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Abstract Reasoning about concurrent programs involves representing the infor-
mation that concurrent processes manipulate disjoint portions of memory. In so-
phisticated applications, the division of memory between processes is not static.
Through operations, processes can exchange the implied ownership of memory
cells. In addition, processes can also share ownership of cells in a controlled fashion
as long as they perform operations that do not interfere, e.g., they can concur-
rently read shared cells. Thus the traditional paradigm of distributed computing
based on locations is replaced by a paradigm of concurrent computing which is
more tightly based on program structure.

Concurrent Separation Logic with Permissions, developed by O’Hearn, Bor-
nat et al, is able to represent sophisticated transfer of ownership and permissions
between processes. We demonstrate how these ideas can be used to reason about
fine-grained concurrent programs which do not employ explicit synchronization
operations to control interference but cooperatively manipulate memory cells so
that interference is avoided. Reasoning about such programs is challenging and ap-
propriate logical tools are necessary to carry out the reasoning in a reliable fashion.
We argue that Concurrent Separation Logic with Permissions provides such tools.
We illustrate the logical techniques by presenting the proof of a concurrent garbage
collector originally studied by Dijkstra et al, and extended by Lamport to handle
multiple user processes.
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1 Introduction

Reasoning about concurrent programs, where multiple processes (or threads) are
executed in parallel, is widely acknowledged to be one of the most challenging
aspects of computer programming. The reason for the difficulty is that the different
processes act on the same storage, causing interference. The assumptions made in
one process regarding the state of storage can be invalidated by the actions done
in another process. The early work on the problem, carried out by Dijkstra, Hoare,
Brinch Hansen and others, emphasized the need to keep the concurrent threads
of control as independent as possible, working with separate areas of storage.
When shared areas of storage need to be manipulated, for example for the purpose
of communication between threads, synchronisation protocols are used to ensure
that a single thread is accessing a shared region at any given time. A variety
of synchronisation mechanisms, such as atomic statements [19], semaphores [9],
conditional critical regions [15] and monitors [6,16], have been developed to ensure
mutually exclusive access to shared storage. During a period of such exclusive
access (called a “critical section”), a thread is expected to carry out a well-defined
operation on the shared storage to its conclusion. The amount of activity carried
out during a critical section is referred to as the granularity of concurrency. Coarse
granularity, where large operations are carried out in critical sections, is easier
to reason about, but it is bad for performance. When one process is executing a
critical section, the other processes are blocked from proceeding. In this paper, we
address the issues in dealing with fine granularity. Here the atomic operations are
small, being at the level of individual machine instructions. Hence, they achieve
high performance. Correspondingly, they pose considerable challenges in reasoning.

A second aspect we are interested in is the use of dynamic storage (also re-
ferred to as the “heap” storage). Computer programs normally work by setting
and modifying storage variables during their execution which might be thought
of –superficially– as variable symbols as in algebra or symbolic logic. To reason
about program behaviour, one uses some form of before-and-after specifications.
A standard form is that of Hoare Logic [14], which uses specifications of the form
tP uC tQu where C is a command, and P and Q are formulas in classical logic
(referred to as “assertions”).1 The assertion P describes a hypothetical state of
the program variables before the command execution and Q describes the state
obtained after the command execution. A crucial point is that the program vari-
ables occurring in the command C are treated in the assertions as if they were
ordinary logical variables. Since the storage manipulated by a program is in di-
rect correspondence with the program variables occurring in it, it means that the
storage manipulated by the command is more or less fixed. This is a significant
limitation of this formalism.

The use of dynamic storage involves the allocation of new storage cells in
the course of program execution. These cells are referred to in the program by

1 From a logical point of view, Hoare Logic can be thought of as a modal logic, studied by
Pratt [26]. A specification tP uC tQu is interpreted as a modal formula P ñ rCsQ where the
modal operator rCs means “after the execution of C.”
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their unique identifying addresses (also referred to as “pointers”) and accessed
via “indirect addressing.” In contrast to the variable symbols mentioned in the
preceding paragraph, addresses are part of data. Commands can store them in
variables or other heap cells and compute with them before deciding to read or
write the storage cells that they point to. This means that the structure of the
storage manipulated by a program fragment is not fixed in advance and not easily
predictable. Program reasoning must deal with the structure of storage, in addition
to dealing with the state of such storage. Due to the difficulty of dealing with this
issue cleanly and reliably, most theoretical treatments of concurrent programming
have completely avoided dynamic storage. (For example, the widely used text
book on concurrent programming by Andrews [1] makes no mention of dynamic
storage at all.) In contrast, practical applications of concurrency often share only
dynamic storage, and routinely exchange such storage between processes and data
structures.

A breakthrough in reasoning about dynamic storage was made by Reynolds [29],
who used before-and-after specifications tP uC tQu where P and Q are formulas in
a resource-sensitive logic called the Logic of Bunched Implications (BI). The logic
BI, formulated by Pym and O’Hearn [22,27], is a form of substructural logic —
in fact, a bunched logic [28] — representing a symmetric combination of the BCI
relevant logic, on the one hand, and intuitionistic or classical logic on the other.2

BI differs from other forms of relevant logics in having a rich class of models that
incorporate a notion of “resource”.

Let us agree that a resource is some form of an entity which has identity and
permanence, and which cannot be freely created, destroyed or duplicated. Storage
cells themselves form an excellent example of such “resource”. The connectives of
the BCI fragment of BI (called the “multiplicative” connectives) allow us to nav-
igate in the plane of resources, whereas those of the classical fragment (called the
“additive” connectives) allow us to stay within a context of resources and reason
about it in the traditional fashion. For example, the multiplicative conjunction
P � Q is true for a combination of two separate collections of resources if the
two collections satisfy P and Q respectively. In contrast, the additive conjunction
P ^Q is true for a collection of resources if both P and Q are true for that same

collection. The unit for the multiplicative conjunction, written as “emp”, is true
for the empty collection of resources and nothing else. In contrast, the additive
unit, written as “true” is true for any collection of resources. A comprehensive
proof-theoretic and model-theoretic study of the logic BI can be found in [27].

Reynolds used BI’s � connective to make assertions about separate parts of
the heap storage. These ideas were further developed by Ishtiaq and O’Hearn [17]
by adding the requirement of “tight specifications” which mention precisely the
heap storage being used by a program fragment and no more, leading to local
reasoning for heap storage. O’Hearn also developed a form of the logic for dealing
with concurrent programs [21] with a soundness proof provided by Brookes [7].
Bornat et al [4] enriched the framework by adding a notion of permissions. The
logic resulting from all these developments may be termed “Concurrent Separation
Logic with permissions” and forms the basis of our study.

2 The development of this logic owes some inspiration to Girard’s Linear Logic [12]. However,
its structure and model-theoretic import are quite different.
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Our objective is to test the efficacy of these techniques by applying them to a
substantial problem of program proof. The algorithm chosen for this task is that of
a concurrent garbage collector due to Dijkstra et al [11], who also included its cor-
rectness proof. This is perhaps one of the first challenging concurrent algorithms
whose correctness proof was attempted, and has an interesting history. At the
time of this proof attempt in 1975 [10], virtually no formal proof techniques were
known for fine-grained concurrent programs. The authors used a form of informal
reasoning that is ambitious in its scope. An early version of the algorithm [10] had
a fault which was discovered after the version was submitted for publication. The
final published proof is still too informal to carry full conviction. In the interim pe-
riod, a formal proof technique for fine-grained concurrent programs was developed
by Owicki and Gries [24] and Gries was able to prove the correctness of the algo-
rithm using this technique [13]. This course of events is often used in the field of
concurrency to illustrate the challenges underlying concurrent programming. (See,
e.g., [8].) Since the publication of this algorithm, many researchers have given
alternative proofs and algorithms for concurrent garbage collection. For example
Ben-Ari, in [3], gave an algorithm that uses two colours and has less complexity.
Flaws in his correctness proof were found when checking the proof mechanically
[31].

Separation Logic has been viewed as a good technique for addressing the cor-
rectness of garbage collection algorithms because it gives a tight handle on the
storage accessed by a program [32]. So far, only sequential garbage collection algo-
rithms have been treated in this way. Through our proof attempt using Concurrent
Separation Logic, we wish to demonstrate how the novel techniques of program
logic can be used to reason about concurrent algorithms more reliably. In fact,
we claim that the Separation Logic proof exhibits structure which makes it al-
most impossible to ignore the flaw that was present in the original version of the
algorithm. Gries [13] also made a claim that a “careful application” of the Owicki-
Gries technique can avoid such errors in reasoning. Clearly, Gries’s proof is a vast
improvement in clarity and formality over the previous informal proof. However,
it is not a closed chapter. Prensa Nieto et al [20] make the point that a complete
pencil and paper proof using this technique is very tedious. For this reason, many
of the interference-freedom checks are “usually omitted.” In the Separation Logic
approach, on the other hand, these issues are rather at the forefront. It is not even
possible to formulate a resource invariant without a clear understanding of how
the permissions are distributed among the various components. In this sense, we
argue that the Separation Logic techniques provide the right set of logical tools for
reasoning about concurrent algorithms that exhibit a high degree of cooperation
between processes.

