
Kleene Theorems for Synchronous Products
with Matching

Ramchandra Phawade and Kamal Lodaya

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Abstract. In earlier work [LMP11], we showed that a graph-theoretic
condition called “structural cyclicity” enables us to extract syntax from a
conflict-equivalent product system of automata. In this paper we have a
“pairing” property in our syntax which allows us to connect to a broader
class of synchronous product systems [Arn94] with a “matching” prop-
erty, where the conflict-equivalence is not statically fixed. These systems
have been related to labelled free choice nets.

1 Introduction

The Kleene and Büchi theorems link finite automata, a model of sequential com-
putation, to regular expressions and monadic second-order logic, both syntactic
entities. More than a decade ago [LW00], these ideas were extended to branch-
ing automata, a model of bounded fork-join concurrency. It was also observed
[LRR03] that on the models side we can have a labelled Petri net representation
called SR-systems. The lack of an explicit synchronization mechanism is mani-
fest, and a first work was to solve the Kleene problem for 1-bounded T-systems,
going through an intermediate automaton mechanism called T-products. It was
observed in this work [LMP11] that the proofs extend to a class of FC-products
(conflict-equivalent products of automata, these will be defined below, they are
known to be weaker than 1-bounded nets [Zie87,Muk11]), restricted to a graph-
theoretic property called “structural cyclicity” which translates in the syntax to
disallowing nested Kleene star operators as in regular expressions. But we did
not rely on a renaming operator in the syntax, as has been the case with earlier
efforts on 1-bounded nets [Gra81,GR92].

In the present paper1, we make an effort to match the live and 1-bounded
free choice nets, a very well-studied subclass [Hac72] with more efficient analysis
and algorithms [DE95], but with labelled transitions. It has been claimed that
free choice nets can be useful in business process modelling [SH96], but our
motivation is more conceptual than dictated by business concerns. We have not
studied the logical (Büchi) side of our problem, we note that it has been argued
that it suffices to consider free choice nets for the decidability of the monadic
second-order theory [TY14].

1 A preliminary version of this paper appeared at the 8th PNSE workshop in Tunis
[PL14]. We thank the organizers for all the help provided for the presentation.

As in our earlier paper [LMP11], we rely on an intermediate formalism of
products of automata, without any structural cyclicity property. This time the
products are equipped with an “FC-matching” condition derived from Zielonka
automata [Zie87] (which can describe 1-bounded nets) and Arnold and Nivat’s
synchronous products [Arn94], but restricted to stay within the labelled free choice
nets. On the syntax side we do not place any restriction on the Kleene stars, thus
(unlike in our earlier paper) including all regular expressions. We do have global
restrictions in the syntax. A “pairing” condition identifies synchronizations which
will take place at run-time.

Our products translate easily into labelled free choice nets. The converse
from nets to products shown in [Pha14a] requires a distributed choice property
to give an FC-matching product. This is a generalization of the property that
in a synchronization cluster of a free choice net all the synchronizations are
differently labelled (call this “deterministic synchronization”). In brief we can
say the intermediate representation in this paper is related to 1-bounded labelled
distributed free choice nets.

The problem of syntactically characterizing a natural subclass of 1-bounded
labelled free choice nets, those which can be modelled using deterministic syn-
chronization, is not fully solved. Consider a “distributed counter” product sys-
tem which we denote by the informal expression fsync((a2)∗, (a3)∗), for which no
“pairing” in our sense exists. There is an intuitively corresponding free choice net
which has deterministic synchronization, by pairing three iterations of the loop
on the left with two iterations of the loop on the right. Applying our theorems
to such an unfolded net produces a product system with matching and then the
expression fsync((a6)∗, (a6)∗) with obvious pairing, defining the same language.
Thus our syntax is expressive but our pairings are deficient: they have to be
relaxed to also incorporate distributed counting of this kind. We conjecture this
can be done.

Ths paper is organized as follows. In the next section, we introduce some
properties of regular expression using derivatives. In Section 3, we give syntax
of connected expressions and define some properties in terms of properties of
regular expressions defined earlier, and derivatives of connected expressions. In
subsequent section, we formally define the subclass of product systems we work
with, and discuss its properties. In Section 5, we present main results of this
paper: two way conversion between connected expressions and product systems
defined earlier. In the next section, we outline how combining the results of this
paper with those in [Pha14a] gives Kleene theorems for a subclass of free choice
net systems.

2 Regular Expressions, Derivatives and States

Let Σ be a finite alphabet and Σ∗ be the set of all words over alphabet Σ,
including the empty word ε. A language over an alphabet Σ is a subset L ⊆ Σ∗.

The projection of a word w ∈ Σ∗ to a set ∆ ⊆ Σ, denoted as w↓∆, is defined by:

ε↓∆ = ε and (aσ)↓∆ =

{
a(σ↓∆) if a ∈ ∆,
σ↓∆ if a /∈ ∆.

Definition 1. Let Loc denote the set {1, 2, . . . , k}. A distribution of Σ over Loc
is a tuple of nonempty sets (Σ1, Σ2, . . . , Σk) with Σ =

⋃
1≤i≤kΣi. For each

action a ∈ Σ, its locations are the set loc(a) = {i | a ∈ Σi}. Actions a ∈ Σ such
that |loc(a)| = 1 are called local, otherwise they are called global.

A regular expression over alphabet Σi such that constants 0 and 1 are not in Σi
is given by:

s ::= 0 | 1 | a ∈ Σi | s1 · s2 | s1 + s2 | s∗1
The languages defined are Lang(0) = ∅, Lang(1) = {ε} and Lang(a) = {a}. For
regular expressions s1+s2, s1 ·s2 and s∗1, the languages are defined inductively as
union, concatenation and Kleene star of of the component languages respectively.

As a measure of the size of an expression we will use wd(s) for its alpha-
betic width—the total number of occurrences of letters of Σ in s. We will use
syntactic entities associated with regular expressions which are known since the
time of Brzozowski [Brz64], Mirkin [Mir66] and Antimirov [Ant96]. For each
regular expression s over Σi, its initial actions form the set Init(s) = {a | ∃v ∈
Σ∗i and av ∈ Lang(s) } which can be defined syntactically. (For a set of expres-
sions D, Init(D) collects the initial actions of members of D.) Similarly, we can
syntactically check whether the empty word ε ∈ Lang(s). Below we inductively
define Antimirov derivatives [Ant96].

Definition 2. Given regular expression s and symbol a, the set of partial deriva-
tives of s wrt a, written Dera(s) are defined as follows.

Dera(0) = ∅
Dera(1) = ∅
Dera(b) = {1} if b = a, ∅ otherwise

Dera(s1 + s2) = Dera(s1) ∪Dera(s2)
Dera(s∗1) = Dera(s1) · s∗1

Dera(s1 · s2) =

{
Dera(s1) · s2 ∪Dera(s2) if ε ∈ Lang(s1)
Dera(s1) · s2 otherwise

Inductively Deraw(s) = Derw(Dera(s)).

The set of all partial derivatives Der(s) =
⋃

w∈Σ∗i

Derw(s), where Derε(s) = {s}.

A derivative d of s with global a ∈ Init(d) is called an a-site of s. Expression
s is said to have equal choice if for all a, all its a-sites have the same set of
initial actions.

The Antimirov derivatives are Dera(ab + ac) = {b, c} and Dera(a(b + c)) =
{b + c}, whereas the Brzozowski a-derivative [Brz64] (which is used for con-
structing deterministic automata, but which we do not use in this paper) for
both expressions would be {b+ c}.

Example 1. Consider a regular expression r = a(b + c)d(b + c)∗. The set of its
derivatives is Der(r) = {r, (b + c)d(b + c)∗, d(b + c)∗, (b + c)∗}. For derivative
(b + c)d(b + c)∗ of r, its set of initial actions is Init((b + c)d(b + c)∗) = {b, c}.
Therefore, derivative (b+c)d(b+c)∗ is a b-site and a c-site but it is not an a-site.
For b-site (b + c)∗ of r, its set of initial actions is Init((b + c)∗) = {b, c}. Sets
of initial actions for all b-sites of r are equal, and this is true for all c-sites and
a-sites. Therefore, expression r has equal choice property.

Now consider another regular expression r′ = a(b + c)d(b + e)∗. The set of
its b-sites is {(b+ c)d(b+ e)∗, (b+ e)∗}. For b-site (b+ c)d(b+ e)∗ of r′, its set of
initial actions is Init((b+ c)d(b+ e)∗) = {b, c}. For b-site (b+ e)∗ of r′, its set of
initial actions is Init((b+ e)∗) = {b, e}. Since sets of initial actions are not equal
for these two b-sites, expression r′ does not have equal choice property.

