
use χ as a parameter for a set of comparison operations.

Definition 9 (Guarded interval measurement logic, χGIML[Σ]).

φ ::= dpe, p ∈ Prop | ¬φ | φ∨ψ | φ;ψ | 〈−m ∼ c〉ψ | 〈m ∼ c〉ψ, ∼∈ χ, c ∈ D

The satisfaction relation is inductively defined below. Note that proposi-
tions are evaluated at points and lifted to intervals by making them “hered-
itary” (van Benthem [1983]).

M, [b, e] |= dpe iff ∀t : b ≺ t ≺ e : θ(p)[t] = 1
M, [b, e] |= φ;ψ iff ∃z : b ≺ z ≺ e : M, [b, z] |= φ and M, [z, e] |= ψ
M, [b, e] |= 〈−m ∼ c〉ψ iff b = e and ∃z ≺ b : θ(m)[z, b] ∼ c and M, [z, b] |= ψ
M, [b, e] |= 〈m ∼ c〉ψ iff b = e and ∃z � e : θ(m)[e, z] ∼ c and M, [e, z] |= ψ

Dutertre [1995] gave an axiomatization of first order interval tense logic.
Here are some of his axioms which are applicable in a propositional setting.
We do not repeat the axioms for the measurement modalities from the point
version. ε stands for the formula 〈` = 0〉true.

(φ ∨ ψ);χ ⊃ φ;χ ∨ ψ;χ, φ;(ψ ∨ χ) ⊃ φ;ψ ∨ φ;χ K

ε;φ ≡ φ ≡ φ;ε reflexivity

(φ;ψ);χ ≡ φ;(ψ;χ) transitivity

Dutertre’s completeness proof [1995] is a first order logic Henkin con-
struction. It needs to be examined to pull out a completeness proof for the
quantifier-free version of interval logic that we are considering here.

2.2 Decidability

The decidability of measurement logic depends on the comparisons used.
Alur and Henzinger [1993] showed that Punct-MTL[`] validity is unde-
cidable. Their proof uses Eq comparisons of the form ` = c for c > 0.
Weak -MTL[`] was shown decidable by Alur, Feder and Henzinger [1996].

Theorem 10 (Alur, Feder and Henzinger). Validity of Punct-MTL[Σ]
formulae is undecidable, but for Weak -MTL[`] formulae it is decidable.

Marking time 9

The algorithmic situation is no better for interval models.

Theorem 11 (with Pandya). The validity of Punct-GIML[Σ] formulae
is not decidable, but it is decidable for Weak -GIML[`] formulae.

Proof. Both proofs are by translation. χMTL[Σ] formulae can be coded
into χGIML[Σ], yielding the undecidability. The decidability follows from
that of the first order fragment Weak -GF [`], defined in the next section,
which was proved by Hirshfeld and Rabinovich [2005]. As we will see,
Weak -GIML[`] is expressively complete for this fragment, hence the de-
cidability can be transferred. q.e.d.

3 Expressive completeness

Kamp [1968] introduced a new dimension to tense logic by relating it to the
first order theory of linear order with monadic predicates FO[<]. Specifi-
cally, he showed that tense logic with the binary modalities U (until) and
S (since) has the same expressive power as three-variable first order logic,
which in turn is as expressive as full FO[<]. Kamp’s work was extended
by Stavi to all linear orders. The first volume of the book Temporal logic
[1994] has a detailed treatment of Kamp’s theorem.

Kamp’s syntactic techniques were used by Venema [1990] to establish an
expressiveness result for interval tense logic with respect to three-variable
first order logic. Just as Kamp had to, Venema showed that binary “chop”
modalities are needed. If propositions are evaluated at points (as in the
previous section), this again yields full FO[<].

To extend these ideas to measurement, observe that the semantics of all
the logics we have considered translate into a guarded fragment of first order
logics over linear orders extended with measurement functions FO[<,Σ].

