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Abstract. We prove Kleene theorems for two subclasses of labelled
product systems which are inspired from well-studied subclasses of 1-
bounded Petri nets. For product T-systems we define a corresponding
class of expressions. The algorithms from systems to expressions and in
the reverse direction are both polynomial time. For product free choice
systems with a restriction of structural cyclicity, that is, the initial global
state is a feedback vertex set, going from systems to expressions is still
polynomial time; in the reverse direction it is polynomial time with access
to an NP oracle for finding deadlocks.

1 Introduction

The descriptional complexity of regular expressions versus automata is well
known: the Kleene construction from expressions to automata can be carried
out in Dlogspace [JR91], while for the converse translation exponential size
lower bounds are known [EZ76,GH08]. In this paper we seek to extend these re-
sults to the class of 1-bounded free choice Petri net systems and their subclass,
1-bounded T-systems [CHEP71,GL73,Hack72,DE95].

In [Lod06a], we gave a syntactic characterization of Mazurkiewicz’s recogniz-
able trace languages [Maz77,Och85,DR95], seen as behaviours of labelled product
automata [BeSh83,Arn94]. Our expression syntax was borrowed from Grabowski
[Gra81] and Garg and Ragunath [GR92], ultimately deriving from Campbell and
Haberman’s path expressions [CH74] and Hoare’s CSP [Hoa85] by extending
regular expressions with a parallel operation (equivalent to shuffle on words), a
parallel mixed with intersection (or shuffle with synchronization) and renaming
a letter by another.

Zielonka’s theorem [Zie87] shows that 1-bounded Petri nets can be viewed
as such products. Hence we work with product systems. We are able to extend
known constructions on finite automata to syntactically characterize live and
structurally cyclic product free choice systems and live product T-systems. The
next section gives definitions for these classes, borrowing from Petri nets. Unlike
the earlier paper [Lod06a] we do not use Zielonka’s theorem in our proofs. Going
from automata to expressions we get polynomial time algorithms, which might
appear surprising, but the benefit is derived from the condition of structural
cyclicity.



In our earlier paper, we used renaming to
disambiguate synchronization, but some sub-
tleties remain. For example the system shown
in the figure might seem to be described by
the expression (a1||a1a2||a2)[a/a1, a/a2], but
in fact the example is not a labelled product
system (see the definitions in the next section)
and the expression is not valid, since the la-
belling, and the renaming operator, have to
preserve the process structure: synchroniza-
tions between different sets of processes can-
not get the same label.
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However its behaviour is just the single word aa and the system is a la-
belled 1-bounded Petri net which even satisfies the “trace labelling” condition of
Thiagarajan [Thi96]. Our basic results do not use the renaming operator, conse-
quently we bear the burden of using labellings which preserve process structure.

The largest proper subclass of nets where we are aware of earlier results are on
1-bounded SR-systems [LRR03,RL03], which use an algebraic structure of series
and parallel operations [LW00], with only a simple “fork-join” type of synchro-
nization mechanism. Even T-systems are not included in SR-systems since they
provide a genuine multi-way synchronization (or “rendezvous”) mechanism for
communication. The algebraic approach has been very successful at classifying
subclasses of regular languages (see [Weil04,TT07] for surveys emphasizing this
aspect). However, partially commutative monoids which are used to characterize
recognizable trace languages have not so far yielded any results on free choice
systems and their subclass of T-systems. Ours is the first work in this direction.

2 Labels and products

Following [Lod06a] we define a rendezvous alphabet to be a tuple (A, |, 0, loc)
where A is a finite alphabet A containing a dummy action 0, | : A × A → A
is a commutative and associative rendezvous operation over A with 0 as an
absorbing element and loc : A→ ℘(Loc) maps actions to locations such that

– loc(0) = ∅ and loc−1(∅) = 0.
– If loc(a) and loc(b) are not disjoint, a|b = 0.
– If loc(a) and loc(b) are disjoint and a|b 6= 0, loc(a|b) = loc(a) ∪ loc(b).
– If loc(c) = r ∪ s for disjoint r and s then there exist a, b such that c = a|b,

with loc(a) = r, loc(b) = s.