We wish to club together derivatives which may correspond to the same
state in a finite automaton. For this we use partitions of the set of derivatives of
expression s. If for every global action a, the partition of a-sites of s consists of
a single block, then we say s has unique sites. We syntactically determine a
partition of the a-sites of s. This kind of idea appears in the work of Lombardy
and Sakarovitch [LS05,LS10]. We go on to define a semantic property, which first
appeared in the conference version of this paper [PL14]. Later in this paper we
will consider coarsenings of this partition.

Definition 3. We define an equivalence relation ∼a between a-sites, given by
s1 ∼a s1 + s2, s2 ∼a s1 + s2, s1 · s2 ∼a s2 in case ε ∈ Lang(s1), s1 · s∗1 ∼a s∗1 and
one of the sides is not an a-derivative of the other, and also s∗1 · s∗1 ∼a s∗1. The
partition defined on the a-sites of s is denoted Parta(s).

Example 2. For expression aa the partition of a-sites is: Parta(aa) = {{aa}, {a}}.
For expression b it is Parta(b) = ∅. The a-sites of expression aa+ b can be par-
titioned by this representation: Parta(aa + b) = {{aa + b}, {a}}. The a-sites
of expression (aa + b)∗aa are: Parta((aa + b)∗aa) = {{(aa + b)∗aa}, {a(aa +
b)∗aa}, {a}}. Finally, the a-sites of a∗(aa+ b)∗aa are described by the partition:
Parta(a∗(aa + b)∗aa) = {{a∗(aa + b)∗aa}, {a(aa + b)∗aa}, {(aa + b)∗aa}, {a}}.
Here we do not have a∗(aa + b)∗aa ∼a (aa + b)∗aa even though ε ∈ Lang(a∗)
because the right hand expression is an a-derivative of the left hand one.

Definition 4. Given a set D of a-sites of regular expression s, an action a and
a language L, we define the relativized language LD = {xay | xay ∈ L,∃d ∈
Derx(s) ∩ D,∃d′ ∈ Deray(d) with ε ∈ Lang(d′)}, and the prefixes PrefDa (L) =

{x | xay ∈ LD}, and the suffixes SufDa (L) = {y | xay ∈ LD}. We say that the
derivatives in set D a-bifurcate L if LD = PrefDa (L) a SufDa (L). (The left to
right direction always holds.)

Example 3. Let L = Lang((aa)∗) = {(aa)k | k ≥ 0}. Then L(aa)∗ = La(aa)
∗

=

{(aa)k | k ≥ 1}. Hence we have, Prefa(aa)
∗

a (L) = {a2k | k ≥ 0} = Suf(aa)
∗

a (L)

and Sufa(aa)
∗

a (L) = {a2k+1 | k ≥ 0} = Pref(aa)
∗

a (L). The derivatives (aa)∗ and
a(aa)∗ both a-bifurcate L, but the set D = {(aa)∗, a(aa)∗} does not, as a2 ∈
Prefa(aa)

∗

a (L), and a2 ∈ Suf(aa)
∗

a (L), but a2aa2 /∈ LD.

Proposition 1. Every block D of the partition Parta(s) a-bifurcates Lang(s).

Proof. Let L = Lang(s), x ∈ PrefDa (L), y ∈ SufDa (L). We have to show that
xay ∈ L, for which we use induction on s. The base case s = a is easy as there is
only one a-derivative. Below we use D[s/r] to mean the derivatives in D where
the expression r is replaced by the expression s.

(Case s = s1 + s2): In the case that D[s1/s1 + s2] was from Parta(s1)
or D[s2/s1 + s2] was from Parta(s2), then from the induction hypothesis D a-
bifurcates Lang(s1) or Lang(s2) and hence also Lang(s1 + s2). The remaining
case is where s ∈ D, but since s1 + s2 cannot be an a-derivative of itself, this
requires that either s1 ∼a s or s2 ∼a s and we can again apply the induction
hypothesis.

(Case s = s1 · s2): If D = D1 · s2 ∈ Parta(s1) · s2, then y factorizes as
y1y2 with y2 ∈ Lang(s2) and we use the induction hypothesis to show xay1 in
Lang(s1). If D ∈ Parta(s2) then x factorizes as x1x2 with x1 ∈ Lang(s1) and we
use the induction hypothesis to show x2ay in Lang(s2). With s1s2 ∈ D we can
have both the conditions

– x ∈ Prefs1s2a (L) \ Prefs1a (L), this implies x ∈ Lang(s1), and
– y ∈ SufDa (L) ∩ Sufs2a (Lang(s2)), this implies ε ∈ Prefs2a (Lang(s2)).

Induction hypothesis, applied to the block D[s2/s1s2] of Parta(s2) (because un-
der these conditions s2 ∼a s1s2), gives ay in Lang(s2). Since ε ∈ Lang(s1), ay is
in Lang(s1s2). So xay ∈ Ls1s2 ⊆ LD.

(Case s = s∗1): If D = D1 · s∗1 ∈ Parta(s1) · s∗1, then xay factorizes as
x1x2ay1y2 with x1, y2 ∈ Lang(s∗1), x2 ∈ PrefD1

a (Lang(s1)), y1 ∈ SufD1
a (Lang(s1))

and we use the induction hypothesis to show x2ay1 is in Lang(s1). The remaining
case is where x ∈ Lang(s∗1) and ay ∈ Lang(s∗1), we deal with this as in the
previous case using the conditions s1 · s∗1 ∼a s∗1 and s∗1 · s∗1 ∼ s∗1. ut

3 Connected Expressions over a Distribution

We have a simple syntax of connected expressions. The component expression si
can be any regular expression (of any star-height), which is different from our
earlier paper [LMP11]. A connected expression is given in the form:

e ::= fsync(s1, s2, . . . , sk), si defined over Σi

When e = fsync(s1, s2, . . . , sk) and I ⊆ Σ, let the projection e↓I = Πi∈Isi.
For the connected expression e = fsync(s1, s2, . . . , sk), its language is given

by

Lang(e) = Lang(s1)‖Lang(s2)‖ . . . ‖Lang(sk),

where the synchronized shuffle L = L1‖ . . . ‖Lk is defined by

w ∈ L iff for all i ∈ {1, . . . , k}, w↓Σi
∈ Li.

The definitions of derivatives can be easily extended to connected expressions.
Given e = fsync(s1, s2, . . . , sk), its derivatives are defined using the derivatives
of the si on action a:

Dera(e) = {fsync(r1, r2, . . . , rk) | ∀i ∈ loc(a), ri ∈ Dera(si); otherwise rj = sj}.

We will use the word derivative for expressions such as d = fsync(r1, r2, . . . , rk)
above (essentially tuples of derivatives of regular expressions), and d[i] for ri.
The number of derivatives can be exponential in k. Define Init(d) to be those
actions a such that Dera(d) is nonempty. If a ∈ Init(d) we call d an a-site.
A connected expression has unique sites if each of its component regular ex-
pressions has the unique sites property. The reachable derivatives are Der(e) =
{d | d ∈ Derx(e), x ∈ Σ∗}. For example, fsync(ab, ba) does not have reachable
derivatives other than itself.

3.1 Pairings of Connected Expressions

In our syntax, along with connected expressions we are supplied with “pairings”
which specify which part of a component in a connected expression will intersect
with which part of another component in the expression. This is done using
derivatives, more precisely partitions of derivatives, since being in a state of an
automaton corresponds to any one of the blocks in the partition. This machinery
is to be set up now.

Definition 5. Let e = fsync(s1, s2, . . . , sk) be a connected expression over Σ.
For a global action a and given partitions of derivatives of each si, pairing(a) is
a subset of tuples of Πi∈loc(a)Der(si) which respects the partitions. (For instance,
if the partitions are Parta(si) for Σi, pairing(a) is a subset of tuples such that
the projection of these tuples includes all the blocks of Parta(si), and if a block
of Parta(sj), j ∈ loc(a) appears in one tuple of the pairing, it does not appear in
another tuple.) We call pairing(a) equal choice if for every tuple in the pairing,
the blocks of derivatives in the tuple have equal choice.
We extend the definition to connected expressions. A derivative fsync(r1, . . . , rk)
is in pairing(a) if there is a tuple D ∈ pairing(a) such that ri ∈ D[i] for all i ∈
loc(a). For convenience we may write a derivative as an element of pairing(a).
Expression e is said to have (equal choice) pairing of actions if for all global
actions a, there exists an (equal choice) pairing(a). Expression e is said to be
consistent with a pairing of actions if every reachable a-site d ∈ Der(e) is
in pairing(a).