2 Background

2.1 Concurrent Separation Logic

The basic Separation Logic, described in [30], incorporates Reynolds’s insights
for the use of separating conjunction and Ishtiaq and O’Hearn’s [17] additional
formulation of “tight specifications”. In this logic, a specification tP uCtQu is valid
only if C is able to execute without faults starting from any heap satisfying P . In
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particular, C cannot read or write any heap cells that are not guaranteed to exist
by P .

This logic admits an elegant proof rule for parallel composition of commands
C1 ‖ C2:

tP1uC1 tQ1u tP2uC2 tQ2u

tP1 � P2u C1 ‖ C2 tQ1 � Q2u

if Ci does not modify any variable
in FV pPj , Cj , Qjq for i � j

To see why such a rule is sound, consider a heap store that satisfies P1 � P2. By
the definition of �, the heap store can be split into two separate partitions (with
disjoint collections of cells), satisfying P1 and P2 respectively. By the tightness
property of specifications, we know that C1 runs without any faults starting from
the partition that satisfies P1. In particular, it does not access any cells in the
other partition. C2 does its work similarly, in its partition. So, C1 and C2 are
able to run in parallel, independently and without interference. We think of the
portion of the heap store manipulated by each parallel process, and delineated by
the corresponding pre-condition in its specification, as being “owned” by that pro-
cess. The other processes cannot interfere with the storage owned by a process in
this fashion. Upon termination of both the processes, we obtain a heap store that
satisfies Q1 � Q2. (The reader might contemplate how one might go about formu-
lating a rule for parallel composition without the � connective and the tightness
requirement.)

Concurrent programming also requires that there be some form of communi-
cation between the concurrent processes. In the framework of fine-grained concur-
rency, such communication is achieved by executing atomic operations on shared
storage. (An atomic operation is an operation carried out by a process without
interruption and interference from other processes.) O’Hearn’s proposal in the for-
mulation of Concurrent Separation Logic [21] is to view the shared storage as
being made up of one or more shared resources which are separate from the storage
directly “owned” by the processes.3 The properties of the resources are expressed
through resource invariant assertions. We use judgments of the form R $ tP uC tQu

to mean that a process C has the before-and-after specification tP uC tQu in the
context of a resource with resource invariant R. Through an atomic operation,
written in the form xAy where A is a command, a process can “borrow” the stor-
age of a shared resource and temporarily make it a part of the owned state of the
process for the duration of A. After the completion of A, the storage is returned
back to the shared resource. The storage returned to the shared resource can be
different from what was initially borrowed. Transfer of storage cells can take place
between the resource and the “owned” storage of the process during the atomic
operation. It is worth emphasizing that these ideas of borrowing and returning are
not actually computations; they represent our logical view of how the storage is
being managed. The shared resource is expected to satisfy the resource invariant at
all times except when it is borrowed by atomic operations. So, an atomic operation
xAy can assume that the resource invariant is true when it begins execution and
reestablish it again upon the completion of A. All this can be expressed succinctly

3 The use of “resource” for the packets of shared storage is inherited from Hoare [15]. It is
a more specialised notion than the general logical notion of resource mentioned earlier in the
Introduction.
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by the proof rule below:

ATOMIC
tP � RuA tQ � Ru

R $ tP u xAy tQu

if no other process modifies
variables in FV pP,Qq

The parallel composition rule can now be generalized to

R $ tP1uC1 tQ1u R $ tP2uC2 tQ2u

R $ tP1 � P2u C1 ‖ C2 tQ1 � Q2u

if Ci does not modify any vari-
able in FV pPj , Qjq for i � j

The two parallel processes C1 and C2 are not independent as they were in the
previous rule because they “interfere” via the shared resource. However, it is still
possible to use a very similar proof rule because the interference is structured and
mediated via the invariant of the shared resource.

The formal semantics of a proof system with more generous judgments Γ $

tP uCtQu as well as its soundness were described in [7]. In most of the paper we
are concerned only with one resource and one resource invariant, which we write
as RI. A brief review of the formalism for the purposes of this article is given in
Appendix A.

Treatment of variables

Even though our main interest is in how to share heap storage between parallel
processes, they also need to share variables (represented by variable symbols) to
some extent. The conditions associated with sharing variables turn out to be a bit
of nuisance and a full treatment is given in Appendix A.2. Here we indicate a brief
outline of the state of affairs.

The rule for parallel composition in the previous section allows the processes in
a composition C1 ‖ C2 to share variables that they only read. It does not allow one
process to modify variables that are used in the other process (either for reading or
writing). Resources can be used to allow other forms of sharing [15,24]. A resource
is specified using a declaration of the form

resource rpXq in C

where r is a name given to the resource and X is a set of variables that are
“protected” by the resource. In addition, a resource has an associated resource
invariant R as indicated in the previous section. In any atomic block xAy occurring
in the body C, the protected variables of the resource can be used for both reading
and writing. The protected variables cannot be used outside atomic blocks.

2.2 Access Permissions

The basic Concurrent Separation Logic treats each heap location as a basic re-
source. So, every location would be owned by either one of the processes or one of
the resources. However, in concurrent programming, it is also necessary to allow
two processes to access shared locations in a controlled fashion, for simultaneous
read access as well as other forms of controlled sharing. This can be achieved by
treating as resources, not entire heap locations but particular access permissions
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on them. Boyland [5] and Bornat et al [4] proposed two forms of permissions suit-
able for this purpose, and we use a simplified form of their systems. (Our system
can be thought of as an instance of “counting permissions” as well as “fractional
permissions.”)

A full permission on a heap location is denoted as “1” and it allows both reading
and writing of the location. A full permission can be split into two permissions,
denoted ρ and ρ, both of which allow only reading of the location. Formally, we
have a partial commutative semigroup tρ, ρ, 1u with its binary operation defined
by ρ � ρ � 1, undefined for all other cases. (Note that this is not a group structure

because 1 is not the unit of �.) A basic assertion in our logic is of the form l
p
ÞÝÑ x

which is thought of as an agent possessing a p permission for a heap location l,
which holds the value x. The semigroup operation means that, at the assertion

level l
ρ
ÞÝÑ x � l

ρ
ÞÝÑ x � l

1
ÞÝÑ x.

We indicate how this set-up of permissions can be employed for program rea-
soning in the context of two processes C1 and C2 with a shared resource r, and a
location l used in both of them.

– If one process, say C1 has the full permission for l then neither the shared
resource nor the other process can have any access to l. The process C1 can
perform reading and writing and use facts about l in its local assertions.

– Suppose the two processes have ρ and ρ permissions for the location respec-
tively. Then the shared resource does not have any permissions, and the two
processes are restricted to reading the location.

– The third, interesting case, arises when the shared resource is given ρ permis-
sion for the location and the complement ρ permission is given to one of the
processes, say C1. In this case, C1 can read the location in the normal course of
affairs, but it can also write to the location in atomic operations xC1y by bor-
rowing the ρ permission from the resource. It can make local assertions about
the location l using its ρ permission. For instance, it is possible to conclude a
specification of the form:

l
ρ
ÞÝÑ $ tl

ρ
ÞÝÑ xu xrls :� 23y tl

ρ
ÞÝÑ 23u

using the ATOMIC rule and the fact that l
ρ
ÞÝÑ � l

ρ
ÞÝÑ x � l

1
ÞÝÑ x. (We use

as a short-hand notation for a don’t-care value, which can be formalised as an
existentially quantified variable). We are able to make changes to l and reason
about these changes even though the process has only a read permission. On
the other hand, the process C2 can only read the location l by borrowing the
ρ permission from the shared resource. Since it has no permissions of its own
for l, it cannot make any assertions about l.

– Finally, suppose the shared resource is given the full permission for l. Then
both the processes can borrow this permission to read as well as write to l.
However, lacking their own permissions for l, they cannot make any assertions

about l. Their knowledge about the values read from l are limited to whatever
properties are guaranteed by the resource invariant.