Actions in A with a single location are called local, and nonzero actions a such
that for every b, a|b = 0 are global. Thus, a global action is either a local action
that does not rendezvous at all, or a “full” synchronization a1|a2| · · · |ak whose
“partial” subsets such as a3, a1|ak,. . . are not global since further rendezvous
will be carried out. Let G(A) be the global actions in A.



A renaming between rendezvous alphabets is a relation ρ that is Loc-
respecting and |-stable: that is, if aρb then loc(a) = loc(b) and for all c, (a|c)ρ(b|c).
The expression in the Introduction does not have a Loc-respecting renaming.

Let ρ be a renaming which is an equivalence relation over alphabet A. C =

(G(A)/ρ, loc) is called a distributed alphabet where loc([a])
def
= loc(a) is well

defined. We also write ρ as the function ρ(a) = [a].

Definition 1 ([Lod06a]). Let Ai
def
= {a ∈ A | i ∈ loc(a)}. A product sys-

tem of automata N over the alphabet (A, |, 0, loc) is given by automata Ni =
(Pi, p

i
0,→i) (called places, initial places and local transitions) over the alphabet

Ai, for each i in Loc. We call Πi∈Locp
i
0 the initial global state. Given a renaming

ρ defining a distributed alphabet C, a labelled product system of automata
N [ρ] is a product system N over C.

A product system runs on a word w over the global actions (or ρ(w) over the
distributed alphabet) by associating global states from Πi∈LocPi to prefixes of w:
the empty word is assigned the initial global state, and for every prefix va of w,
if Πi∈Locpi is the global state reached after v, then the state Πi∈Locqi reached
after va satisfies, for every j ∈ loc(a), pj

a−→i qj in Mi, and for every other j,
pj = qj . Thus every action transforms the places of the locations it affects, the

other places remaining fixed. We call t = Πi∈Locpi
a−→i qi a global transition if

there is some word wa such that t describes the change in global state from w
to wa for some run of N on wa.

The language of the product system is the set of maximal words (finite or
infinite), where a system keeps on running as long as possible and, in addition,
each global transition which is infinitely often enabled occurs infinitely often
in the run. Since a product system can be simulated by a finite automaton,
its accepted language is regular and we call it a recognizable shuffle language
[Moh99].

Traces. Let I be an irreflexive symmetric relation over A called independence
defined by aIb if loc(a) and loc(b) are disjoint. Let its reflexive transitive closure
on A∗ be ∼I , called trace congruence. For instance, if aIb then wabx ∼I wbax
(a and b commute).

Notice that if a product system has a run (or an accepting run) on a word
wabx and aIb, then it has a run (respectively, an accepting run) on the word wbax
as well. Hence a recognizable shuffle language is a recognizable trace language
over (G(A), I) in the sense of Mazurkiewicz [Maz77]. Zielonka showed that the
converse is not true [Zie87].

Let I be the independence relation over A above extended to C. Using the
properties of ρ, the languages accepted by labelled product automata continue
to be recognizable trace languages over (C, I). But they need no longer be rec-
ognizable shuffle languages. Every recognizable trace language is accepted by a
labelled product system.

In a product system, we say the local transition p
a−→i q1 is conflict-equivalent

to the local transition p′
a−→j q

′
1 if loc(a) = loc(b), for every other local transition



p
b−→i q2, there is a local transition p′

b−→j q
′
2 and, conversely, transitions from p′

are matched by transitions from p.
A product system N has a natural representation as a (labelled) 1-safe Petri

net (P, T, F, λ,M0), with places P , net transitions T , flow relation F ⊆ (P ×T )∪
(T × P ), labelling λ : T → A and initial marking M0 ⊆ P , as follows:

– P =
⋃

i∈Loc Pi,

– T = {t = Πi∈Loc(a)pi
a−→i qi | t is a global transition of N},

– F = {(p, t), (t, q) | ∃t = Πi∈Loc(a)pi
a−→i qi : ∃i ∈ Loc(a) : p = pi, q = qi},

– λ(Πi∈Loc(a)pi
a−→i qi) = a, and

– M0 =
⋃

i∈Loc{pi0}.