Example 4. Consider a distribution Σ1 = Σ2 = {a} and a connected expres-
sion fsync(aa, a) defined over it. The partition for aa over Σ1 is Parta(aa) =
{{aa}, {a}} and for the expression a over Σ2 is Parta(a) = {{a}}. Since two
blocks of Parta(aa) cannot be paired with one block of Parta(a), expression
fsync(aa, a) does not have a pairing. Since there are two blocks in the parti-
tion Parta(aa), expression aa does not have unique sites property, neither does
fsync(aa, a).

Example 5. Consider a connected expression e = fsync(aa, bad + caf) over the
distribution (Σ1 = {a}, Σ2 = {a, b, c, d, f}). For action a, The partition over
Σ1 is Parta(aa) = {{aa}, {a}} and the partition over Σ2 is Parta(bad+ caf) =
{{ad}, {af}}. The a-sites of expression e are {fsync(aa, ad), fsync(aa, af)}. There
are two possible pairings for action a: one is {({aa}, {af}), ({a}, {ad})} and an-
other is {({aa}, {ad}), ({a}, {af})}. The derivative aa on the left appears in the
pairing with two different reachable a-sites of the right hand side, which belong
to two different blocks of Parta(bad+caf). Hence e is not consistent with respect
to any of the above pairings.

Example 6. Consider the connected expression fsync(r1, r2, r3) with r1 = (ac)∗,
r2 = (bc)∗ and r3 = (a(b + c))∗ over the distribution (Σ1 = {a, c}, Σ2 =
{b, c}, Σ3 = {a, b, c}). Now we have r′1 = Dera(r1) = c(ac)∗ and Init(r′1) = {c}.
For r3 we have, r′3 = Dera(r3) = (b + c)(a(b + c))∗ and Init(r′3) = {b, c}. Ex-
pressions r′1 and r′3 are c-sites of expressions r1 and r3 respectively. With sets of
derivatives D1 = {r′1} and D3 = {r′3} as the only blocks in the respective parti-
tions of c-sites i.e., Partc(r1) = {D1} and Partc(r3) = {D3}. As Init(D1) =
Init(r′1) = {c}, Init(D3) = Init(r′3) = {b, c} and pairing(c) = {(D1, D3)},
pairing(c) is not equal choice. Therefore, connected expression e does not have
equal choice. However one can see that e has unique sites property.

d1 = (aaa)∗aaa

d2 = aa(aaa)∗aaa

d3 = a(aaa)∗aaa

d4 = aa

d5 = a

d6 = ε

a
a

a a

a

a

d7 = (aaa)∗

d8 = aa(aaa)∗

d9 = a(aaa)∗

a

a

a

D1

D2 D2

D3 D3

D4

D5

D6

Der((aaa)∗aaa) Der((aaa)∗)

Fig. 1. Derivatives of d1 and d7 of expression e = fsync(d1, d7) with pairing(a) =
{(D1, D4), (D2, D5), (D3, D6)}.

Example 7. Consider a connected expression e = fsync((aaa)∗aaa, (aaa)∗). The
a-derivatives are Dera(e) = {fsync(aa(aaa)∗aaa, aa(aaa)∗), fsync(aa, aa(aaa)∗)}.

With respect to word aa, Deraa(e) = {fsync(a(aaa)∗aaa, a(aaa)∗), fsync(a, a(aaa)∗)}.
With respect to word aaa, Deraaa(e) = {fsync((aaa)∗aaa, (aaa)∗), fsync(ε, (aaa)∗)}.
The language of connected expression e is Lang(e) = {(aaa)k | k ≥ 1}. See
Figure 1 where derivatives of d1 = (aaa)∗aaa and d7 = (aaa)∗ are shown.
the set of derivatives of e = fsync(d1, d7), with respect to all words w ∈ Σ∗:
Der(e) = {(d1, d7), (d2, d8), (d4, d8), (d3, d9), (d5, d9), (d6, d7)} and, its set of a-
sites is {(d1, d7), (d2, d8), (d4, d8), (d3, d9), (d5, d9)}.

Let D1, D2, D3 be sets of a-sites for expressions d1 where, D1 = {d1}, D2 =
{d2, d4}, and D3 = {d3, d5}. And let D4, D5, D6 be sets of a-sites for expressions
d2 where, D4 = {d7}, D5 = {d8} and D6 = {d9}. For expression d1, Parta(d1) =
{D1, D2, D3} and for d2, Parta(d2) = {D4, D5, D6}. For action a, we have a
pairing relation pairing(a) = {(D1, D4), (D2, D5), (D3, D6)}. We can see that
expression has equal choice property and it is consistent with pairing of actions.

Proposition 2. For a connected expression checking existence of a pairing of
actions and checking whether it is equal choice can be done in polynomial time,
checking consistency with a pairing of actions is in Pspace.

Proof. We have to visit each derivative of all the regular expressions to construct
the a-partitions for every a. We can record their initial actions. Maximum num-
ber of Antimirov derivatives of any regular expression s is at most wd(s) + 1
[Ant96]. If the number of blocks in two a-partitions is not the same, there cannot
be a pairing(a), otherwise there always exists a pairing(a). For an equal choice
pairing, we have to count blocks whose sets of initial actions are the same, this
can be done in cubic time. On the other hand, to check consistency with a pair-
ing of actions, we have to visit each reachable derivative, this can be done in
Pspace. ut

4 Product Systems over a Distribution

Fix a distribution (Σ1, Σ2, . . . , Σk) of Σ. We now define an automaton over some
alphabet Σi.

Definition 6. A sequential system over a set of actions Σi is a tuple Ai =
〈Pi,→i, Gi, p

0
i 〉 where Pi are called places, Gi ⊆ Pi are final places, p0i ∈ Pi is

the initial place, and →i⊆ Pi ×Σi × Pi is a set of local moves.

Let →i
a denote the set of all a-labelled moves in the sequential system Ai.

For a local move t = 〈p, a, p′〉 of →i, p is called pre-place and p′ is called
post-place of t. A run of the sequential system Ai on word w is a sequence
p0a1p1a2, . . . , anpn, from set (Pi × Σi)∗Pi, such that p0 = p0i and for each j ∈
{1, . . . , n}, pj−1

aj−→ pj . This run is said to be accepting if pn ∈ Gi. The sequential
system Ai accepts word w, if there is at least one accepting run of Ai on w.
The language L = Lang(Ai) of sequential system Ai is defined as L = {w ∈
Σi
∗|w is accepted by Ai}.

Given a place p of Ai, we also define relativized languages and we will extend

this definition to product systems: Prefpa(L) = {x | xay ∈ L, p0
x−→ p

ay−→ Gi},
similarly Sufpa(L), Lp = {xay | xay ∈ L, p0

x−→ p
ay−→ Gi}. Say the place p

a-bifurcates L if Lp = Prefpa(L) a Sufpa(L).

We now define products of automaton.

Definition 7. Let Ai = 〈Pi,→i, Gi, p
0
i 〉 be a sequential system over alphabet Σi

for 1 ≤ i ≤ k. A product system A over the distribution Σ = (Σ1, . . . , Σk) is
a tuple 〈A1, . . . , Ak〉.

Let Πi∈LocPi be the set of product states of A. We use R[i] for the projec-
tion of a product state R in Ai, and R↓I for the projection to I ⊆ Loc. The
relativizations LR of a language L ⊆ Σ∗i consider projections to place R[i] in Ai.

The initial product state of A is R0 = (p01, . . . , p
0
k), while G = Πi∈LocGi

denotes the final states of A.

Let ⇒a= Πi∈loc(a) →i
a. The set of global moves of A is ⇒=

⋃
a∈Σ ⇒a. Then

for a global move

g = 〈〈pl1 , a, p′l1〉, 〈pl2 , a, p
′
l2〉, . . . 〈plm , a, p

′
lm〉〉 ∈⇒a, loc(a) = {l1, l2, . . . , lm},

we write g[i] for 〈pi, a, p′i〉, the projection to Ai, i ∈ loc(a) and pre(a) for the
product states where such a move is enabled.