Definition 12. Let χ be a given set of length comparisons. χGF [Σ] is the
logic which extends FO[<] by the χ-guarded quantifier φ(t0) = ∃t(G(t0, t)∧
ψ(t0, t)), where ψ is a formula with at most two free variables t0 and t, and
the guard G is a boolean combination of comparisons from the set χ.

In earlier work, Hirshfeld and Rabinovich conjectured that such a frag-
ment does not have an expressively complete modal logic. Recently, Pandya
and I refuted this conjecture [2006]. We use all of Venema’s chop modalities.

10 Kamal Lodaya

Theorem 13 (with Pandya). An extension of the logic χGIML[Σ] is
expressively complete for the corresponding guarded fragment χGF [Σ].

Hirshfeld and Rabinovich [2005] defined a smaller fragment by using a
point guarded quantifier φ(t0) = ∃t(G(t0, t) ∧ ψ(t)), where ψ is a formula
with at most one free variable t, and the guard G is an atomic comparison.
An induction shows that the logic χMTL[Σ] is expressively complete with
respect to the corresponding point guarded fragment.

Extension of these results to a monadic second order framework, with a
matching extension of the modal logic, for example by propositional quan-
tification, can be added on.

4 Discrete models and sampled time

Manna and Pnueli [1992] shifted attention to the question of verification of
satisfaction: given a model M , a point t and a formula α, how do we check
whether M, t |= α ? This leads to a somewhat trivial-sounding question,
how is the model M to be presented to an algorithm?

Let Prop be a finite set of propositions, Σ a finite signature of additive
measurement functions and D a duration domain. We fix an ordering of
the function symbols in the signature Σ beginning with the length `. A
model M with a discrete linear order as a frame can be represented as a
pair of finite words v = v0v1 . . . vn and w = w0w1 . . . wn, or a pair of infinite
words v = v0v1 . . . and w = w0w1 . . . over the alphabets D|Σ| and ℘(Prop)
respectively. Since the Kripke frame (N or an initial prefix [0..n]) is fixed
by the words, this “word model” consists only of a behaviour.

Definition 14. A sampled time behaviour is a pair of words θ = (v, w), both
of the same length, over the alphabets D|Σ| and ℘(Prop). If the durations
in the first (length) component of v are positive, the underlying flow of time
is said to be monotonic, otherwise it is said to be weakly monotonic.

Sampled measurement models over the signature ` using the real numbers
as a duration domain were introduced as timed state sequences (or timed
words) by Alur and Dill [1994]. They used an alternate definition where
time values (v0(`))(v0(`) + v1(`))(v0(`) + v1(`) + v2(`)) . . . are used in the
sampling sequence. Our definition is consistent with time differences being
used. The additivity assumption on the signature makes both definitions
equivalent. We will use

∑j
i v(m) to denote the sum Σj

l=i+1 vi(m), which
sums up the measurements over an interval from the differences. Usually,
additional constraints are put on infinite behaviours so that time does not

Marking time 11

converge to a point but diverges to infinity.

An infinite model can be represented as an ω-word if we further assume
that such a model is finitely generated, for instance, as an infinite path in a
finite transition system. This suggests the model checking question: given a
finite automaton and a formula α, do all finite/infinite words which belong
to the language accepted by the automaton satisfy α ? The evaluation point
is anchored at the beginning to v0, w0.

From the earlier work of Büchi [1960, 1962] (also Elgot [1961] and Trakht-
enbrot [1961] in the case of finite words), it is easy to see that the model
checking and satisfiability questions can be reduced to the language inclu-
sion and emptiness problems for automata.

4.1 Measurement logic

While one can define point and interval logics over sampled time behaviours,
the absence of the Kripke frame makes the distinctions somewhat arbitrary.
Instead one could combine the ideas of both into one system, as Henriksen
and Thiagarajan [1999] did using a dynamic temporal logic on sequences.
We use a propositional dynamic logic with converse (see the Dynamic logic
book by Harel, Kozen and Tiuryn [2000] for more details of various dynamic
logics).