We now borrow some definitions from Petri nets into the framework of prod-
uct systems [CHEP71,GL73,Hack72,DE95]. First on the structural side, and then
on the behavioural:

Definition 2. A product system is free choice, more briefly an FC-product,
if for every a such that |loc(a)| > 1, every pair of a-labelled local transitions is
conflict-equivalent. We will also use FC-dag for FC-products which are acyclic
and just dag for acyclic and rooted finite automata. A product T-system (T-
product) is one where every place has at most one input transition and at most
one output transition.

Definition 3. A global state is live if for any run from it and any global tran-
sition t = Πi∈Loc(a)pi

a−→i qi, the run can be extended so that transition t occurs.
A product system is live if its initial global state is live. It is deadlock-free
if for every i, from a place pi in a reachable global state Πj∈Locpj and a local

transition pi
a−→i qi, there is a run in which a global transition Πj∈Locpj

a−→j qj
occurs.

The above definition is weaker than the usual one, an empty product system
(with no transitions) is deadlock-free. The next definition is new to this paper
and identifies a restriction needed for our results. It is stronger than the net-
theoretic definition of a net being cyclic when its initial global state is a home
state [BV84,DE95] (reachable from any reachable global state)—that is, the set
of reachable markings is strongly connected. But it is weaker in the sense that
acyclic nets are included.

Definition 4. We say that a product system N is structurally cyclic if the
initial global state Πi∈Locp

i
0 is a feedback vertex set (that is, removing that set

of places from N makes the resulting system acyclic).

The adjacent figure shows a prod-
uct system (actually an automaton)
which is live and 1-bounded. The ini-
tial state p1 is a home state, so the
system is cyclic. Removing p1 does
not eliminate all cycles in the reach-
able global states, so it is not struc-
turally cyclic.
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Live and 1-bounded FC-net systems have a characterization [Hack72] which
shows that they can be covered by S-components (strongly connected components
which are finite automata).

Theorem 5 (Hack). A live FC-system (N,M0) is 1-bounded iff it is covered
by S-components.

3 Expressions and languages

Let A be a finite alphabet. We will consider finite as well as infinite words on
this alphabet, and languages over them.

For a word w (or any kind of expression defined below), and a ∈ A, |w|a
denotes the number of occurrences of the letter a that appear in w. The alphabet
of an expression or word w is α(w) = {a ∈ A | |w|a > 0}. The projection ↓
over the subalphabet B ⊆ A is given as the homomorphism from A∗ to B∗

which retains all letters in B and deletes all letters outside B. The shuffle of two
words w‖x is a language, defined as usual. It is an associative and commutative
operation. Now we define the synchronized shuffle over a subalphabet X ⊆ A.

Let w, v ∈ A∗ such that w↓X = v↓X = a1 . . . an. Let w = w0a1w1 . . . anwn,
with wi ∈ (A \ X)∗, and v = v0a1v1 . . . anvn, with vi ∈ (A \ X)∗. Then w‖Xv
is defined to be the language (w0‖v0)a1(w1‖v1) . . . an(wn‖vn). If w↓X 6= v↓X,
w‖Xv is undefined.

Definition 6. Our expressions come in three syntactic sorts: sums, connected
expressions and ω-expressions. If the operation + is not used, we call them
T-sequences, connected T-expressions and ω-T-expressions, respectively.

Sums s ::= a ∈ A|s1s2|s1 + s2
Connected expressions c ::= 0|s|fsync(c1, c2)
ω-expressions e ::= cω|par(e1, e2)

For a syntactic expression x, we use α(x) to denote its alphabet—the set
of letters of A occurring in x—and wd(x) for its alphabetic width—the total
number of occurrences of letters of A in x. For instance, the connected expression
fsync(aabab, abab) has an alphabet {a, b} and alphabetic width 9.