Please note that the set of product states as well as the global moves are not
explicitly provided when a product system is given as input to some algorithm.

4.1 Matchings of Product Systems

Analogously to what we did for expressions, we now set up “matching” relations
between places in different components of a product system which correspond to
pre-places of a global move. (“Separation” below is a stronger property.) Thus
matchings restrict the possible synchronizations in a product, an idea developed
for transition systems by Arnold and Nivat [Arn94]. That the restriction involves
places is the key to translation into clusters of labelled free choice nets, which is
outlined in Section 6.

Definition 8. For global a ∈ Σ, matching(a) is a subset of tuples Πi∈loc(a)Pi
such that for all i in loc(a), projection of these tuples is the set of all pre-places
of a-moves in →a

i , and if a place p ∈ Pi appears in one tuple, it does not appear
in another tuple. We say a product state R is in matching(a) if its projection
R↓loc(a) is in the matching.

A product system is said to have matching of labels if for all global a ∈ Σ,
there is a suitable matching(a). A product system A is said to have separation
of labels if for all i ∈ Loc, and for all global actions a, if 〈p, a, p′〉, 〈q, a, q′〉 ∈→i

then p = q.

p1start

p2

a, b

p3start

p4

a

b

A1 A2

Fig. 2. Product system A = (A1, A2) with separation of labels

Example 8. Let Σ = {a, b} be a distributed alphabet with distribution (Σ1 =
Σ2 = Σ). Consider the product system A = (A1, A2) shown in Figure 2. For
global action a, place p1 is the only place in A1 having outgoing a-moves and,
place p3 is the only place in A2 having outgoing a-moves.

Similarly these are the only places, in respective sequential systems, which
have outgoing local b-moves. Therefore, product system A has separation of
labels property.

1start

2

aa

3start

a

B1 B2

Fig. 3. Product system B = (B1, B2) without separation of labels

On the other hand, consider product system B = (B1, B2) shown in Figure 3,
and defined over the distributed alphabet Σ′ = {a} having distribution Σ′1 =
Σ′2 = Σ′. Since sequential system B1 has more than one place having outgoing
a-moves, product system B does not have the separation of labels property.

Proposition 3. Let A = 〈A1, . . . , Ak〉 be a product system over distribution
Σ = (Σ1, . . . , Σk). If A has separation of labels, then for every i and every global
action a, Li = Lang(Ai) is a-bifurcated. If A has matching of labels, then for
every i and every global action a,

Li ∩Σ∗i aΣ∗i =
⋃

R↓loc(a)∈matching(a)

PrefR[i]
a (Li) a SufR[i]

a (Li).

Proof. Let A be a product system as above with separation of labels. Let L(q)
be the set of words accepted starting from any place q in Ai. If Prefa(L(q)) is
nonempty then L(q) is a-bifurcated, because the words containing a have to pass
through a unique place. When A has a matching of labels, since the places R[i]
appear in unique tuples, one can separately consider the places a-bifurcating
L(q) and the required property follows. ut

The next property is necessary for product systems to represent free choice
in equivalent nets. In our earlier paper [LMP11] we used the definition of an
FC-product. The definition of FC-matching product is a generalization since
conflict-equivalence is not required for all a-moves uniformly but refined into
smaller equivalence classes depending on the matching.

Definition 9. In a product system, we say the local move 〈p, a, q1〉 ∈→i is
conflict-equivalent to the local move 〈p′, a, q′1〉 ∈→j, if for every other local
move 〈p, b, q2〉 ∈→i, there is a local move 〈p′, b, q′2〉 ∈→j and, conversely, for
moves from p′ there are corresponding outgoing moves from p. For global action
a, its matching(a) is called conflict-equivalent matching, if whenever p, p′ are
related by the matching(a), their outgoing local a-moves are conflict-equivalent.

We call A = 〈A1, . . . , Ak〉 an FC-product if for every global action a ∈ Σ,
and for all i, j ∈ loc(a), every a-move in Ai is conflict-equivalent to every a-move
in Aj and we call A an FC-matching product if it has a conflict-equivalent
matching(a).

A system having a conflict-equivalent matching is a weaker condition than
the system being FC-product.

Example 9. Let Σ = {a, b, c} be a distributed alphabet with distribution (Σ1 =
Σ2 = Σ). Consider the product system A = (A1, A2) shown in Figure 4. The
matching relations are: matching(b) = {(1, 4)}, matching(a) = {(2, 5), (1, 4)}
and matching(c) = {(2, 5)}.

The local move 〈p1, a, p2〉 ∈→1 in A1 is conflict-equivalent with local move
〈p4, a, p5〉 ∈→2, but it is not conflict-equivalent with local move 〈p5, a, p7〉 ∈→2.

For global action a, consider places p1 and p4 which appear in a tuple of
matching(a), they have all their outgoing moves conflict-equivalent with each
other. This is true for places p2 and p5 as well. Hence, matching(a) is conflict-
equivalent. In fact, matching(b) and matching(c) are also conflict-equivalent.

Since local move 〈p1, a, p2〉 ∈→1 is not conflict equivalent with local move
〈p5, a, p7〉 ∈→2, for global action a, not all local a-moves are conflict-equivalent
to each other. Therefore, product system A is not an FC-product.

1start

2

3

4start

5

6 7 8

ab

a
c

a b

a
c

A1 A2

Fig. 4. Product system with matching of labels

Proposition 4. For product system A, checking if it has separation of labels,
and if it has matching of labels, can be done in Ptime.

Proof. To check if A has separation of labels, we visit all local moves of each
Ai once for all i in {1, . . . , k}, to make sure that for each global action a, all
a-moves of →i have same pre-place. This takes time linear in the size of A.

For a global action a ∈ Σ, to check if matching(a) exists, we need to visit
each place p of Ai, for all i in loc(a), to count how many places have outgoing
a-moves. If this count is same for each i in loc(a), then a matching(a) exists. We
repeat above step for each global a. So we need to visit each place of A at most
|Σ| times. Therefore, the total time needed to check if matching of labels exist
for product system A is O(|Σ||A|).

Proposition 5. Let A be an FC-matching product system. For any i, if there
exist local moves 〈p, a, p′〉, 〈p, b, p′′〉 in →i, then loc(a) = loc(b).

Proof. Since p has an outgoing a-move, p belongs to some tuple of matching(a).
If j ∈ loc(a), then in this tuple there exists a place q ∈ Pj , which has an outgoing
a-move. Since A is an FC-matching product, matching(a) is conflict-equivalent.
And, as places p and q appear in a tuple of matching(a), a-moves outgoing from
p and q are conflict-equivalent. Therefore there exists a local move (q, b, q′) ∈→j .
This implies that j ∈ loc(b). ut

4.2 Language of a Product System

Now we describe runs of A over some word w by associating product states with
prefixes of w: the empty word is assigned initial product state R0, and for every
prefix va of w, if R is the product state reached after v and Q is reached after va
where, for all j ∈ loc(a), 〈R[j], a,Q[j]〉 ∈→j and for all j /∈ loc(a), R[j] = Q[j].

Let pre(a) = {R | ∃Q,R a−→ Q}.

A run is said to be accepting if the product state reached after w is in G. We
define the language Lang(A) of product system A, as the words on which the
product system has an accepting run.

We use the following characterization of direct product languages, which
appears in [MR02,Muk11].

Proposition 6. L = Lang(A) is the language of product system
A = 〈A1, . . . , Ak〉 defined over distributed alphabet Σ iff

L = {w ∈ Σ∗ | ∀i ∈ {1, . . . , k}, ∃ui ∈ L such that w↓Σi
= ui↓Σi

}.

Further L = Lang(A1)‖ . . . ‖Lang(Ak).

The next definition is semantic and not easy to check (we do it in Pspace).
If a system has separation of labels, the property obviously holds.

Definition 10. A run of A is said to be consistent with a matching of
labels if for all global actions a and every prefix of the run R0 v⇒R a⇒Q, the
pre-places R↓loc(a) are in the matching.

Proposition 7. For product system A with matching of labels, checking if A is
FC-matching product can be done in Ptime, and checking if all runs of A are
consistent with given matching of labels can be done in Pspace.

Proof. To check if A is FC-product we have to check for each global action a,
whether matching(a) is conflict-equivalent. Let (p1, p2, . . . , pm) be a tuple in
matching(a). For any two places pi and pj of this tuple, we have to check if their
sets of labels of outgoing local moves are same. This comparison between two sets
takes O(k|Σ|) time. We need to carry out this step for all tuples in matching(a).
This can be done by visiting all local moves of Ai, for all i in loc(a) at most
once. Therefore, for each global action a in Σ, we need to visit all local moves
of A at most |Σ| times. Hence, the total time required is polynomial in the size
of Σ and A.