Our logic generalizes the sampled semantics of MTL, given by Alur and
Henzinger [1993] and the sampled semantics used for duration logics by
Pandya [2002]. The measurement modality 〈µ→ π〉α says that there is a
behaviour conforming to the program π which satisfies the measurement
µ, after which the formula α holds. The modality 〈−µ← π〉α describes
the converse behaviour, going into the past from the present point in the
behaviour. Since the full power of regular expressions is used here for the
programs, this logic is more expressive than the guarded fragment χGF [Σ],
which has a first order semantics.

Definition 15 (Dynamic measurement logic χDML[Σ]).

π ::= dpe, p ∈ Prop | skip | π1 ∪ π2 | π1;π2 | π∗
µ ::= m ∼ c, m ∈ Σ, ∼∈ χ, c ∈ D
α ::= p | ¬α | α ∨ β | 〈µ→ π〉α | 〈−µ← π〉α

Let θ = (v, w) be a sampled time behaviour. A program π represents a
subsequence of the behaviour (vi . . . vj , wi . . . wj) which is specified by the
indices i and j. That this subsequence is part of the relation defined by a

12 Kamal Lodaya

program π is written as θ, [i, j] |= π.

θ, [i, j] |= dpe iff ∀z : i ≺ z ≺ j : θ(p)[z] = 1
θ, [i, j] |= skip iff j = i+ 1
θ, [i, j] |= π1 ∪ π2 iff θ[i, j] |= π1 or θ, [i, j] |= π2

θ, [i, j] |= π1;π2 iff ∃z : i ≺ z ≺ j : θ, [i, z] |= π1 and θ, [z, j] |= π2

θ, [i, j] |= π∗ iff for some n ≥ 0 and i = z0 ≺ z1 ≺ · · · ≺ zn = j :
for all l : 0 ≤ l < n : θ, [zl, zl+1] |= π

A formula α is evaluated at a time and state vk, wk in the model, which is
specified by its index k.

θ, k |= p iff p ∈ wk

θ, k |= 〈m ∼ c→ π〉α iff ∃l � k : (
∑l

k v(m)) ∼ c, θ, [k, l] |= π and θ, l |= α

θ, k |= 〈−m ∼ c← π〉α iff ∃j ≺ k : (
∑k

j v(m)) ∼ c, θ, [j, k] |= π and θ, j |= α

5 The finite generation of models

Representing sampled-time models by automata is still not trivial. Alur
and Dill [1994] defined a timed automaton with a finite number of clocks for
this purpose. They also used an extra finite alphabet of letters.

A guarded transition on a letter is a set of clock constraints x ∼ c and
clock resets which include the target state for convenience (thus x.s stands
for resetting the clock x and going to state s).

The finitely many guarded transitions in a finite timed automaton can
now describe unboundedly many change points in a finite or infinite be-
haviour. Hence the automaton provides a finite generation mechanism for
sampled time behaviours.

But there is still a catch. The duration domain D can be, and is usually
meant to be, infinite. How is a finite automaton supposed to read a letter
belonging to an infinite alphabet?

Assume that all the measurement functions in the signature Σ (which
we have already assumed to be additive) are order-preserving (as ` is) or
anti-order-preserving. As we saw in an earlier section, the clocks and con-
stants mentioned in the guards of a finite timed automaton implicitly divide
the product duration domain into finitely many “regions” over which the
automaton remains in the same state with only the clocks ticking away.
This enabled Alur and Dill [1994] to construct a finite region automaton
which works on the alphabet of regions (along with the letters) which ac-
cepts exactly the “untiming” of the language of the timed automaton. They

Marking time 13

could decide emptiness of the language of the timed automaton by checking
emptiness of the language of the region automaton.

5.1 The formula automaton

What remains is to effect a logic-to-automata translation which reduces the
validity of the logic to the emptiness of the language of the automaton. Such
a formula automaton is implicit in the work of Büchi, Elgot and Trakhten-
brot. Vardi and Wolper [1994] constructed an explicit formula automaton
for temporal logic.