The semantics of each of these expressions is a language over A. For sums s
it is a nonempty language of nonempty finite words, for connected expressions c
it is a language of nonempty finite words, for ω-expressions e it is a language of
infinite words. The languages are closed under an independence relation which
we will define from the expressions themselves, so that we have languages of
Mazurkiewicz traces [DR95].

3.1 Sums

To begin with, the language associated with a letter a ∈ A is {a}. Formally,
Lang(a) = {a}, Lang(s1s2) is the concatenation and Lang(s1 + s2) the union,



as usual. The alphabet α(s) and projection s↓B of a sum are well-defined. We
also use the sets Init(s) ⊆ A for the initial actions of a sum, and also Antimirov
derivatives Dera(s) [Ant96]. (Briefly, the Brzozowski a-derivative of ab + ac is
the expression b+ c [BMc63], the Antimirov a-derivative of ab+ ac is the set of
expressions {b, c}.) For the derivatives we will need an extra syntactic entity ε
standing for the empty word.

3.2 Connected expressions

Now we come to the semantics of connected expressions. Let Loc be the set of all
maximal sums occurring in the given expression. Each letter a is located at the
sum in which it occurs. We will inductively maintain the following clustering
property: for initial actions a, b ∈ Init(s) of a sum s, loc(a) = loc(b). We use

Der
{l}
a (s) instead of Dera(s) to emphasize that the derivatives are taken at the

set of locations {l}.
Define two occurrences of letters in a connected expression, say a and b, to

be independent, if loc(a) and loc(b) are disjoint. (Thus our clustering property
implies that initial letters in a sum are dependent.) We define trace equivalence for
words over an alphabet with an independence relation, as before. Our semantics
for the connected expressions yields unions of trace equivalence classes. Clearly
this is so for a sum s since there are no independent letters.

For the connected expression 0, we have Lang(0) = α(0) = ∅ and 0↓B = 0.
Let c1, c2 be connected expressions and L1, L2 be disjoint sets of locations

such that loc1 maps c1 to L1 and loc2 maps c2 to L2. Their free choice syn-
chronization fsync(c1, c2) is over the locations L1 ∪ L2, where for every letter
a ∈ X = α(c1) ∩ α(c2): loc(a) = loc1(a) ∪ loc2(a). For the other letters in A,
loc(a) is inherited from loc1 or loc2, as appropriate. So inductively we have the
loc function mapping occurrences of letters in an expression α(e) to nonempty
subsets of Loc.

Now we inductively define the derivatives and the semantics of the operation
fsync(c1, c2). For a letter a /∈ X (say a occurs in c1) we have
DerL1∪L2

a (fsync(c1, c2)) = {fsync(c′, c2) | c′ ∈ DerL1
a (c1)}, and symmetrically

for the case when a appears in c2. Otherwise suppose that for every sum s in c1
and c2, Init(s) ∩X 6= φ implies Init(s) ⊆ X. We say that this synchronization
on the common letters X is clustered and define DerL1∪L2

a (fsync(c1, c2)) =
{fsync(c′1, c′2) | c′1 ∈ DerL1

a (c1), c′2 ∈ DerL2
a (c2)}. It is possible that a synchro-

nization is clustered but has no derivatives, for example in fsync(ab, ba).
We can keep taking derivatives in this fashion for all letters, but only finitely

many times since the derivatives become shorter. The number of such derivatives
can blow up exponentially in the number of + operators in the expression.

If every synchronization we encounter is clustered we say that the fsync
operation itself is clustered and we define its language as:

Lang(fsync(c1, c2)) =
⋃
{w1‖Xw2 | w1 ∈ Lang(c1), w2 ∈ Lang(c2)}.

But it might be that at some derivative of c1 or c2, we have a sum s with a
choice between an action a ∈ Init(s) ∩X and an action b ∈ Init(s) \X. (This



cannot happen if s is a T-sequence which has |Init(s)| = 1.) Then we say that
the fsync is not clustered and declare by fiat that Lang(fsync(c1, c2)) = ∅.