Such refined control over the access permissions to shared locations comes in very
handy in ensuring that correct reasoning is carried out about concurrent execution
behaviour.
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2.3 Permission transfer

The permissions associated with the processes and shared resources are not static.
They can vary during program execution, governed by the resource invariants
which control what permissions are owned by the shared resources [21]. Consider
again the situation of two processes C1 and C2 interacting via a shared resource
r. Suppose the resource invariant for r is:

R � px � 0^ empq _ px � 1^ l
ρ
ÞÝÑ q

If the process C1 does an atomic action such as xx :� 0y, it sends the resource from a
state where it might have ρ permission for l to a state where it has no permission
for l. However, permissions are being treated as resources themselves. So, they
cannot simply disappear. The effect is that the permission gets retrieved by the
process C1. In other words, we have the following before-and-after specification for
the atomic command:

R $ tx � 1^ empu xx :� 0y tx � 0^ l
ρ
ÞÝÑ u

If the process already had ρ permission for l, then it is able to upgrade it to a full
permission through this command:

R $ tx � 1^ l
ρ
ÞÝÑ u xx :� 0y tx � 0^ l

1
ÞÝÑ u

If, on the other hand, the process C2 had ρ permission for l, then this operation
takes away the ability of C2 to make any further changes to l.

Changing x from 0 to 1 has the opposite effect of transferring ρ permission
from the process to the resource:

R $ tx � 0^ l
ρ
ÞÝÑ u xx :� 1y tx � 1^ empu

Thus, treating permissions as a resource provides a rich mechanism of dynamics
of permission transfer, which comes in useful for reasoning about the behaviour of
concurrent algorithms. Variants of this form of reasoning appear several times in
this paper, in particular see Sections 5.3 and 7.

3 The DLMSS garbage collection algorithm

Most general purpose programming languages provide some mechanism to allocate
objects dynamically, that is, at run time. This is facilitated by making use of free
storage cells, often referred to as a heap, which are made available to the program
through their addresses (“pointers”) which are in turn stored by the program in
other storage cells. If the program erases pointers to a cell in all its stored places,
then the cell is no longer accessible. Such a cell is called garbage. It can be reclaimed
and reused when the program asks for more free storage.

The process of reclaiming unusable cells is called garbage collection. Languages
like Lisp and Java provide automatic garbage collection, where the execution en-
vironment identifies and reuses space used by inaccessible cells.

The DLMSS paper [11] proposed a concurrent algorithm for automatic garbage
collection, where the garbage collector runs concurrently with the user program (the
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mutator). The mutator can request for a “pointer” location to be loaded with the
address of such a “new” storage cell at run time, as well as modify existing pointers,
perhaps making some cell garbage while doing so. We put down the algorithm and
explain it below.

gc
def
� begin

const ROOT, FREE, ENDFREE, NIL: [0..N];
var i: [0..N�1];
[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white od;
mutator || collector;

end

mutator
def
� begin

var k, j, f, e, m: [0..N];
do true ñ k := some non-NIL node reachable from ROOT;

j := some node reachable from ROOT or NIL;
if true ñ modify left edge(k, j):

addleft(k, j)
8 true ñ modify right edge(k, j):

addright(k, j)
8 true ñ get new left edge(k):

f := [FREE.left]; e := [ENDFREE.left];
do f = e ñ e := [ENDFREE.left] od;
m := [f.left];
addleft(k, f); addleft(FREE, m); addleft(f, NIL)

8 true ñ get new right edge(k):
– symmetric to the above

fi
od

end

collector
def
� begin

var i, j: [0..N�1]; c: (white, gray, black);
do true ñ mark; sweep od

end

mark
def
� atleastgrey(ROOT); atleastgrey(FREE); atleastgrey(ENDFREE);

atleastgrey(NIL); i := 0;
do i ¤ N ñ c := [i.colour];

if c � gray ñ i := i�1
8 c = gray ñ

restart run on gray node:
j := i.left; atleastgrey(j);
j := i.right; atleastgrey(j);
[i.colour]:= black;
i := 0

fi
od

sweep
def
� for i := 0 to N do

c := [i.colour];
if c � white ñ

collect white node(i):
e := [ENDFREE.left]; [e.left] := i;
[i.left] := NIL; [i.right] := NIL; [ENDFREE.left] := i

8 c � black ñ [i.colour] := white
8 c � gray ñ skip
fi;
i := i�1

od
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addleft(k, j)
def
� begin [k.left] := j; atleastgrey(j) end

atleastgrey(j)
def
� xc := [j.colour]; if c = white ñ [j.colour] := gray 8c � white ñ skip fiy

The algorithm is written using an “Algol-like” notation. (See Appendix A.1 for
a brief description.) We label some of the command blocks by bold face labels such
as modify left edge(k,j) which are later used as abbreviations for the command
blocks. The only atomic block in the algorithm is in the definition of atleastgrey(j).
It can be implemented at the machine level using instructions like “test and set”
or “compare and swap”. All the other commands are executed without any syn-
chronisation.

The storage potentially available to the mutator is represented as a collection
of nodes with addresses ranging from 0 to N . (This is called the “memory”.) Each
node has, in addition to whatever data is stored in it (which we completely ignore),
three fields for storing a left pointer, a right pointer and a colour. The data used
by the mutator forms a binary data graph within the memory using the left and
right pointers, with a ROOT node. Every node of the data graph is reachable from
ROOT by a path of nodes following the left or right pointers.

The collector maintains a free list of nodes, with a start node beginning at the
value of FREE.left and an end node at the value of ENDFREE.left. Here we see
the first separation property which we will use in the proof: the data graph and
the free list do not overlap.

When the mutator needs more storage, it takes a node from the free list and
links it into the data graph. We call this the mutator’s get action. In addition, the
mutator can modify a node’s left or right pointer to point to some other node in
the data graph, or perform a delete action by setting the pointer to a null value.
We will assume a special node called NIL, whose left and right nodes are always set
to point to itself. Hence giving a null value to a pointer is modelled by modifying
it to point to NIL.

When a pointer is modified, the node pointed to before the modification can
become inaccessible from the data root. Such a node is called garbage. The sepa-
ration property we mentioned above can be extended: the data graph, the free list
and the garbage nodes are disjoint.

The DLMSS collector is of the “mark and sweep” type, that is, it has a marking

phase which marks all the nodes reachable from ROOT and FREE, and a sweeping

phase which puts all unmarked nodes onto the free list. The colour field of each
node represents the mark: black means a node is marked and white means it is
unmarked. The colour gray represents an intermediate marked state.

The basic idea behind the marking phase is that it begins by marking ROOT

and FREE, and then keeps running through the memory marking the successors of
marked nodes. When no marked node has an unmarked successor, all the unmarked
nodes are garbage.

The sweeping phase runs through the memory, adding the nodes left unmarked
by the previous marking phase to the free list and unmarking marked nodes. Note
that the sweeping phase works on the garbage and the mutator works on the data
graph, hence we can use separation. The movement of garbage nodes to the free
list by the collector and their later reuse by the mutator constitutes an ownership

transfer which can be modelled well in Separation Logic.
The DLMSS collector works all the time, concurrently interleaving its work

with the mutator’s actions. To facilitate this, the gray colour, intermediate between
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“marked” and “unmarked,” is used. It signifies a node that is known to be reachable
but whose successors may not yet have been marked. The roots are first coloured
gray. The marking phase makes repeated runs through the memory; when it finds
a gray node, its successors are coloured gray (if they were unmarked), the node is
fully marked by colouring it black, and a new run is started.

Hence, progressing from the root nodes, the data graph and the free list are
progressively coloured black with a gray frontier while marking is in progress.
During the sweeping phase, they are unmarked (white).

3.1 Proving the DLMSS algorithm

The algorithm presented above is a rather challenging concurrent program to prove
correct. The authors of [11] describe various difficulties they encountered in prov-
ing correctness. An informal proof is presented which is quite persuasive, but no
indication is given as to how it could be formalized. Our formalization of the proof
brings up several issues which did not receive full treatment in the original proof.
Gries [13] outlined a slightly different, but formal, proof using Owicki and Gries
proof system [24].

The use of resource invariants is similar to that of global invariants, first consid-
ered by Ashcroft [2]. A global invariant must be preserved by all processes at all
times, except inside atomic actions. In return, all the atomic actions can assume
that the global invariant is true in their initial states. The proof of [11] is based
on global invariants as well, even though this fact is not explicitly stated and their
proof-outlines often use local assertions that deal with shared storage (in violation
of the proof method).

The global invariant method can seem almost impossible at first because, unlike
in Hoare Logic proof-outlines, the same assertion must hold at every program point.
However, information specific to program points can be incorporated in the global
invariants by adding auxiliary variables to the program and making the conditions
of the global invariant depend on the values of such auxiliary variables.