To check if all runs of A are consistent with given matching of labels we need
to visit each reachable global state of A at most once, which can be done in
Pspace.

5 Connected Expressions and Product Systems

In this section we prove two main theorems of the paper. To place them in context
of our earlier paper [LMP11], there we used a “structural cyclicity” condition
which allowed a run to be split into finite parts from the initial product state to
itself, since it was guaranteed to be repeated. The new idea in this paper is that
runs are split up using matchings which correspond to synchronizations; what
happens in between is not relevant for the connections across sequential systems.
Hence extending our syntax to allow full regular expressions for the sequential
systems does not affect the synchronization properties which are the main issue
we are addressing. In Section 6 we outline the connections to labelled free choice
nets.

5.1 Synthesis of Systems from Expressions

We begin by constructing products of automata for our syntactic entities. For
regular expressions, this is well known. We follow the construction of Antimirov,
which in polynomial time gives us a finite automaton of size O(wd(s)), using
partial derivatives as states. Now for connected expressions we need to construct
a product of automata.

Lemma 1. Let e be a connected expression with partitions which give unique
sites (for every global action). Then there exists a product system A with sepa-
ration of labels accepting Lang(e) as its language. If e had equal choice, then A
is FC-product.

Proof. Let e = fsync(s1, s2, . . . , sk). Then for each si, which is a regular expres-
sion defined over some alphabet Σi, we produce a sequential system Ai over Σi,
using Antimirov’s derivatives, such that Lang(si) = Lang(Ai), ∀ i ∈ {1, . . . , k}.
Next we trim it—remove places not reachable from the initial place p0i and places
from where a final place is not reachable. Now, for each global action a, we quo-
tient Ai by merging all derivatives d such that a ∈ Init(d) into a single place.

Call the resulting automaton A′i. Let p be the merged place in A′i which is
now the source of all a-moves. Clearly Lang(Ai) ⊆ Lang(A′i) since no paths are
removed, we show next that the inclusion in the other direction also holds, using
the unique sites condition.

Let a be a global action. Consider a word w = x1ax2 . . . axn in Lang(A′i),
where the factors x1, x2, . . . , xn do not contain the letter a. We wish to find
derivatives d0, d1, . . . , dn of Ai such that dn is a final place and for every j there

is a run dj
axj+1−−−−→ . . .

axn−−→ dn of Ai when j > 0, and d0
x1−→ ax2−−→ . . .

axn−−→ dn
when j = 0, which will show the desired inclusion.

We proceed from n downwards. For any place dn in G there is a run from
dn on ε ∈ Lang(dn) in Ai. Inductively assume we have dj such that there is

a run dj
axj+1−−−−→ . . .

axn−−→ dn of Ai, so xj+1axj+2 . . . axn is in Sufa(Lang(si))

since dj is reachable from the initial place. Since there is a run p
axj−−→ p in A′i

there are derivatives dj−1, cj of sj , such that there is a run dj−1
axj−−→ cj in Ai

(when j = 1 we get d0
x1−→ c1 by this argument). Since cj quotients to p, it

has an a-derivative c such that c is in Deraxja(dj−1) (Derx0a(d0) when j = 1).
Because dj−1 is reachable from the initial place by some v and because some
final place is reachable from c, vxj ∈ Prefa(Lang(si)) which is nonempty. By the
unique sites condition and Proposition 1, since xj+1 . . . axn is in Sufa(Lang(si)),
vaxjaxj+1 . . . axn is in Lang(si) and so xjaxj+1 . . . axn is in Sufa(Lang(si)). This
means that there is a run from some dj−1 on axjaxj+1 . . . axn ending in a final
place dn of Ai. So we have the induction hypothesis restored. If j = 1 we get d0
which quotients to p0 and has a run on w to dn in G.

So we get a product system A′ = 〈A′1, A′2, . . . , A′k〉 defined over Σ. Because
of the quotienting A′ has separation of labels. That means for a global action
a, for i, j in loc(a), sequential machines A′i, A

′
j has only one place which has

outgoing local a-moves. Let pai be that place in A′i and let paj be that place

in A′j . On the other hand, since e had unique sites, for a global action a and
for i, j in loc(a), expression si has only one block Di in the partition of a-sites
of si and expression sj has only one block Dj in the partition of a-sites of sj .
Therefore, all a-sites of si are in this block Di, and all a-sites of sj are in block
Dj . Therefore pairing(a) has only one tuple which have Di and Dj appearing
in it. Since e has equal choice property, we have Init(Di) = Init(Dj). Because of
quotienting construction, block Di corresponds to the place pai in A′i and block
Dj corresponds to the place paj in A′j . So each outgoing local a-move of pai is
conflict-equivalent to each outgoing local a-move of place paj .

Now we prove language equivalence of expression e and product system A′

constructed from it.

w ∈ Lang(e) iff ∀i, w↓Σi
∈ Lang(si), by definition of synchronized shuffle

iff ∀i, w↓Σi
∈ Lang(A′i)

iff w ∈ Lang(A′), by Proposition 6.

ut

Theorem 1. Let e = fsync(s1, . . . , sk) be a connected expression over a distri-
bution Σ with a pairing of actions. Then there exists an FC-matching product
system A over Σ, accepting Lang(e). If the pairing was equal choice, the match-
ing is conflict-equivalent. If the expression is consistent with the pairing, all runs
of A will be consistent with the matching.

Proof. We first rewrite e to another expression e′, construct an automaton A′

for Lang(e′), and then change it to recover an automaton for Lang(e).
Consider global action a and tuple of blocks D = Πi∈loc(a)Di in pairing(a).

By Proposition 1 Di a-bifurcates Lang(si). We rename for all i in loc(a), the
occurrences of a in si which correspond to an a in Init(Di), by the new letter
aDi . This is done for all global actions to obtain from e a new expression e′ =
fsync(s′1, . . . , s

′
k) over a distribution Σ′, where every s′i now has the unique sites

property. For any word w ∈ Lang(e), there is a well-defined word w′ ∈ Lang(e′).
By Lemma 1 we obtain a product system A′ with separation of labels for

Lang(e′). Say pre(aD) is the pre-place for action aD in A′i. We change all the
〈pre(aD), aD, q〉 moves to 〈pre(aD), a, q〉 in all the A′i to obtain a product system
A over the alphabet Σ. As w′ ∈ Lang(e′) = Lang(A′) is well-defined from w and,
as the renaming of labels of moves does not remove any paths, w is in Lang(A).
Conversely, for every run on w accepted by A, because of the separation of labels
property, there is a well-defined run on w′ with the label of a move appropriately
renamed depending on the source state, which is accepted by A′, hence w′ is in
Lang(e′). So renaming w′ to w gives a word in Lang(e).

Now we refer to the pairing of actions in e. This defines for each global action
a and tuple of blocks of a-sites D, a relation between pre-places of aD-moves in
different components in the product A′. By the separation of labels property of
A′, the tuples in the relation are disjoint, that is, the relation is functional. So
for pre-places of a-moves in the product A we have a matching. If the pairing
was equal choice, the matching is conflict-equivalent.

If the expression e is consistent with the pairing, all reachable a-sites are in
the pairing, so we can partition Lang(e)∩Σ∗aΣ∗ using the partitions in Parta(e).
Letting D range over blocks of connected expressions, each block D contributes
a global action aD in the renaming, so we get an expression e′ such that for
every global action aD, we have the unique a-sites property. Applying Lemma
1, we have the product system A′ with separation of labels. By Proposition 3,
every Lang(A′i) is aD-bifurcated, and using the characterization of Proposition 6,
Lang(A′)∩ (Σ′)∗aD(Σ′)∗ = PrefaD (Lang(A′))aDSufaD (Lang(A′)). Since several
actions aD are renamed to a and the corresponding tuples of pre-places are
recorded in the matching, by Proposition 3 and Proposition 6:⋃

R∈matching(a)

PrefRa (Lang(A)) a SufRa (Lang(A)) ⊆ Lang(A) ∩Σ∗aΣ∗.