A short proof shows that fsync is an associative operation (see, for example,
Hoare’s CSP [Hoa85]).

The alphabet of fsync(c1, c2) is empty if its language is empty and the union
of the alphabets of c1 and c2 otherwise. In the former case, fsync(c1, c2)↓B is
0, otherwise it is fsync(c1↓B, c2↓B), which is recursively defined.

We call a connected expression clustered if every fsync operation in it is
clustered. Connected T-expressions are clustered and “deterministic” (there is at
most one derivative given an expression and a letter). We will call an FC-product
clustered if at every reachable global state, if actions a and b are enabled, either
they have the same set of locations or they have disjoint locations.

3.3 Omega-power and shuffle

Consider now the expression cω. Assume associated with the connected expres-
sion c is a function loc over the locations Loc. The independence relation is the
one computed for the expression c. Lang(cω) = [(Lang(c))ω], the trace closure
under our independence relation, where Kω = {w1w2 · · · | ∀i, wi ∈ K}. Each
equivalence class is a set of infinite words.

Finally the semantics of the par operator is defined to be shuffle of languages.

4 From expressions to product automata

In this section we construct product automata for our syntactic entities. The
first result is well known (see, for example, [BeSe86,JR91]).

Lemma 7. A sum s over A is the language accepted by an acyclic rooted finite
automaton, which we call a dag. (In case s is a T-sequence, the automaton
consists of a single directed path.) The size of the automaton is O(wd(s)) (for
example, using derivatives as states), and it can be computed in linear time and
Dlogspace.

4.1 Connected expressions

Now we come to connected expressions, for which we will construct a product
of automata. Before that we look for deadlocks.

Lemma 8. The emptiness of the language of a connected expression c can be
checked in NP, and of a connected T-expression in time O(wd(c)2).

Proof. The complexity bound for a connected T-expression holds because we
track at most wd(c) tokens (represented by pointers in the expression) through
a word of length at most wd(c) to determine whether we reach the end of each T-
sequence. This does not work for connected expressions: for example, fsync(ab+
ac, ad+ae+af) has six runs beginning with a in the resultant product. Now we



use nondeterminism to guess the word letter-by-letter and move tokens. On any
letter, if there is a derivative in one component of an fsync but none in another,
we have a deadlock. ut

Lemma 9. Let c be a connected expression. Then there exists a deadlock-free
clustered connected FC-dag (N,M0) accepting Lang(c) which is covered by a
set Loc of dags. The size of the constructed system is O(wd(c)) and it can be
computed using a polynomial time algorithm with access to an NP oracle. For
connected T-expressions, the time bound is O(wd(c)2).

Proof. We use the preceding lemma to check for a deadlock using an NP oracle
query. If the answer is yes, we return the empty product system, covered by the
empty set of dags!

If the oracle says there is no deadlock, we use Lemma 7 as the base case
of an induction producing a deadlock-free clustered FC-dag that is covered by
dags. We let the set Loc stand for these dags. Thus, for a dag constructed
above, we pick a fresh location l ∈ Loc and we locate every letter a labelling
a transition in the dag by loc(a) = {l}. As an aside, note that the generated
independence relation is empty, every transition in the path is dependent on the
other transitions and on itself.

Inductively, consider connected expressions c1 and c2, and assume we have
corresponding deadlock-free clustered FC-dags, covered by the dags in L1 and L2,
with the independence relation of the FC-dags matching those of the expressions.

For the expression fsync(c1, c2), we construct using the derivatives the FC-
dag that is the synchronization of these two FC-dags, which are assumed to be
covered by disjoint dags. The resulting automaton will be acyclic and covered
by the dags L1 ∪ L2. Because of the clustering property of the expressions, the
resulting FC-dag will be clustered. Its size is O(wd(c1) + wd(c2)).

The trace equivalence generated from the locations is such that the language
K of the constructed automaton is trace-closed. We can now verify that K
is obtained by performing the fsync operation on the languages of the two
component automata. ut

4.2 Omega-power and shuffle

For the expression cω we map in linear time the ω-power operation to the con-
struction of an FC-product.