We will be interested in a line of work initiated by Muller, Saoudi and
Schupp [1988], who constructed a succinct alternating formula automaton
for temporal and dynamic logics. (There is an exponential blowup in going
from an alternating automaton to an ordinary nondeterministic automa-
ton.) Since the languages accepted by timed automata are not closed under
complement, alternating timed automata (which include nondeterministic
timed automata and for which the languages accepted are closed under
complement) are convenient to use as “formula automata” for logics with
duration. They were defined in two papers by Lasota and Walukiewicz
[2005] and by Ouaknine and Worrell [2005].

A transition in an alternating timed automaton with clocks X and states
Q is a positive boolean combination of guards with clock constraints x ∼ c
and resets x.s. A disjunction means that the automaton chooses one of
the disjuncts in its move (as in a nondeterministic automaton), but a con-
junction means that the automaton works on all conjuncts. We will write
B+(Z) for the positive boolean combinations over a set Z.

Definition 16. An alternating timed automaton over an alphabet A and a
set of clocks X is a tuple M = (Q, δ, q0, F), where Q is a finite set of states,
q0 ∈ Q,F ⊆ Q are the initial state and the set of final states respectively
and δ : Q×A→ B+(G(X,Q)) is the guarded transition function.

Defining the run of such an automaton is tedious. We refer to the pa-
per of Ouaknine and Worrell [2005] for the definition. In this paper they
construct a 1-clock alternating timed automaton for the future fragment of
Punct-MTL[`]. Their construction works only for future formulas and only
for finite models. With Pandya [2006], we constructed a 1-clock alternating
timed automaton over finite words for a future fragment of Punct-GIML[`]
in which checking lengths is not nested. (This keeps the 1-clock restriction
intact.)

14 Kamal Lodaya

Emptiness of the language accepted by an alternating timed automaton
restricted to one clock was shown to be decidable in the papers of Lasota
and Walukiewicz and Ouaknine and Worrell. With two clocks, the problem
is known to be undecidable.

Below we construct an alternating timed automaton with the single clock
x working on the alphabet A = ℘(Prop) which accepts exactly the finite
models of a pure future formula α of Punct-DML[`]. This means that α does
not have past subformulas of the kind 〈−m ∼ c← π〉β. To put it differently,
we have a propositional dynamic logic without converse.

We assume all negations in α have been pushed inside to the level of
literals. The closure of α is defined, based on the ideas of Fischer and
Ladner [1979] for propositional dynamic logic, as used by Ouaknine and
Worrell [2005] for Punct-MTL[`]. This is used to build the states of the
formula automaton.

Definition 17 (Derivatives, closure, formula automaton). For a let-
ter a in A, the a-derivatives ∂π/∂a of a program π are defined inductively:

– The special program skipr is an a-derivative of skip for any a.
– dpe has itself and skipr as a-derivatives if p ∈ a and false otherwise.
– π1 ∪ π2 has the a-derivatives of π1 and π2 as its a-derivatives.
– π1;π2 has {q1;π2 | q1 ∈ ∂π1/∂a} as its a-derivatives.

A derivative skipr;π2 is taken to be the same as π2.
– π∗ has {skipr} ∪ {q;π∗ | q ∈ ∂π/∂a} as its a-derivatives.

If q is an a-derivative of π, we define the formula 〈µ→ q〉α to be an
a-derivative of 〈µ→ π〉α.

The closure CL(α) of a formula α contains α, a special initial copy αinit of
α. It is closed under taking subformulas γ = 〈µ→ π〉β with an outermost
modality, of a formula already in the closure, and under taking derivatives
(of a formula). We also throw in two states true and false. It is a standard
dynamic logic exercise to check that the closure of a formula is a finite set.

The (1-clock alternating timed) formula automaton of a formula α has
CL(α) as its states. αinit is the initial state. The [µ→ π] and 〈µ→ skipr〉
formulas and the formula true are the final states. The transition function

Marking time 15

is given by the clauses below.