The critical ideas used in the correctness proofs, right from the 1970s [11,13],
are summarized in the Appendix B.

3.2 Augmented algorithm

The DLMSS garbage collection algorithm is remarkable in that it works with virtu-
ally no synchronization between the processes except for the atleastgrey operation,
which must be carried out atomically.

However, to reason about the algorithm using Concurrent Separation Logic,
we must treat each basic command that deals with shared storage as an atomic
action. This would allow the use of ATOMIC rule of Section 2.1 to reason about
the manipulation of shared storage. For example, whereas the original algorithm
says [i.colour] := white to set i’s colour, we write it as x[i.colour] := whitey in the
augmented algorithm. This makes no operational difference at the machine level
because our syntax allows at most one heap location to be read or written in a
single command, and this can be done without any additional synchronization
mechanisms.



12 Kalpesh Kapoor et al.

Secondly, our augmented algorithm adds a number of “auxiliary variables”
to the algorithm meant for reasoning purposes. The need for such variables in
reasoning about concurrent programs has been long recognized [23]. The auxiliary
variables do not affect the original data flow or control flow of the algorithm. So,
they can be safely deleted upon the completion of the proof, recovering the original
algorithm. More precisely, a variable is said to be auxiliary for an original program
P if it is not used in any control flow tests in if and do commands and it is not used
on the right hand side of an assignment command x :� E or res :� E, where x is an
original variable of the program P . We specify the auxiliary variables added to the
algorithm using auxvar declarations. We also annotate each declaration with the
process that updates the variables. (Our proof rules for atomic commands have a
side condition that the variables mentioned in the local assertions are not modified
by other processes. This information is useful for ensuring the side condition.)

gc
def
� const ROOT, FREE, ENDFREE, NIL: [0..N];

var i: [0..N�1];
auxvar in marking: bool updated by collector;

scanned[0..N]: bool; tested[0..N]: bool updated by collector;
lgrays, lgrayt, rgrays, rgrayt, reclaim: [0..N] updated by collector;
ladd, radd: [0..N] updated by mutator;
avail: bool updated by mutator;

[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white; tested[i] := false; scanned[i] := false od;
avail := false; ladd, radd := NIL, NIL;
in marking := false;
lgrays, lgrayt, rgrays, rgrayt, reclaim := NIL, NIL, NIL, NIL, NIL;
resource r(scanned, tested, in marking, lgrays, lgrayt, rgrays, rgrayt, reclaim,

avail, ladd, radd)
in

mutator || collector

mutator
def
� begin

var k, j, f, e, m: [0..N];
do true ñ

k := some non-NIL node reachable from ROOT;
j := some node reachable from ROOT or NIL;
if true ñ modify left edge(k, j):

addleft(k, j)
8 true ñ modify right edge(k, j):

addright(k, j)
8 true ñ get new left edge(k):

xf := [FREE.left]y;
xe := [ENDFREE.left]; avail := (f � e)y;
do f = e ñ xe := [ENDFREE.left]; avail := (f � e)y od;
xm := [f.left]y;
addleft(k, f);
xaddleft(FREE, m); avail := falsey;
addleft(f, NIL)

8 true ñ get new right edge(k):
– symmetric to the above

fi
od

end

addleft(p, q)
def
� begin x[p.left] := q; ladd := py; xatleastgrey(q); ladd := NILy end

atleastgrey(j)
def
� xc := [j.colour]; if c = white ñ [j.colour] := gray 8 c � white ñ skip fiy
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collector
def
� begin

var i, j: [0..N�1]; c: (white, gray, black);
do true ñ mark; sweep od

end

mark
def
� begin

xatleastgrey(ROOT); tested[ROOT] := truey;
xatleastgrey(FREE); tested[FREE] := truey;
xatleastgrey(ENDFREE); tested[ENDFREE] := truey;
xatleastgrey(NIL); tested[NIL] := truey;
xin marking := truey;
i := 0;
do i ¤ N ñ

atomic xc := [i.colour] |
if c � gray ñ | scanned[i] := truey; i := i+1
8 c = gray ñ | tested[i] := truey;

restart run on gray node(i):
xj := i.left; lgrays := i; lgrayt := j y;
xatleastgrey(j); lgrayt := NILy;
xj := i.right; rgrays := i; rgrayt := j y;
xatleastgrey(j); lgrayt := NILy;
x[i.colour] := black; lgrays := NIL; rgrays := NIL;
for j := 0 to i-1 do scanned[j] := false ody;

i := 0;
fi

od;
xin marking := falsey

end

sweep
def
� begin

i := 0;
do i ¤ N ñ

atomic xc := [i.colour] |
if c = white ñ | reclaim := iy;

collect white node(i):
xscanned[i] := falsey;
x[i.left] := NILy; x[i.right] := NILy;
xe := [ENDFREE.left]y;
x[e.left] := i; reclaim := NILy;
x[ENDFREE.left] := iy

8 c = black ñ | skipy;
whiten black node(i):
x[i.colour] := white; tested[i] := false; scanned[i] := falsey

8 c = gray ñ | skipy;
skip gray node(i):
xtested[i] := false; scanned[i] := falsey

fi;
i := i+1;

od
end

The auxiliary variables we add have one of two purposes. Some of them are used
to capture control flow information so that global invariants can state properties
that must hold in specific regions of the code. The others are used to capture
an abstract view of the processing done in one process so that it can be used in
reasoning about the other process.

– The boolean variable in marking captures control information. It is set to true
during the marking phase of the collector and false outside the marking phase.
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– The boolean arrays scanned and tested indexed by heap nodes can be viewed
as finite sets of nodes and provide an abstraction of the processing done in the
collector. The array scanned captures the nodes that have been scanned during
the marking phase of the collector. The array tested represents the nodes that
are tested during the marking phase and found to be at least gray. Both of
these arrays are progressively reset to false during the sweeping phase.

– The variables lgrays, lgrayt, rgrays, rgrayt mark the source and target nodes of
edges that are traversed and coloured in the marking phase. They are set to
NIL after the colouring is completed.

– The variable reclaim is used by the collector to mark an unreachable node that
it is about to reclaim. It is reset to NIL after the reclamation.

– The variables ladd and radd mark the source of an edge that has been just
added by the mutator. After the add action, the mutator greys the target
node, at which point the variables are reset back to NIL.

– The variable avail represents information about the availability of nodes in the
free list. It is an abstraction of the nodes manipulated by the collector, but
used inside the mutator.

In addition to the usual forms of commands, we have used atomic conditional
branching and (later in Section 7) atomic iteration constructs of the form:

atomic xC0|

if E1 ñ |C1y;C
1
1

8 . . .

8 En ñ |Cny;C
1
n

fi

atomic xC0|

do E1 ñ |C1y;C
1
1

8 . . .

8 En ñ |Cny;C
1
n

od

These constructs atomically execute a setup operation C0, the chosen condition
test Ei and the atomic part of the corresponding conditional branch Ci. (The
remainder of the chosen branch C1

i is executed outside the atomic action.) The
semantics and proof rules for the constructs are given in Appendix A. If each
Ci � skip and each Ei involves only local variables of the process then the atomic
branching construct can be simplified to the following sequences using standard if

and do:

xC0y;
if E1 ñ C1

1 8 . . . 8 En ñ C1
n fi

xC0y;
do E1 ñ C1

1 8 . . . 8 En ñ C1
n od

The reason is that, since the expressions Ei involve only local variables, they
are not affected by other processes and give the same values outside the atomic
brackets as they do inside.

It may be verified that the augmented algorithm can be transformed back to
the original one after the removal of the auxiliary variables. The code for atleastgrey
is the only place in the program where atomicity is required, which matches the
granularity of the program we originally considered.