Lemma 10. Let e = cω be an expression over alphabet A with Lang(c) a
nonempty language of nonempty words. Then there exists a live and struc-
turally cyclic FC-product accepting Lang(e). The size of the constructed sys-
tem is O(wd(c)) and it can be computed using a polynomial time algorithm with
access to an NP oracle. For ω-T-expressions, the time bound is O(wd(c)2).

Proof. For the expression cω, consider the deadlock-free clustered connected FC-
dag N for c, covered by the dags in Loc and accepting the language K, obtained



from the previous lemma. Recall that the trace equivalence generated from the
independence relation of N saturates K, that is, K = [K].

For each dag l ∈ Loc, we fuse the initially marked places of l with its sink
places (which are different since K does not have the empty word). Call the new
product system N ′. The product satisfies the following properties:

(1) Each node of N was covered by some dag l ∈ Loc. So N ′ is an FC-product.
(2) It is structurally cyclic since by construction the initial global state is a

feedback vertex set.
(3) Fusing the sink and source places makes each dag of N strongly connected

in N ′, in fact a strongly connected component of N ′, since N was connected
and deadlock-free. By Theorem 5, N ′ is live.

We now show that the language of N ′ is Lang(e) = [Lang(c)ω].
By construction Kω ⊆ Lang(N ′). Since N ′ has the same locations as N , it

generates the same trace equivalence and hence we have that [Kω] ⊆ [Lang(N ′)] =
Lang(N ′).

To prove the converse inclusion, Lang(N ′) ⊆ [Kω], suppose not and we have
w accepted by N ′ but not in [Kω]. We can remove prefixes of w which are in
[K], so let us assume w = uav, u is a proper prefix of K and ua is not a prefix
of a word in [Kω]. Since N was deadlock-free, there is some extension ub that is
a prefix of K such that b is enabled after executing u. If a and b are dependent
and they are both enabled, in a clustered FC-dag they have the same locations,
and ua would be a prefix of K as well. Hence a and b are independent and we
can commute them. We apply this argument repeatedly to increase the length
of the prefix; but since K is a finite language, after some point we will find
that w = uav for some u ∈ [K] after which a is enabled, hence a is enabled at
the initial global state of N . We can remove this prefix and again continue the
argument. This shows that w is in [Kω], a contradiction. ut

For the expression par(e1, e2), all occurrences of letters in e1 are independent
of those in e2, so that the net corresponding to them is obtained by taking
the disjoint union of the two subnets, and its language is the shuffle of the
two sublanguages. Clearly the size of the constructed system is O(wd(e1)) +
O(wd(e2)). So we conclude:

Theorem 11. For every ω-expression e, there is a live and structurally cyclic
FC-product of size O(wd(e)) accepting Lang(e).

We put this together with our earlier result on connected expressions. The
FC-products constructed are not necessarily live.

Corollary 12. For every expression e which is a shuffle of connected expres-
sions and ω-expressions, there is a structurally cyclic FC-product accepting
Lang(e). Further, the emptiness of the language of such expressions can be
checked in NP. For ω-T-expressions, the time complexity is O(wd(e)2).



5 FC-products to expressions

In this section we discuss how to build language equivalent expressions for a given
FC-product. We follow the same strategy as in the previous section, working
through dags and FC-dags before tackling the general case.

Lemma 13. Let N = (P,→, p0) be a dag. Then there exists an equivalent sum
s for its language. The alphabetic width of this expression is quadratic in N and
it can be computed in time quadratic in N .

Proof. First, we delete all nodes unreachable from p0 and then apply Kleene’s
theorem. Each transition appears in a path and the length of each path is linear
in N which gives a quadratic upper bound. ut

Next, we construct expressions for FC-dags. We do not check whether the
expression has deadlocks.

Lemma 14. Let N [ρ] be a connected FC-dag. There is a connected clustered
expression c for Lang(N [ρ]) of alphabetic width O(|N |2) which can be computed
in O(|N |3) time.