But this means that all runs of A are consistent with the matching. ut

As an illustration of constructing product system with matching from ex-
pression with pairing, using Theorem 1 which employs Lemma 1 in its proof,
consider the expression in Example 7, for which we produce a product system
as was shown in Example 10.

d′1 = (awayab)
∗awayab

d′2 = ayab(awayab)
∗awayab

d′3 = ab(awayab)
∗awayab

d′4 = ayab

d′5 = ab

d′6 = ε

aw
aw

ay ay

ab

ab

d′7 = (awayab)
∗

d′8 = ayab(awayab)
∗

d′9 = ab(awayab)
∗

aw

ay

ab

Der(s′1) = Der((awayab)
∗awayab)

Der(s′2) =
Der((awayab)

∗)

Fig. 5. Derivatives of s′1 and s′2 of e′ = fsync(s′1, s
′
2) with unique sites property

Example 10. As we have seen in Example 7, the pairing relation for expression
e = fsync((aaa)∗aaa, (aaa)∗)), pairing(a) = {(D1, D4), (D2, D5), (D3, D6)}. Let
w = (D1, D4), y = (D2, D5) and b = (D3, D6).

Then using these tuples, we get a new alphabet Σ′ = {aw, ay, ab} with
distribution Σ′1 = {aw, ay, ab} and Σ′2 = {aw, ay, ab}. Each a in si belong to

only one block in Parta(si) and that block belong to only one tuple in the
pairing(a). Therefore, by renaming each a in si by its corresponding tuple in
pairing(a), we get s′1 = (awayab)

∗awayab and s′2 = (awayab)
∗awarab over alpha-

bet Σ′1 and Σ′2 respectively. Hence, we have a connected expression e′ over Σ′

as, e′ = fsync((awayab)
∗awayab, (awayab)

∗).

D1 = {d1}start

D2 = {d2, d4}

D3 = {d3, d5}

d6 = {ε}

a

a

a

a

D4 = {d7}start

D5 = {d8}

D6 = {d9}

a

a

a

Sequential system A1 Sequential system A2

Fig. 6. Product system A = (A1, A2) with separation of labels

Expressions s′1 and s′2 have unique sites property. In Figure 5, derivatives
of s′1 and s′2 are shown. The blocks in the partitions of their respective ax-
sites, where x ∈ {w, y, b} are: D′1 = {d′1}, D′2 = {d′2, d′4}, D′3 = {d′3, d′5}, D′4 =
{d′7}, D′5 = {d′5}, D′6 = {d′6}. Now by Lemma 1 we can fuse derivatives in the
respective blocks to get product system A′ = (A′1, A

′
2), having separation of

labels property, and which is language equivalent to expression e′. The set of
places of sequential system A′1, is {D′1, D′2, D′3, d′6}, and of sequential system
A′2, is {D′4, D′5, D′6}. In each A′i we have only one place which has outgoing ax-
moves. So each ax contributes only one tuple of places in matching(a). Therefore,
matching(a) = {(D1, D4), (D2, D5), (D3, D6)}. The final product system over Σ
is shown in Figure 6.

5.2 Analysis of Expressions from Systems

Lemma 2. Let A be a conflict-equivalent product system with separation of la-
bels. Then we can compute a connected expression for the language of A with
partitions of the regular expressions which have unique sites and specified pair-
ings which have equal choice.

Proof. Let A = 〈A1, . . . , Ak〉 be a product system with separation of labels,
where Ai is a sequential system of A with places P , initial place p0 and final
places G. Kleene’s theorem gives us expressions for the words which have runs

from a given state to another using a specified set of states [MY60] and these
are put together. Let us suppose that all the states which do not have any global
actions enabled are dealt with first. After that we add the states with global
actions, we do an induction on the number of these states.

Now we consider a global action a. By separation of labels there is a single
place p in Ai enabling a. Let Q be the states which have already been dealt with
and R = Q ∪ {P}. Let T be the set of moves outgoing from p and which are

not a-moves. Depending on whether we have an a-move p
a−→ p, or a-moves p

a−→
pj , pj 6= p, or a combination of these two types, we obtain the expression below
(where the expressions on the right hand side have already been computed):

eRp0,f = eQp0,f + eQp0,p(e
Q
p,p)
∗eQp,f ,

where the expression eQp,p is given by one of the following refinements, for the
three cases considered above respectively:

(a+ eTp,p), or ((
∑
j

aeTpj ,p) + eTp,p), or (a+ (
∑
j

aeTpj ,p) + eTp,p).

The superscripts Q and T indicates that these expressions are derived, as in the
McNaughton-Yamada construction [MY60], for runs which only use the places
Q and, respectively, runs which only use the places Q and moves T (these ex-
pressions have already been computed). Whichever be the case, we note that we

have an expression with Da(eRp0,f) = {(eQp,p)∗e
Q
p,f} as its singleton set of a-sites.

Therefore, expression eRp0,f has the unique a-sites property. Since the product
system was conflict-equivalent, this argument extends if there are other global
actions enabled at state p, and the expression obtained is equal choice.

Now consider a global action c enabled at a state q in Q. The c-sites are
obtained from several parts of the expression:

Dc(eRp0,f) = Dc(eQp0,f)∪Dc(eQp0,p) · (e
Q
p,p)
∗ ·eQp,f ∪D

c(eTp,p) · (eQp,p)∗ ·e
Q
p,f ∪D

c(eQp,f).

By induction the right hand expressions had the unique c-sites property, the
c-partition collapses all the derivatives above into a single block. We claim the
derivatives in this four-way union c-bifurcate the language Lang(eRp0,f). If the
state q was visited in only one of the four cases there is nothing to prove.
The interesting case is when there is a path from p to q as well as from q
to p, and separate paths from p0 to p and from p0 to q. In this case the
second and the third components of the union will both be nonempty. Sup-
pose w1 = x1cy1 with x1 ∈ Lang(eQp0,q) and cy1 ∈ Lang(eTq,p(e

Q
p,p)
∗eQp,f), and

w2 = x2cy2 with x2 ∈ Lang(eQp0,pe
T
p,q) and cy2 ∈ Lang(eTq,p(e

Q
p,p)
∗eQp,f). But then

x1cy2 is in Lang(eQp0,qe
T
q,p(e

Q
p,p)
∗eQp,f) and hence in Lang(eRp0,f). Similarly x2cy1 is

in Lang(eQp0,pe
T
p,qe

T
q,p(e

Q
p,p)
∗eQp,f) and also in Lang(eRp0,f). In both cases the same

derivatives, giving the language for the expression eTq,p(e
Q
p,p)
∗eQp,f , appear in the

set Dc. By equal choice, this argument extends if other global actions are also
enabled along with c. ut

Theorem 2. Let A be a product system with a conflict-equivalent matching.
Then we can compute a connected expression for the language of A with an
equal choice pairing of actions.

Proof. Let A be a product system with a conflict-equivalent matching. Enumer-
ate the global actions a, b, Say the matching(a) has n tuples.

We construct a new product system A′ where, for the places in the j’th
tuple of the matching(a), we change the label of the outgoing a-moves to aj ;
similarly for the places in tuples of the matching(b); and so on. We now have
a new product system where the letter a of the alphabet has been replaced by
the set {a1, . . . , an}; the letter b has been replaced by another set; and so on,
obtaining a new distribution Σ′. By definition of a matching, the various labels
do not interfere with each other, so we have a matching with the new alphabet,
conflict-equivalent if the previous one was. Runs which were consistent with
the matching continue to be consistent with the new matching. Again by the
definition of matching, the new system A′ has separation of labels. Hence we
can apply Lemma 2.

From the Lemma 2 we get a connected expression e′ = fsync(s1, . . . , sk)
for the language of A′ over Σ′ where every regular expression has unique sites.
From the proof of the Lemma 2 we get for every sequential system A′i in the
product, for the global actions a1, . . . , an, tuples D′(aj) = Πi∈loc(a)D

′
i(a

j) which
are sites for aj in the expression si, for every j. Now substitute a for every letter
a1, . . . , an in the expression, each tuple D′ is isomorphic to a tuple D of sites
for a in e and the sites are disjoint from one another. We let pairing(a) be the
partition formed by these tuples. Do the same for b obtaining pairing(b). Repeat
this process until all the global actions have been dealt with. The result is an
expression e with pairing of actions. If the matching was conflict-equivalent, the
pairing has equal choice.

The runs of A have to use product places in pre(a) for global action a, define

L = Lang(A) ∩Σ∗aΣ∗ =
⋃

R∈pre(a)

PrefRa (Lang(A)) a SufRa (Lang(A)).