δ(αinit, a) = x.δ(α, a)
δ(γ1 ∨ γ2, a) = δ(γ1, a) ∨ δ(γ2, a)
δ(γ1 ∧ γ2, a) = δ(γ1, a) ∧ δ(γ2, a)

δ(〈µ→ π〉β, a) =
∨
b∈A

∨
q∈∂π/∂b

(〈µ→ q〉β ∧ x.δ(a, b))

δ([µ→ π]β, a) =
∧
b∈A

∧
q∈∂π/∂b

([µ→ q]β ∨ x.δ(a, b))

δ(〈` ∼ c→ skipr〉β, a) = (x ∼ c) ∧ x.δ(β, a)
δ([` ∼ c→ skipr]β, a) = ¬(x ∼ c) ∨ x.δ(β, a)

δ(¬p, a) = true for p /∈ a, false for p ∈ a
δ(p, a) = true for p ∈ a, false for p /∈ a

The next theorem is our decidability result. For the reader wondering
about its restricted nature, Ouaknine and Worrell showed [2005] that MTL
(and hence our logic) with both past and future modalities is undecidable;
the same is true when infinite models are considered.

Theorem 18. For the future fragment of Punct-DML[`] over finite models,
model checking and validity are decidable.

Proof. Since the language emptiness and inclusion problems are decidable
for one-clock alternating timed automata, it is sufficient to show that the
timed language accepted by the formula automaton for α is exactly the
finite behaviours where α holds.

Consider a finite behaviour θ = (v, w) of length n accepted by the formula
automaton for α, using the accepting run u0

v1,w1−→ u1
v2,w2−→ . . .

vn,wn−→ un. We
show for each subformula γ of α and each index i that if the guard δ(γ,wi+1)
is satisfied in ui then θ, i |= γ. This is shown by structural induction on γ.

The base case, when γ is p or ¬p: The guard is satisfied by checking
p ∈ a. Correspondingly θ, i |= p or θ, i |= ¬p.

For the induction step, γ has a modality, say γ = 〈µ→ π〉β.

If the guard is satisfied at i, there is a derivative q ∈ ∂π/∂a such that the
guard δ(〈µ→ q〉β, b) is satisfied at i+1. Repeating this argument, we arrive
at a position j and a derivative where the guard 〈µ→ skipr〉β is satisfied.
Hence δ(β,wj+1) is satisfied in uj and by the induction hypothesis, θ, j |= β.
At this point, the clock constraint is checked. From the transition function,
we see that the clock is not reset going from a modality to its derivative.

16 Kamal Lodaya

Hence the entire execution θ[i, j] of π satisfies the clock constraint, which
agrees with the semantics.

Now we do an inner induction on k = j − i to work out θ, [i, j] |= π.
We will do this by temporarily forgetting the comparison and arguing that
θ, k |= 〈true→ q〉β for a suitable derivative q of π.

For the base case, when k = 0 we have just seen that θ, j |= 〈true→ skipr〉β.

For the inner induction step, consider i < j. Suppose the guard δ(γ, a)
holds in ui. Since there is a successor in the behaviour, using the transition
function, for some derivative q ∈ ∂π/∂a, the guard δ(〈true→ q〉β, b) is
satisfied at i + 1. By the induction hypothesis θ, i + 1 |= 〈true→ q〉β. By
the semantics of the logic, θ, i |= 〈true→ π〉β.

Since we earlier verified that the clock constraint is also satisfied, we
finally get that θ, i |= γ.

The dual modality can be similarly handled.

By taking i = 0 and γ = α, we have shown that a behaviour accepted by
the formula automaton is a model of α. The reverse inclusion follows from
the observation that the formula automaton for ¬α is the dual alternating
automaton of the one for α and hence accepts the complementary language.

q.e.d.

6 Remarks

There has been no mention of dense or continuous time in the previous sec-
tions, since the logics do not even satisfy basic density axioms, and there
is no attempt to deal with limits. The philosopher of time will be disap-
pointed to see how little of the structure of time, or of the nature of its
metric topology, is needed to develop a usable logic of measurement.