Proof. Using Lemma 13, we obtain in quadratic time equivalent sum expressions
si of size quadratic in the alphabetic width, for each component of the product.
The renaming ρ satisfies the property that transitions labelled the same have the
same locations. Hence we can consider the expression formed by taking fsync
expressions of the si, taken in some order. Since the FC-dag was a free choice
net, each synchronization will be clustered. Its alphabetic width is quadratic in
the size of N . ut

Finally we have a cubic time algorithm from live structurally cyclic FC-
products to ω-expressions.

Theorem 15. Let N [ρ] be a live, structurally cyclic product FC-automaton.
Then we can compute in cubic time an ω-expression of alphabetic width O(|N |2)
for the accepted language.

Proof. Consider N [ρ] a given live, structurally cyclic FC-product. We first divide
it up into strongly connected components and deal with them separately. This
can be done in time O(|N |).

Now we adopt a small trick. Make a copy P ′0 of the places P0 in the initial
global state and change the system so that the edges coming into P0 are replaced
by edges into the corresponding places of P ′0. Since P0 is a feedback vertex set, the
resulting net system N ′[ρ] is a connected deadlock-free FC-dag of size O(|N |).

By Lemma 14 we can compute in O(|N |3) time a connected expression c of
alphabetic width O(|N |2) for this FC-dag. We claim the expression cω describes
the language of the original net system (N,M0). The proof follows the same
arguments as in Lemma 10.

For each SCC, use the argument above, and then use the par operator to
obtain the shuffle of the languages. This preserves both the time complexity and
the expression’s alphabetic width. ut



We can extend the result above to deal with product systems which are
not necessarily live, but structural cyclicity is crucially used. The constructed
expression is not checked for deadlocks.

Corollary 16. Let N [ρ] be a structurally cyclic product FC-system. Then we
can compute in polynomial time a shuffle of connected and ω-expressions, of
alphabetic width polynomial in |N |, for the accepted language.

Proof. If a dag synchronizes with a strongly connected product, the initial global
state of the resulting system will not be live. We unfold the given product into
a dag. For example, if path abc synchronizes with circuit debfcgh on b and c,
we replace the circuit by the path debfcghde where the d and e transitions can
occur twice, but the synchronizations occur once.

When repeating this process, some synchronizations might occur more than
once. For example, if the erstwhile circuit debfcgh synchronized with circuit
xyzd on d, the second circuit is now replaced by path xyzdxyzdxyz with two
occurrences of the synchronization d.

Using this idea, we can modify the algorithm in the proof of Theorem 15
to first cover the reachable parts of the given product system with dags and
strongly connected components, then convert the non-live part into equivalent
dags, finally obtaining an FC-product which is divided into connected dags which
are not live (which might blow up this part of the net to a size O(|N |2)), and live
strongly connected components with a feedback vertex set as initial state, which
are not modified. Now we use the two preceding theorems to provide connected
expressions and ω-expressions. The final expression is a shuffle of these. ut

Finally, the algorithms of this section can be seen to produce T-sequences,
connected T-expressions and ω-T-expressions in case we are given a product
T-system which is path-like, a T-dag and live, respectively, since T-systems are
structurally cyclic. Thus we have efficient Kleene characterizations for product
T-systems as well.

6 Conclusion

In this paper we have shown Kleene theorems for the class of acyclic product T-
systems and live product T-systems, and also over the corresponding subclasses
of FC-products with a restriction to structural cyclicity. Using in one direction
a Berry-Sethi type algorithm [BeSe86] we have obtained a polynomial time al-
gorithm with access to an NP oracle. In the other direction we have made use
of the condition of structural cyclicity to obtain a polynomial time algorithm.

There are several avenues for further research. Perhaps the complexity can be
improved from FPNP. We would like to extend our work to deal with cyclic free
choice product systems; from a conceptual viewpoint we are interested in seeing
if the polynomial time reachability algorithms for live, cyclic and 1-bounded free
choice nets can fall out of this kind of algebraic structure. It is not clear if the
same idea extends to all 1-bounded free choice nets.
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