4 Storage, permissions and colours

Assertions in Separation Logic are resource-sensitive. Hence, they must delineate
(permissions for) an area of storage in addition to stating properties that must
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i
ρ
ÞÝÑ pj, k, cq

def
� i P r0 . . . Ns ^

pi.left
ρ
ÞÝÑ j � i.right

ρ
ÞÝÑ k �

ppi.colour
ρ
ÞÝÑ c^ testedrisq _ pi.colour

1
ÞÝÑ c^ testedrisqqq

i
ρ
ÞÝÑ pj, k, cq

def
� i.left

ρ
ÞÝÑ j � i.right

ρ
ÞÝÑ k

i
F
ÞÝÑ pj, k, cq

def
� i P r0 . . . Ns ^

pi.left
1
ÞÝÑ j � i.right

1
ÞÝÑ k �

ppi.colour
ρ
ÞÝÑ c^ testedrisq _ pi.colour

1
ÞÝÑ c^ testedrisqqq

i
1
ÞÝÑ pj, k, cq

def
� i.left

1
ÞÝÑ j � i.right

1
ÞÝÑ k � i.colour

1
ÞÝÑ c

cellppiq
def
� Dj P r0..Ns, k P r0..Ns, c : i

p
ÞÝÑ pj, k, cq

cellsppXq
def
� fiPX cellppiq

listsegppj, k, V q ðñ pj � k ^ V � H^ empq _

pj � k ^ Dl : j P V ^ pj
p
ÞÝÑ pl,NIL, q � listsegppl, k, V ztjuqq

edgeppj, kq
def
� j

p
ãÝÑ pk, , q _ j

p
ãÝÑ p , k, q

pathppj, k,Xq ðñ j � k _ Dl : l R X ^ edgeppj, lq ^ pathppl, k,Xq

reachGraphppU,Xq
def
� cellsppUq ^ @ipi P U ðñ pathppROOT , i,Xqq

freeListpqrpV q
def
� Df, g, e, V1, V2, V3 :

V � tFREE ,ENDFREEu Z V1 Z V2 Z V3 ^

pFREE
p
ÞÝÑ pf,NIL, q � ENDFREE

p
ÞÝÑ pe,NIL, q �

listsegppf, g, V1q � listsegqpg, e, V2q � listsegrpe,NIL, V3qq ^
pavail ^ |V1| � 1_ avail ^ |V1| � 0q

freeHeadppf, g, V q
def
� pFREE

p
ÞÝÑ pf,NIL, q � listsegppf, g, V qq ^

pavail ^ |V | � 1_ avail ^ |V | � 0q

Table 1 Auxiliary predicate definitions

be satisfied by the contents of such storage. Assertions that precisely delineate a
set of storage locations and permissions for them are termed “precise” assertions.
At the other extreme, assertions that continue to hold when the heap extended
with additional locations or permissions are termed “intuitionistic” assertions. (See
Appendix A for precise definitions.) Recall that an assertion of the form P^Q holds
for a heap iff both P and Q hold for the same heap. We arrange our assertions as
conjunctions of the form P ^Q where P is a precise assertion delineating locations
and permissions and Q is an intuitionistic assertion that states the properties
required for these locations, with the result that the whole formula is precise.

We use the auxiliary predicates defined in Table 1. Each heap node in the
DLMSS algorithm consists of three fields: a left pointer, a right pointer (the link

fields) and a colour. We denote the three fields by i.left , i.right and i.colour. For
readability, we abuse the notations ÞÝÑ and ãÝÑ to apply to entire heap nodes

(in addition to individual fields of the nodes). We also annotate these notations
with new composite permissions for heap nodes, denoted ρ, ρ and F . The notation
i

ρ
ÞÝÑ pj, k, cq indicates ρ permission for a heap cell as consisting of a read permission

for all its fields, but full permission for the colour field whenever the variable

testedris is false. The ρ permission for a heap cell i
ρ
ÞÝÑ pj, k, q is defined as just

the ρ permission for the link fields (and no access to the colour field). The F

permission for a heap cell is defined in a similar way to the ρ permission so that
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these definitions satisfy:

i
ρ
ÞÝÑ pj, k, cq � i

ρ
ÞÝÑ pj, k, cq ðñ i

F
ÞÝÑ pj, k, cq

The predicate cellp asserts a permission p for a cell and cellsp similarly asserts
permission p for a finite set of cells. The predicate listsegppj, k, V q asserts, through
a recursive definition which has a unique solution, permission p for a “linked list”
segment of cells starting at a cell j and ending at an address k, with V being the
finite set of all the cells making up the segment. (Such a “linked list” is built using
the left links for pointing to the successor nodes and the right links set to NIL.)
Note that the set of nodes spanned by the predicate V is used as a parameter to
the predicate. The use of such parameters avoids certain anomalies in the use of
Separation Logic formulas with permissions. (See, e.g., [4].)

The edge and path predicates state that there is an edge (respectively a path)
between the two given nodes within the heap formed using the links (without
passing through the nodes in X).

The predicate reachGraphp defines permission p to a directed graph (the data
graph) of nodes reachable from ROOT (the set U), but without passing through
nodes in X. The reason for the exception set X is that while performing an oper-
ation, other nodes which we do not think of as being part of the data graph may
temporarily be reachable from ROOT and we need to exclude them.

The predicate freeListpqr describes a tripartite free list structure with per-
missions p, q and r for the three parts respectively. This predicate is admittedly
complex, but a justification is provided in the next subsection. The free list is
viewed as consisting of three segments, running between f to g, g to e and e to
NIL (with respective sets of nodes V1, V2 and V3). The first segment, called the
“head” of the free list, contains at most one cell and its length is controlled by the
variable avail . The third segment, called the “tail” of the free list, is identified by
ENDFREE. It is normally of length 1, but this is not required in the definition.
The predicate freeHead describes just the head of the free list.

Note that the predicates edgep and pathp are intuitionistic and all other pred-
icates defined in Table 1 are precise. For instance reachGraphppU,Xq is precise
because cellsppUq is precise. More interestingly, DU : reachGraphppU,Xq is also
precise because U is uniquely determined as the set of all nodes reachable from
ROOT without passing through X.

4.1 Distributing the permissions

The permissions for every heap node is split three-way: between the mutator pro-
cess, the collector process and the central resource. That this split happens differ-
ently at different program states is a key idea in the structure of the proof. The
mutator and the collector can use whatever permissions they “own” in a state.
They can also mention these permissions in their local assertions. When accessing
the resource, a process grabs the permissions for the heap cells described by the
resource invariant and combines them with its own permissions using the � connec-
tive in order to read or write a heap location. But, the permissions owned by the
central resource can only be borrowed by the two processes in atomic actions; such

permissions cannot be mentioned in the local assertions. As a specific example, there
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are points in the program where the function atleastgrey(p) can be called by both
the mutator and the collector to colour the cell p. At such points, 1 permission for
p’s colour field resides with the central resource, and can be borrowed by either
process. But, as a consequence, the colour field of p is absent from both processes’
local assertions.

It is in general desirable to minimize the locations and permissions held in
the central resource because their properties must be expressed in the resource
invariant which is not state-specific. However, Concurrent Separation Logic allows
permission transfer between processes and the central resource but not directly
between processes themselves. So, we are forced to park permissions with the
central resource until one of the processes retrieves them for itself, typically by
setting an auxiliary variable.

We have already noted that the memory of the algorithm can be split into
three parts: the data graph, the free list and the garbage cells. Let us consider
each in turn.

– The data graph’s link fields can be modified only by the mutator but the
collector needs read access for them to carry out marking.
We give ρ permission to these fields to the mutator and retain ρ permission in the

central resource. (This allows the mutator to modify the link fields in atomic
actions and the collector to read them.)

– The data graph’s colour fields are modifiable by both the collector and the
mutator. The mutator’s modifications are limited to turning white nodes into
gray.
White nodes are present in the data graph until they are greyed during a
marking scan. They are subsequently tested by the collector and identified as
belonging to the data graph. We retain a full permission for the colour fields

of all untested nodes in the central resource (so that both the mutator and the
collector can modify them). For tested nodes, ρ permission for the colour fields is

retained in the central resource and ρ permission is given to the collector.4

– The free list consists of at least two parts that are used in different ways. All
the nodes up to the end node are used in a way similar to the data graph:
their link fields can be modified only by the mutator and the colour fields by
both the mutator and the collector. The end node is modified exclusively by
the collector.
So, it might appear that we should give ρ permission to all but the end node
to the mutator and a similar permission to the end node to the collector.
However, the collector extends the free list by adding nodes at the end of
the free list and moving the ENDFREE pointer forward. This results in an
ownership transfer for the erstwhile end node, and this transfer can only be
made to the central resource.
So, we split the free list into three parts:
1. The head part that contains a list segment of at most one node has its ρ per-

mission given to the mutator and ρ permission retained in the central resource.

4 One might wonder if it is necessary to treat the untested and tested nodes differently. Is
it not possible to retain a full permission for all the colour fields in the central resource? Note
that the collector needs to reason about the colours of the nodes that it marks. Retaining full
permissions in the central resource would inhibit such local reasoning.
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2. The middle part that contains all the nodes except the first and the last nodes

has its full permission deposited in the central resource.

3. The tail part consisting of the end node has its ρ permission given to the collector

and ρ permission retained in the central resource.

Note that there is ownership transfer: nodes are regularly moving from the tail
part to the middle part and from there to the front part.