Bojańczyk et al [2006] have abstracted the region construction further
by considering the marked projection of a data word over DΣ to CΣ, where
C is a collection of equivalence classes of D. A data automaton works as a
two-level process: a letter-to-letter transducer which outputs an equivalence
class for each letter of the input (the marked projection of the data word),
and a class automaton which works on this information to recognize the
language. As might be expected, data logics are an abstraction of logics
with duration where the structure of a duration domain is replaced by an
equivalence relation.

Marking time 17

References.

[1983] J.F. Allen. Maintaining knowledge about temporal intervals, Commun. ACM
26:11, 832–843.

[1994] R. Alur and D. Dill. A theory of timed automata, TCS 126, 183–236.

[1993] R. Alur and T. Henzinger. Real-time logics: complexity and expressiveness,
Inf. Comput. 104:1, 35–77.

[1996] R. Alur, T. Feder and T. Henzinger. The benefits of relaxing punctuality,
J.ACM 43:1, 116–146.

[2006] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick and L. Segoufin.
Two-variable logic on words with data, Proc. LICS XXI, Seattle, IEEE, 7–16.

[2007] D. Bresolin, A. Montanari and G. Sciavicco. An optimal decision procedure
for right propositional neighborhood logic, J. Autom. Reas. 38:1–3, 173–199.

[1960] J.R. Büchi. Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundl. Math. 6, 66–92.

[1962] J.R. Büchi. On a decision method in restricted second-order arithmetic, Proc.
1960 Congr. Logic, Methodology, Philosophy and Science, Stanford (E. Nagel,
P. Suppes and A. Tarski, eds.), Stanford Univ Press, 1–11.

[1982] J.P. Burgess. Axioms for tense logic, I: “since” and “until”, II: time periods,
Notre Dame J.FL 23:4, 367–383.

[1984] J.P. Burgess. Basic tense logic, in (D.M. Gabbay and F. Guenthner, eds.)
Handbook of philosophical logic II, Reidel, 89–133.

[1995] B. Dutertre. Complete proof systems for first order interval temporal logic, Proc.
LICS X, San Diego, IEEE, 36–43.

[1961] C.C. Elgot. Decision problems of finite automata design and related arithmetics,
Trans. AMS 98, 21–52.

[1979] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs,
J. Comput. Syst. Sci. 18:2, 194–211.

[1980] D.M. Gabbay, A. Pnueli, S. Shelah and J. Stavi. On the temporal basis of
fairness, Proc. POPL VII, Las Vegas, ACM, 163–173.

[1994] D.M. Gabbay, I. Hodkinson and M.A. Reynolds, Temporal logic: mathematical
foundations and computational aspects 1, Oxford.

[1995] D.M. Gabbay, C. Hogger and J.A. Robinson (eds), Handbook of logic in arti-
ficial intelligence and logic programming IV, Oxford.

[2000] D.M. Gabbay, M.A. Reynolds and M. Finger, Temporal logic: mathematical
foundations and computational aspects 2, Oxford.

[1995] A.P. Galton. Time and change for AI, in D.M. Gabbay, C. Hogger and J.A.
Robinson [1995], 175–240.

[2004] V. Goranko, A. Montanari and G. Sciavicco. A roadmap of interval temporal
logics and duration calculi, J. Appl. Non-Classical Logics 14:1–2, 9–54.

[1991] J.Y. Halpern and Y. Shoham. A propositional modal logic of time intervals,
J. ACM 38:4, 935–962.

[1969] C.L. Hamblin. Starting and stopping, The Monist 53, 410–425.

[2000] D. Harel, D. Kozen and J. Tiuryn. Dynamic logic, MIT Press.

[1995] P.J. Hayes. A catalog of temporal theories, Technical Report UIUC-BI-AI-96-01,
U. Illinois.

18 Kamal Lodaya

[1999] J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic,
Ann. Pure Appl. Logic 96:1-3, 187–207.