The renaming of moves depends on the source place, so L is isomorphic to

L′ = Lang(A′) ∩ (
∑
j

(Σ′)∗aj(Σ′)∗) =
⋃
j=1,n

Prefaj (Lang(A′))ajSufaj (Lang(A′)).

Keeping Proposition 6 in our hands, the Lemma 2 ensures that Lang(A′) =
Lang(e′) and the expression e′ has unique aj-sites forming a block D′(j). Then

L′ can be written as
⋃
j=1,n

Pref
D′(j)
aj (Lang(e′))ajSuf

D′(j)
aj (Lang(e′)). When we re-

name the aj back to a we have a partition of pairing(a) into sets D such that

L =
⋃

D⊆pairing(a)

PrefDa (Lang(e)) a SufDa (Lang(e)).

If all runs of A were consistent with the matching(a), the product states in
pre(a) would all be in the matching(a), and we obtain that the expression e is
consistent with the pairing(a). ut

Example 11. Let Σ be a distributed alphabet and (Σ1 = {a}, Σ2 = {a}) be
a distribution of Σ. Consider a product system A = (A1, A2) with matching,
defined over Σ, as shown in Figure 6. A matching relation for global action a is:
matching(a) = {(D1, D4), (D2, D5), (D3, D6)}.

Let w = (D1, D4), y = (D2, D5) and b = (D3, D6). Hence, we have new alpha-
bet Σ′ = {aw, ay, ab} with distribution Σ′1 = {aw, ay, ab} and Σ′2 = {aw, ay, ab}.
We now have a new product system A′ = (A′1, A

′
2) in which each action labelled

a of has been replaced by an action from {aw, ay, ab}; Again by the definition
of matching, the new system A′ has separation of labels. Hence we can apply
Lemma 2, to get a connected expression e′ = fsync((awayab)

∗awayab, (awayab)
∗)

defined over Σ′, language equivalent to A′ and have unique sites. Derivatives for
s′1 = (awayab)

∗awayab and s′2 = (awayab)
∗awarab are shown in the Figure 5.

Since e′ has unique actions, for action aw, there is only one block in the partitions
of aw-sites of s′1 and s′2: Partaw(s′1) and Partaw(s′2), and for remaining global ac-
tions ay, ab also. For action aw partition set is: Partaw(s′1) = {D′1}, Partaw(s′2) =
{D′4}, for action ay: Partay (s′1) = {D′2}, Partay (s′2) = {D′5}, and, for action ab:
Partab(s′1) = {D′3}, Partab(s′2) = {D′6}.

Now we replace each aw, ay and ab in e′ by action a to get expression
e = fsync((aaa)∗aaa, (aaa)∗) defined over Σ. For blocks D′i we get respective
blocks Di, as shown in Figure 1. And, pairing relation for a is: pairing(a) =
{(D1, D4), (D2, D5), (D3, D6)}.

6 Applying the Kleene Result to Nets

We now wish to see how the Kleene result between expressions and product
systems proved in Theorems 1 and 2 can be applied to net systems. First some
definitions.

Definition 11. A labelled net N is a tuple (S, T, F, λ), where S is a set of places,
T is a set of transitions labelled by the function λ : T → Σ and F ⊆ (T × S) ∪
(S × T) is the flow relation. It will be convenient to define loc(t) = loc(λ(t)).

Elements of S ∪ T are called nodes of N . Given a node z of net N , set •z = {x |
(x, z) ∈ F} is called pre-set of z and z • = {x | (z, x) ∈ F} is called post-set of
z. Given a set Z of nodes of N , let •Z =

⋃
z∈Z

•z and Z • =
⋃
z∈Z z

•. We only
consider nets in which every transition has nonempty pre- and post-set.

Definition 12. Let N ′ = (S ∩ X,T ∩ X,F ∩ (X × X)) be a subnet of net
N = (S, T, F), generated by a nonempty set X of nodes of N . N ′ is called a
component of N if,

– For each place s of X, •s, s • ⊆ X (the pre- and post-sets are taken in N),
– For all transitions t ∈ T , we have |•t| = 1 = |t •| (N ′ is an S-net [DE95]),

– Under the flow relation, N ′ is connected.

A set C of components of net N is called S-cover for N , if every place of the
net belongs to some component of C. A net is covered by components if it has an
S-cover.

Note that our notion of component does not require strong connectedness
and so it is different from notion of S-component in [DE95], and therefore our
notion of S-cover also differs from theirs.

Fix a distribution (Σ1, Σ2, . . . , Σk) of Σ. The next definition appears in sev-
eral places for unlabelled nets, starting with [Hac72].

Definition 13. A labelled net N = (S, T, F, λ) is called S-decomposable if,
there exists an S-cover C for N , such that for each Ti = {λ−1(a) | a ∈ Σi}, there
exists Si such that the induced component (Si, Ti, Fi) is in C.

Now from S-decomposability we get an S-cover for net N , since there exist
subsets S1, S2, . . . , Sk of places S, such that S = S1∪S2∪. . . Sk and •Si∪S•i = Ti,
such that the subnet (Si, Ti, Fi) generated by Si and Ti is an S-net, where Fi is
the induced flow relation from Si and Ti.

6.1 Free Choice Nets

Definition 14 ([DE95]). Let x be a node of a net N . The cluster of x, denoted
by [x], is the minimal set of nodes contaning x such that

– if a place s ∈ [x] then s• is included in [x], and
– if a transition t ∈ [x] then •t is included in [x].

A cluster C is called free choice (FC) if all transitions in C have the same pre-set.
A net is called free choice if all its clusters are free choice.

In a labelled N , for a cluster C = (SC , TC) define the a-labelled transitions
Ca = {t ∈ TC | λ(t) = a}. If the net has an S-decomposition generated by Si, we
associate a post-product π(t) = Πi∈loc(a)(t

• ∩ Si) with every such transition t.
This is well defined since by the S-net condition every transition will have at most

one post-place in Si. Let post(Ca) =
⋃
t∈Ca

π(t). We also define the post-projection

of the cluster Ca[i] = Ca
•∩Si and the post-decomposition postdecomp(Ca) =

Πi∈loc(a)Ca[i].
Clearly post(Ca) ⊆ postdecomp(Ca). The following definition appears in

[Pha14b], and provides the way to direct product representability.

Definition 15 ([Pha14b]). An S-decomposable net N = (S, T, F, λ) is said to
be distributed choice if, for all global actions a in Σ and for all clusters C of
N , postdecomp(Ca) ⊆ post(Ca).

6.2 Net Systems and Their Languages

For our results we are only interested in 1-bounded (or condition/event) nets,
where a place is either marked or not marked. Hence we define a marking as a
function from the states of a net to {0, 1}.

A transition t is enabled in a marking M if all places in its pre-set are marked
by M . In such a case, t can be fired to yield the new marking M ′ = (M \•t)∪ t •.
We write this as M [t〉M ′ or M [λ(t)〉M ′.

A firing sequence (finite or infinite) λ(t1)λ(t2) . . . is defined by composition,
from M0[t1〉M1[t2〉 . . . For every i ≤ j, we say that Mj is reachable from Mi. A
net system (N,M0) is live if, for every reachable marking M and every transition
t, there exists a marking M ′ reachable from M which enables t.

Definition 16. For a labelled net system (N,M0,G), its language is defined as
Lang(N,M0,G) = {λ(σ) ∈ Σ∗ | σ ∈ T ∗ and M0[σ〉M, for some M ∈ G}.

If a net (S, T, F, λ) is 1-bounded and S-decomposable then a marking can
be written as a k-tuple from its components S1 × S2 × . . . × Sk. It is known
[Zie87,Muk11] that if we do not enforce the “direct product” condition below we
get a larger subclass of languages.

Definition 17. An S-decomposable labelled net system (N,M0,G) is an
S-decomposable labelled net N = (S, T, F, λ) along with an initial marking M0

and a set of markings G ⊆ ℘(S), which is a direct product: if 〈q1, q2, . . . qk〉 ∈ G
and 〈q′1, q′2, . . . q′k〉 ∈ G then {q1, q′1} × {q2, q′2} × . . .× {qk, q′k} ⊆ G.

6.3 From Product Systems to Net Systems

From a product system we can straightforwardly construct a net.