– The garbage nodes are not modifiable by either the mutator or the collector
until they are reclaimed by the collector.
So, the full permission to the garbage nodes is retained in the central resource.

In addition to the three major regions of storage, there are two transient areas
at the borders, which need special treatment controlled through auxiliary variables.
The head of the free list, lying at the border of the free list and data graph during
allocation of nodes, is controlled by the variable avail . During the collection phase,
a chosen node of the garbage area lies at the border of garbage cells region and
the free list, whose status is controlled by the variable reclaim.

Using these intuitions, we now formally state the permissions given to the
three components as precise assertions RP , mutP and colP respectively.

The permissions given to the central resource are defined as follows:

RP pU, V,W q
def
�

cellF pNILq � freeListρFρpV q � reachGraphρpU, V Y tNILuq � cellsF pW q

The structure of the definition follows the preceding discussion. The set W is that
of garbage cells for which the central resource has an F permission. It is not hard
to see that if any heap satisfies RP pU, V,W q then there is precisely one assignment
of values to U , V and W . Moreover, for all the cells in U Y V YW Y tNILu, the
central resource always holds at least a read permission for the colour field.

The permissions for the collector process include the ρ permission for the tail
part of the free list and ρ permission for the colour fields of all the tested nodes:

colP
def
� De.ENDFREE

ρ
ÞÝÑ pe,NIL, q � e

ρ
ÞÝÑ p , , q � tested colours

tested colours
def
� fkPr0..Nsp testedrks ^ empq _

pDc : testedrks ^ k.colour
ρ
ÞÝÑ c^ c P tg, buq

Recall that the atomic operations in a process can use the permissions of the pro-
cess as well as the permissions of the central resources. So, the effective permissions
for the collector process are as follows:

Remark 1 The assertion RP p , , q � colP includes F permission for all the garbage
cells and the tail of the free list and ρ permission for the rest of the nodes in the
free list and the data graph. It also includes 1 permission for the colour fields of
all tested nodes.

Permissions for the mutator process include the ρ permission for the data graph
and the head part of the free list:

mutP pU, V q
def
� reachGraphρpU, tNILuq � freeHeadρp , , V q

Even though the resource permissions allow the data graph to store pointers into
the free list nodes, our mutator is written so that the data graph is self-contained.
There is no conflict here, because any heap that satisfies reachGraphpU, tNILuq

without encroaching on the free list also satisfies reachGraphpU, V Y tNILuq.
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Remark 2 The assertion RP p , , q � mutP p , q includes F permission for all the
nodes in the data graph and all nodes but the tail of the free list.

4.2 Colour properties and the resource invariant

The global resource invariant is given by

RI
def
� DU, V,W,X: RP pU, V,W q ^X � tNILu Y U Y V ^

r0..N szti | i � reclaim � NILu � X YW ^

whiteIpXq ^ grayIpXq ^ bwIpXq ^ blackI

We have already seen the RP predicate in the previous section. Its storage is
expected to span all the cells numbered 0, . . . , N except for the cell reclaim (when-
ever it is not NIL). The symbol X denotes the set of all nodes reachable from a
root: ROOT , FREE , ENDFREE and NIL. The other conjuncts of the invariant,
whiteI etc., are intuitionistic assertions that maintain several properties of the
heap nodes, which are detailed in the sequel.

Lemma 1 RI is precise.

Proof Suppose ps, hq |ù RI. Let R stand for the value of ti | i � reclaim � NILu in
the current store. Then ps, hq |ù RP pU, V,W q and it can be seen from the structure
of RP that domphq � U Z V ZW . So, domphq � r0 . . . N szR. For each node in this
domain, the permission for the link fields is determined by RP and that for colour
fields is uniquely determined by the value of tested in the store. [\

Recall, from Sec. 3.2, that the collector maintains a set of auxiliary variables
lgrays, lgrayt, rgrays and rgrayt which record the source and target information
about the edges being coloured in the marking phase. We define a notion of C-

edge, similar to the one used by Dijkstra et al. [11] using these variables.

Cedgepk, jq
def
� k � lgrays � NIL^ k

ρ
ãÝÑ pj, , q ^ plgrayt � NIL ñ j � lgraytq _

k � rgrays � NIL^ k
ρ

ãÝÑ p , j, q ^ prgrayt � NIL ñ j � rgraytq

The idea is that, if plgrays, lgraytq is a putative edge being coloured by the collector,
then an edge starting at the same source but a different target is a C-edge. Such
an edge might result from the mutator changing the target of the edge without
the knowledge of the collector.

White invariant:During the marking phase, every white reachable node is reachable
from a reachable gray node via a path passing through only white nodes, but
without passing through a C-edge. (Such a path is dubbed a “propagation path.”)
During the sweeping phase, reachable nodes can be white only if their scanned flag
is set to false.

whiteIpXq
def
� @i P X : i.colour

ρ
ãÝÑ w ñ

pin marking ñ Dj : j P X ^ propathpj, iqq ^
p in marking ñ  scannedrisq

propathpj, iq
def
� Dk : j.colour

ρ
ãÝÑ g ^ edgepj, kq ^  Cedgepj, kq ^ wpathpk, iq

wpathpk, iq ðñ k � i_

Dl : k.colour
ρ

ãÝÑ w ^ edgepk, lq ^  Cedgepk, lq ^ wpathpl, iq
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(The predicate wpath asserts the existence of a path through white nodes, while
the predicate propath captures the notion of a propagation path.)

Gray invariant:During the marking phase, as long as there is a gray reachable
node, there must be a gray node which is unscanned. This is initially established
by making all nodes unscanned.

grayIpXq
def
� in marking ñ pDi : i P X ^ i.colour

ρ
ãÝÑ gq ñ

pDj : j P r0..N s ^ j.colour
ρ

ãÝÑ g ^ scannedrjsq

Black-to-white invariant:During the marking phase, there is at most one edge that
is a black-to-white edge or a C-edge leading to a white node. Further, the source
of this edge is represented by one of the auxiliary shared variables ladd and radd ,
which are maintained by the mutator. This is initially established by colouring all
the nodes white, and setting the auxiliary variables to NIL.

bwIpXq
def
� in marking ñ

 pladd � NIL^ radd � NILq ^

p@k, j P X : bwedgepk, jq _ Cwedgepk, jq ñ addpk, jqq

bwedgepk, jq
def
� pk

ρ
ãÝÑ pj, , bq _ k

ρ
ãÝÑ p , j, bqq ^ j.colour

ρ
ãÝÑ w

Cwedgepk, jq
def
� Cedgepk, jq ^ j.colour

ρ
ãÝÑ w

addpk, jq
def
� pk � ladd ^ k.left

ρ
ãÝÑ jq _ pk � radd ^ k.right

ρ
ãÝÑ jq

Black invariant:Tested nodes can be gray or black and only tested nodes can be
black. The first conjunct equivalently says white nodes have to be untested, which
is initially established.

blackI
def
� p@i P r0..N s : testedris ñ i.colour

ρ
ãÝÑ g _ i.colour

ρ
ãÝÑ bq ^

p@i P r0..N s : i.colour
ρ

ãÝÑ bñ testedrisq

5 The proof

A proof outline for the top-level of the augmented algorithm can be written as
follows:

tcells1r0..N su
[NIL.left] := NIL; [NIL.right] := NIL;
for i := 0 to N do [i.colour] := white; tested[i] := false; scanned[i] := false od;
avail := false; ladd, radd := NIL, NIL;
in marking := false;
lgrays, lgrayt, rgrays, rgrayt, reclaim := NIL, NIL, NIL, NIL, NIL;
tRI � mutI � pcolI ^ in marking ^ @i P r0..N s :  testedris ^  scannedrisqu

resource r(scanned, tested, in marking, lgrays, lgrayt, rgrays, rgrayt, reclaim,
avail, ladd, radd) in

begin

tmutIu mutator tfalseu ||
tcolI ^ in marking ^ p@i P r0..N s :  testedris ^  scannedrisqu collector tfalseu

end

tfalseu
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The initial pre-condition asserts 1 permission for all the cells 0, . . . , N . After the
initialisation steps, the three assertions RI, mutI and colI along with the additional
conditions are claimed to hold in separate contexts of the heap permissions. (The
assertions mutI and colI are mutP p , q and colP along with additional conditions
for the auxiliary variables, defined in the sequel.) The permissions of cells1r0..N s
are split three-way, along the lines described in Section 4.1.

It is worth checking each of the properties involved in the resource invariant
hold after the initialisation steps. The white invariant holds because in marking is
false and the scanned flag is false for all nodes. The gray invariant holds because
there are no gray nodes. The black-to-white invariant holds because there are no
black nodes or C-edges. The black invariant holds because there are no tested
nodes or black nodes.