[2005] Y. Hirshfeld and A. Rabinovich. Timer formulas and decidable metric temporal
logic, Inf. Comput. 198, 148–178.

[2000] I. Hodkinson. Temporal logic and automata, in D.M. Gabbay, M.A. Reynolds
and M. Finger [2000], 30–72.

[1968] J.A.W. Kamp. Tense logic and the theory of linear order, PhD thesis, UCLA.

[1990] R. Koymans. Specifying real-time properties with metric temporal logic, Real-
time systems 2:4, 255–299.

[2005] S. Lasota and I. Walukiewicz. Alternating timed automata, Proc. Fossacs VIII,
Edinburgh (V. Sassone, ed.), LNCS 3441, 250–265.

[2000] K. Lodaya. Sharpening the undecidability of interval temporal logic, Proc. Asian
VI, Penang (J. He and M. Sato, eds.), LNCS 1961, 290–298.

[2006] K. Lodaya and P.K. Pandya. A dose of timed logic, in guarded measure, Proc.
Formats IV, Paris (E. Asarin and P. Bouyer, eds.), LNCS 4202, 260–273.

[1992] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems:
specification, Springer.

[1997] A. Montanari and M. de Rijke. Two-sorted metric temporal logics, Theoret.
Comput. Sci. 183:2, 187–214.

[1983] B.C. Moszkowski and Z. Manna. Reasoning in interval temporal logic, Proc.
Logics of programs, Pittsburgh (E.M. Clarke and D. Kozen, eds.), LNCS 164,
371–382.

[1988] D.E. Muller, A. Saoudi and P.E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dyhamic logics are decidable in
exponential time, Proc. LICS III, Edinburgh, IEEE, 422–427.

[2005] J. Ouaknine and J. Worrell. On the decidability of metric temporal logic, Proc.
LICS XX, Chicago, IEEE, 188–197.

[2002] P.K. Pandya. Interval duration logic: expressiveness and decidability, Proc.
TPTS, Grenoble (E. Asarin, O. Maler and S. Yovine, eds.), ENTCS 65:6,
19 pp.

[1986] R. Rosner and A. Pnueli. A choppy logic, Proc. LICS I, Cambridge, IEEE,
306–313.

[1983] R.L. Schwartz, P.M. Melliar-Smith and F.H. Vogt. An interval-based tem-
poral logic, Proc. Logics of programs, Pittsburgh (E.M. Clarke and D. Kozen,
eds.), LNCS 164, 443–457.

[1961] B.A. Trakhtenbrot. Finite automata and the logic of monadic predicates, Dokl.
Akad. Nauk SSSR 140, 326–329.

[1983] J.F.A.K. van Benthem. The logic of time, Reidel.

[1995] J.F.A.K. van Benthem. Temporal logic, in D.M. Gabbay, C. Hogger and J.A.
Robinson [1995], 241–350.

[1994] M.Y. Vardi and P. Wolper. Reasoning about infinite computations, Inf. Com-
put. 115:1, 1–37.

[2006] M.Y. Vardi. From Church and Prior to PSL, in (O. Grumberg and H. Veith,
eds.) Symp. 25 years of model checking, Seattle.

[1990] Y. Venema. Expressiveness and completeness of an interval tense logic, Notre
Dame J.FL 31:4, 529–547.

[1991] Y. Venema. A modal logic for chopping intervals, J. Logic Comput. 1:4, 453–476.

Marking time 19

[1982] M.B. Vilain. A system for reasoning about time, Proc. AAAI II, Pittsburgh,
AAAI Press, 197–201.

[1991] Zhou C., C.A.R. Hoare and A. Ravn. A calculus of durations, Inform. Proc.
Lett. 40:5, 269–276.

[1993] Zhou C., M.R. Hansen and P. Sestoft. Decidability and undecidability results
for duration calculus, Proc. STACS X, Würzburg, LNCS 665, 58–68.

[2004] Zhou C. and M.R. Hansen. Duration calculus, Springer.

∅ q.e.d.