Definition 18 (Product to net). Given a product system A = 〈A1, . . . , Ak〉
over distribution Σ, we can produce a net system (N = (S, T, F, λ),M0,G) as
follows:

– S = ∪iPi, the set of places.
– T = ∪aTa, where Ta is ⇒a, the set of a-labelled global moves.
– The labelling function λ labels by a the transitions in Ta.
– The flow relation F = {(p, g), (g, q) | g ∈ Ta, g[i] = 〈p, a, q〉, i ∈ loc(a)}.
– M0 = {p01, . . . , p0k}, the initial product state.
– G = G1 × · · · ×Gk, the set of final product states.

Since a global action a can be in every component Ai of the product system
and there can be an arbitrary number ni of a-labelled choices in each component,
the resulting a-cluster in the net has n1 × · · · × nk transitions which can be
exponential in the size of the product system.

Here is what this construction yields.

Theorem 3 ([Pha14b,Pha14a]). In the construction of net system (N,M0,G)
in Definition 18, N is S-decomposable, satisfies the distributed choice property,
and with Lang(N,M0,G) = Lang(A). Further, if all runs of A are consistent
with a conflict-equivalent matching of labels, we can choose T ′ ⊆ T such that the
subnet N ′ generated by T ′ is a free choice net and (N ′,M0,G) accepts the same
language.

Example 12. For the product system shown in Figure 6 we construct a net
as shown in Figure 7. It is free choice and language equivalent to product
system A. Set of final markings for this net is Mf = {(d6, D4)}. Hence, we

D1

D2

D3

D4

D5

D6

d6

a

a

a

Fig. 7. Net system constructed from A = (A1, A2) over Σ of Figure 6.

get a language equivalent free choice net system for the connected expression
e = fsync((aaa)∗aaa, (aaa)∗) of Example 7. This net has distributed choice prop-
erty.

6.4 S-decomposable Net Systems to Product Systems with
Matching

For a net which is 1-bounded and S-decomposable it might have many S-covers
for it. And, in an S-cover each component of it need not have only one token
in it. For live and 1-bounded free choice nets, there exist at least one S-cover
in which each component have only one token in it [DE95]. In this paper, when
we say that a 1-bounded net is S-decomposable we refer to one such S-cover

in which each component has only one token. Taking this S-cover it is easy to
construct a product system.

Definition 19 (Net to product). Given a 1-bounded and S-decomposable
labelled net system (N,M0,G), with N = (S, T, F, λ) the underlying net and
Ni = (Si, Ti, Fi) the components in the S-cover, for i in {1, 2, . . . , k}, we define
a product system:

– Pi = Si, p
0
i the unique state in M0 ∩ Pi.

– →i= {〈p, λ(t), p′〉 | t ∈ Ti and (p, t), (t, p′) ∈ Fi, for p, p′ ∈ Pi}. For each
t ∈ Ti, we know that, there exist places p, p′ ∈ Si such that (p, t) and (t, p′)
belong to Fi.

– So we get sequential system Ai = 〈Pi,→i, p
0
i 〉 and the product system A =

〈A1, A2, . . . , Ak〉 over distributed alphabet Σ.
– G = {(M ∩ P1, . . . ,M ∩ Pk) |M ∈ G}. If G was a direct product set of final

markings, we can define Gi = {M ∩ Pi | M ∈ G} and set G to be their
product G1 × · · · ×Gk.

The distributed choice property yields the following results. The references
below provide counterexamples when the distributed choice condition is not met.

Theorem 4 ([Pha14b,Pha14a]). When the given net N satisfies the dis-
tributed choice property, the construction of the product system A in Defini-
tion 19 preserves language, that is, when restricted to runs consistent with a
matching, Lang(N,M0,G) = Lang(A). Further, since the net is free choice, the
matching is conflict-equivalent, making A an FC-matching product.

Example 13. Let Σ be a distributed alphabet and (Σ1 = {a}, Σ2 = {a}) be a
distribution of Σ. Consider the free choice net as shown in Figure 7. It has
distributed choice property, and an S-decomposition is {D1, D2, D3, d6} and
{D4, D5, D6}. A set of final markings for this net is Mf = {(d6, D4)}. As one
may expect this produces the language equivalent product system A shown in
Figure 6.

6.5 Conclusion

In earlier work [LMP11], we showed that a graph-theoretic condition called
“structural cyclicity” enables us to extract syntax from a conflict-equivalent
product system. In the present work we have generalized this condition so that
we can deal with a larger class of product systems with a conflict-equivalent
matching. Using [Pha14b,Pha14a] we obtain a Kleene characterization for the
class of labelled free choice nets with the distributed choice property using a
pairing condition on connected expressions.

Acknowledgements. We thank the referees of the PNSE workshop and the ref-
erees of ToPNOC, who urged us to improve the presentation of the proofs of
the main theorems and to correct and clarify our results. We would also like to
thank Jörg Desel for his patience as editor of the ToPNOC special issue.

References

[Ant96] Valentin Antimirov. Partial derivatives of regular expressions and finite au-
tomaton constructions. Theoret. Comp. Sci., 155(2):291–319, 1996.

[Arn94] André Arnold. Finite transition systems. Prentice-Hall, 1994.
[Brz64] Janusz A. Brzozowski. Derivatives of regular expressions. JACM, 11(4):481–

494, 1964.
[DE95] Jörg Desel and Javier Esparza. Free choice Petri nets. Cambridge University

Press, New York, USA, 1995.
[GR92] Vijay K. Garg and M.T. Ragunath. Concurrent regular expressions and their

relationship to Petri nets. Theoret. Comp. Sci., 96(2):285–304, 1992.
[Gra81] Jan Grabowski. On partial languages. Fund. Inform., IV(2):427–498, 1981.
[Hac72] Michel Henri Théodore Hack. Analysis of production schemata by Petri nets.

Project Mac Report TR-94, MIT, 1972.
[LMP11] Kamal Lodaya, Madhavan Mukund, and Ramchandra Phawade. Kleene the-

orems for product systems. In Markus Holzer, Martin Kutrib, and Giovanni
Pighizzini, editors, Proc. 13th DCFS, Limburg, volume 6808 of LNCS, pages
235–247, 2011.

[LRR03] Kamal Lodaya, D. Ranganayakulu, and K. Rangarajan. Hierarchical struc-
ture of 1-safe Petri nets. In Vijay A. Saraswat, editor, Proc. 8th Asian,
Mumbai, volume 2896 of LNCS, pages 173–187, 2003.

[LS05] Sylvain Lombardy and Jacques Sakarovitch. How expressions can code for
automata. RAIRO Theor. Inform. Appl., 39(1):217–237, 2005.

[LS10] Sylvain Lombardy and Jacques Sakarovitch. Corrigendum. RAIRO Theor.
Inform. Appl., 44(3):339–361, 2010.

[LW00] Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded
width property. Theoret. Comp. Sci., 237(1-2):347–380, 2000.

[Mir66] Boris G. Mirkin. An algorithm for constructing a base in a language of regular
expressions. Engg. Cybern., 5:110–116, 1966.

[MR02] Swarup Mohalik and R. Ramanujam. Distributed automata in an assumption-
commitment framework. Sādhanā, 27, part 2:209–250, April 2002.

[Muk11] Madhavan Mukund. Automata on distributed alphabets. In Deepak D’Souza
and Priti Shankar, editors, Modern applications of automata theory, pages
257–288. World Scientific, 2011.

[MY60] Robert McNaughton and Hisao Yamada. Regular expressions and state
graphs for automata. IEEE Trans. IRS, EC-9:39–47, 1960.

[Pha14a] Ramchandra Phawade. Direct product representation of labelled free choice
nets. Int. J. Comp. Appl., 99(16), 2014.

[Pha14b] Ramchandra Phawade. Labelled Free Choice Nets, finite Product Automata,
and Expressions. PhD thesis, Homi Bhabha National Institute, 2014. Sub-
mitted.

[PL14] Ramchandra Phawade and Kamal Lodaya. Kleene theorems for labelled free
choice nets. In Proc. 8th PNSE, Tunis, volume 1160 of CEUR-WS, pages
75–89, 2014.

[SH96] Pablo A. Straub and L. Carlos Hurtado. Business process behaviour is (al-
most) free-choice. In Proc. CESA, Lille, pages 9–12. IEEE, 1996.

[TY14] P.S. Thiagarajan and Shaofa Yang. Rabin’s theorem in the concurrency set-
ting: a conjecture. Theoret. Comp. Sci., 546:225–236, 2014.

[Zie87] Wies law Zielonka. Notes on finite asynchronous automata. Inform. Theor.
Appl., 21(2):99–135, 1987.