The resource block and the parallel composition split the assertion into three
parts, for the central resource, the mutator and the collector, requiring us to prove:

RI $ tmutIu mutator tfalseu
RI $ tcolI ^ in marking ^ @i P r0..N s :  testedris ^  scannedrisu collector tfalseu

(The post-conditions are false because the processes do not terminate.) Proving
these statements amounts to proving the safety of the collector. Since mutI and
colI are disjoint and mutI includes ρ permission for the link fields of all the data
graph nodes, it means that the collector does its work without altering the data
graph. (There is a separate liveness property that can be stated to the effect that
any unreachable node is eventually put on the free list by the collector. However,
our proof technique is not meant for addressing liveness.)

Note that the entire processes of mutator and collector are within the scope
of the resource declaration. Hence, their proof outlines are written in the context
of the resource invariant RI. It is only inside atomic blocks inside these processes
that the invariant participates in the pre- and post-conditions.

5.1 The mutator process

The proof outline of the mutator is constructed using the following mutator invari-

ant:

mutI
def
� DU, V0 : mutP pU, V0q ^ ladd � NIL � radd ^ avail

Using Remark 2, the assertion mutI � RI has F permission for the data graph
and the head part of the free list, allowing the mutator to update the link fields
of these nodes in atomic operations. The mutator can also read the colour fields
of all these nodes but it can only update the colour fields of the untested nodes.
However, it must do any updates of the colour fields without mentioning the colours

in its assertions.
For the mutator, we need to prove the following proof outline in the context

of the resource invariant RI:

mutator
def
� var k, j, f, e, m: [0..N];
tmutIu

do true ñ k := some non-NIL node reachable from ROOT;
j := some node reachable from ROOT or NIL;
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tDU, V0 : mutP pU, V0q ^ ladd � NIL � radd

^ k P U ^ j P U Y tNILu

if true ñ modify left edge(k, j)
8 true ñ modify right edge(k, j)
8 true ñ get new left edge(k)
8 true ñ get new right edge(k)
fi

od

Here, in the sequel, we use the labels such as “modify left edge(k,j)” as abbre-
viations for command blocks in the augmented algorithm (cf. Sec. 3.2).

Proof outlines for the operations of the mutator are shown in Table 2. Since
the operation addleft is used in both modify left edge and get new left edge, we
prove a more general specification for its definition. The predicate reach is defined
by:

reachpqq
def
� Dx : edgeρpx, qq _ x � NIL

So, the pre-condition of addleft says that in the storage delineated by mutP pU, V q,
there is a node p and some path to reach address q (unless it is NIL), and the ladd

and radd variables are NIL. The post-condition says very much the same thing
except for noting that p’s left link has been modified to q. The specification can be
strengthened to that of modify left edge using the structural rules of Separation
Logic. (Cf. Appendix A.2.) A full discussion of the proof of addleft is given in
Sec. 6.1.

5.2 The collector process

The following collector invariant plays a central role in the proof of the collector
process:

colI
def
� colP ^ lgray � pNIL,NILq � rgray ^ reclaim � NIL

For brevity, we treat lgray � plgrays, lgraytq and rgray � prgrays, rgraytq as pairs in
our assertions.

As per Remark 1, the assertion colI � RI allows the collector process to update
the link fields of the end node of the free list, and to update the colour fields of
tested nodes. It can also update the colour fields of untested nodes (using only
RI’s 1 permission), but without mentioning them in its assertions. Likewise, it can
access and update the remaining garbage nodes using the RI’s full permission. The
following proof outline needs to be proved for the collector process in the context
of the resource invariant RI:

collector
def
� var i: [0..N�1]; c: (white, gray, black);

do true ñ tcolI ^ in marking ^ @k P r0..N s :  scannedrks ^  testedrksu

mark;
tcolI ^ in marking ^ @k P r0..N s : scannedrksu

sweep
tcolI ^ in marking ^ @k P r0..N s :  scannedrks ^  testedrksu

od
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addleft(p, q):

tDU, V :mutP pU, V q ^ p
ρ

ãÝÑ pl,m, q ^ reachpqq ^ ladd � NIL � raddu
x[p.left] := q; ladd:= py;

tDU, V :mutP pU, V q ^ p
ρ

ãÝÑ pq,m, q ^ reachpqq ^ ladd � p^ radd � NILu
xatleastgrey(q); ladd:= NILy

tDU, V :mutP pU, V q ^ p
ρ

ãÝÑ pq,m, q ^ reachpqq ^ ladd � NIL � raddu
modify left edge(k, j):

tDU, V0 : mutP pU, V0q ^ ladd � NIL � radd ^ k P U ^ j P U Y tNILu ^  availu
addleft(k, j)
tDU, V0 : mutP pU, V0q ^ ladd � NIL � radd ^ k P U ^ j P U Y tNILu ^  availu

get new left edge(k):
tDU : reachGraphρpU, tNILuq � freeHeadρp , ,Hq ^ k P U ^ availu
xf := [FREE.left]y;
tDU : reachGraphρpU, tNILuq � freeHeadρpf, ,Hq ^ k P U ^ availu
xe := [ENDFREE.left]; avail := (f � e)y;
tDU, V : reachGraphρpU, tNILuq � freeHeadρpf, , V q ^ k P U ^ avail � pf � equ
do f = e ñ xe := [ENDFREE.left]; avail := (f � e)y od;
tDU : reachGraphρpU, tNILuq � freeHeadρpf, , tfuq ^ k P U ^ availu
xm := [f.left]y;
tDU : reachGraphρpU, tNILuq � freeHeadρpf,m, tfuq ^ k P U ^ availu
addleft(k, f);
tDU : reachGraphρpU, tf,NILuq � freeHeadρpf,m, tfuq ^ k P U ^ availu

tDU : reachGraphρpU, tf,NILuq � FREE
ρ
ÞÝÑ pf,NIL, q � f

ρ
ÞÝÑ pm,NIL, q ^ availu

xaddleft(FREE, m); avail := falsey;

tDU : preachGraphρpU, tm,NILuq ^ f
ρ

ãÝÑ pm,NIL, qq � FREE
ρ
ÞÝÑ pm,NIL, q ^  availu

tDU : preachGraphρpU, tm,NILuq ^ f
ρ

ãÝÑ pm,NIL, qq � freeHeadρpm, ,Hq ^ availu
addleft(f, NIL);
tDU : reachGraphρpU, tNILuq � freeHeadρp , ,Hq ^ availu

Table 2 Mutation operations

At the end of the marking phase, all nodes are scanned. Hence, by gray in-
variant, we can conclude that there are no reachable gray nodes. Then the white
invariant implies that there no reachable white nodes. This enables the sweep-
ing phase to reclaim all the white nodes. At the end of the sweeping phase, the
loop invariant is re-established. (Our proof outlines do not show that all the white
nodes have been reclaimed because we are only proving the safety of the garbage
collector.)

5.3 Marking phase

The marking phase of the collector is an initialization followed by a loop over the
marking operations. The proof makes use of the marking invariant, which is a local
loop invariant of the collector process.

markI 1piq
def
� colP ^ in marking ^ reclaim � NIL^

i P r0..N � 1s ^ @k P r0..N s : pscannedrks ðñ k   iq

markIpiq
def
� markIpiq ^ lgray � pNIL,NILq � rgray
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Setting the in marking flag requires us to establishes the stronger version of the
white invariant, viz., that every white reachable node is reachable via a propagation
path. This is achieved by greying all the root nodes initially. The assertion “k is a
root” in the proof outline below means that k is one of ROOT , FREE , ENDFREE ,
and NIL. Setting the tested flag of all greyed nodes to true allows the collector to
retrieve the ρ permission for their colour fields from the central resource and pro-
hibits the mutator from further modifying the colours. The retrieved permissions
are absorbed into colP .

mark
def
� tcolI ^ in marking ^ p@k P r0..N s :  scannedrks ^  testedrksqu

xatleastgrey(ROOT); tested[ROOT] := truey;
xatleastgrey(FREE); tested[FREE] := truey;
xatleastgrey(ENDFREE); tested[ENDFREE] := truey;
xatleastgrey(NIL); tested[NIL] := truey;
tcolI ^ in marking ^ p@k P r0..N s :  scannedrks ^ pk is a root ñ testedrksqqu

xin marking := truey;
tcolI ^ in marking ^ p@k P r0..N s :  scannedrksqu

tmarkI p0q ^ lgray � pNIL,NILq � rgrayu

i := 0;
tmarkI piqu

do i ¤ N ñ

tmarkI piq ^ i ¤ Nu

atomic xc := [i.colour] |
if c � gray ñ | scanned[i] := truey;

tmarkI piq ^ i ¤ N ^ scannedrisu

tmarkI pi� 1q ^ i ¤ Nu

i := i+1
8 c = gray ñ| tested[i] := truey;

tmarkI piq ^ i ¤ N ^^testedris ^ i.colour
ρ

ãÝÑ gu

restart run on gray node(i)
fi

od;
tmarkIpN � 1qu
tcolI ^ in marking ^ @k P r0..N s : scannedrksu

xin marking := falsey
tcolI ^ in marking ^ @k P r0..N s : scannedrksu

In this program block, we have used atomic conditional branching to test the
colours of nodes. So, the resource invariant is assumed at the beginning of ev-
ery atomic sequence and needs to be re-established at the end of the sequence.
Consider the sequence

xc := [i.colour] | c � gray ñ | scanned[i] := truey

As a result of the initialisation c :� ri.colours and the test c � gray, we conclude
that i is non-gray. Since the collector does not have any permission for the colour
fields of untested nodes, this information about the colour will be lost at the end
of the atomic sequence. So we set scannedris to true, note that the the resource
invariants are restored (especially grayI), and assert that scannedris is true. In
the case where the node is gray, testedris is set to true and the collector acquires
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ρ permission over the colour field. So, it is possible to assert the fact about the
colour in the post-condition. A longer sequence of statements, whose proof appears
in Table 3, is used to blacken the node and restart the scan.

Restart run on gray node(i):

tmarkI 1piq ^ i ¤ N ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pNIL,NILq � rgrayu
xj := [i.left]; lgrays := i; lgrayt := jy;

tmarkI 1piq ^ i ¤ N ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi, jq ^ rgray � pNIL,NILqu
xatleastgrey(j); lgrayt := NILy;

tmarkI 1piq ^ i ¤ N ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi,NILq ^ rgray � pNIL,NILqu
xj := [i.right]; rgrays := i; rgrayt := jy;
xatleastgrey(j); rgrayt := NILy;

tmarkI 1piq ^ i ¤ N ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi,NILq � rgrayu
x[i.colour] := black; lgrays := NIL; rgrays := NIL;

for j := 0 to i-1 do scanned[j] := false ody;

tmarkI 1p0q ^ i ¤ N ^ testedris ^ i.colour
ρ

ãÝÑ b^ lgray � pNIL,NILq � rgrayu
i := 0;
tmarkI 1piq ^ lgray � pNIL,NILq � rgrayu

Table 3 Marking phase operations

The post-condition of the marking phase asserts that all nodes are scanned.
Hence from the gray invariant, we get that there are no reachable gray nodes.
From the white invariant, we get that all white nodes are unreachable. This is the
basis for the sweeping phase.

5.4 Sweeping phase

The proof uses the sweeping invariant sweepI piq, which is a loop invariant that must
hold at the beginning and end of each iteration:

sweepI piq
def
� colI ^ in marking ^ lgray � pNIL,NILq � rgray ^

i P r0..N � 1s ^
@k P r0..N s : pk   iñ  scannedrks ^  testedrksq ^ pk ¥ iñ scannedrksq

At stage i, the scanned and tested flags are expected to have been set to false for
all the nodes 0, . . . , pi� 1q.

sweep
def
� tsweepI p0q ^ reclaim � NILu

i := 0;
tsweepI piq ^ reclaim � NILu

do i ¤ N ñ

tsweepI piq ^ reclaim � NIL^ i ¤ Nu

atomic xc := [i.colour] |
if c = white ñ | reclaim := iy;

ti
1
ÞÝÑ p , , wq � sweepI piq ^ reclaim � i^ i ¤ Nu

collect white node(i)
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tsweepI piq ^ reclaim � NILu

8 c = black ñ | skipy;

tsweepI piq ^ reclaim � NIL^ i ¤ N ^ i.colour
ρ

ãÝÑ bu

whiten black node(i)
tsweepI piq ^ reclaim � NILu

8 c = gray ñ | scanned[i] := false; tested[i] := falsey;
tsweepI pi� 1q ^ reclaim � NIL^ i ¤ Nu

i := i+1
tsweepI piq ^ reclaim � NILu

fi

od

tsweepI pN � 1q ^ reclaim � NILu

tcolI ^ in marking ^ @k P r0..N s :  testedrks ^  scannedrksu

Again atomic conditional branching is used to test node colours. If i is white,
it is a garbage cell and the central resource has 1 permission for it. In this case,
the variable reclaim is set to i inside the atomic sequence, which removes the 1
permission from the central resource and releases it to the collector. So, we assert
the permission in the post-condition of the atomic sequence. Next, the node is
added to the free list by a sequence of statements whose proof is shown in Table 4.

On the other hand, if i is black, from the black invariant testedris is true and
the collector can assert its colour. This node is whitened, and the proof is also
shown in Table 4. If i is gray, which is somewhat of an unusual occurrence, we
set the scanned and tested flags to false, which immediately extends the sweeping
invariant to the node i.

In the sweeping phase, bwI is trivially true. From the black invariant, we have
that no black nodes are left at the end of sweeping, hence no black-to-white edges
either. This is the basis for the marking phase which repeats after.

6 Example proofs of operations

Tables 2, 3 and 4 show the proof outlines of the detailed operations of the muta-
tor and collector. Considerable reasoning is involved in proving that these proof
outlines are valid. We illustrate the reasoning by giving detailed proofs of the op-
erations addleft used in the mutator, and the “restart run on gray node” action of
the collector.

6.1 Addleft

Table 2 shows the proof outline for addleft, which constitutes the entire operation
of “modify left edge” and also used in “get new left edge” several times. We prove
the validity of this proof outline.

The proof uses the auxiliary shared variable ladd . The purpose of this variable
is to ensure that the black-to-white invariant is maintained and there is at most
one black-to-white edge.
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Collect white node(i):

tsweepIpiq � i
1
ÞÝÑ p , , wq ^ i ¤ N ^ reclaim � iqu

xscanned[i] := falsey;

tsweepIpi� 1q � i
1
ÞÝÑ p , , wq ^ i ¤ N ^ reclaim � iu

x[i.left] := NILy; x[i.right] := NILy;

tsweepIpi� 1q � i
1
ÞÝÑ pNIL,NIL, wq ^ i ¤ N ^ reclaim � iu

xe := [ENDFREE.left]y;

tsweepIpi� 1q � i
1
ÞÝÑ pNIL,NIL, wq ^ i ¤ N ^ reclaim � i^ ENDFREE

ρ
ãÝÑ pe,NIL, qu

x[e.left] := i; reclaim := NILy;
tsweepIpi� 1q ^ i ¤ N ^ reclaim � NIL

^ ENDFREE
ρ

ãÝÑ pe,NIL, q ^ e
ρ

ãÝÑ pi,NIL, q ^ i
ρ

ãÝÑ pNIL,NIL, qu
x[ENDFREE.left] := iy;

tsweepIpi�1q^i ¤ N^reclaim � NIL^ENDFREE
ρ

ãÝÑ pi,NIL, q^i
ρ

ãÝÑ pNIL,NIL, qu
tsweepIpi� 1q ^ reclaim � NILu
i := i+1
tsweepIpiq ^ reclaim � NILu

Whiten black node(i):

tsweepIpiq ^ reclaim � NIL^ i ¤ N ^ i.colour
ρ

ãÝÑ bu
x[i.colour] := white; scanned[i] := false; tested[i] := falsey;
tsweepIpi� 1q ^ reclaim � NIL^ i ¤ Nu
i := i+1
tsweepIpiq ^ reclaim � NILu

Table 4 Sweeping phase operations

Proof The first proof segment to be proved, in the context of the resource invariant
RI, is RI $ tP u xCy tQu with

P � DU, V :mutP pU, V q ^ p
ρ

ãÝÑ pl,m, q ^ q P pU Y V Y tNILuq ^ ladd � NIL � radd

C � ([p.left] := q; ladd := p)

Q � DU, V :mutP pU, V q ^ p
ρ

ãÝÑ pq,m, q ^ q P pU Y V Y tNILuq ^ radd � p^ radd � NIL

That means, we must prove tRI � P uCtRI � Qu using sequential Separation Logic
with permissions.

Note that mutP is a precise assertion whose domain includes all the nodes
reachable from ROOT except NIL and the head node of the free list. The sets of
these nodes are captured in the logical variable U and V respectively. The node
p must be included among these nodes. The assertion P has ρ permission to the
nodes in U Y V and RI has ρ permission to them. So, RI � P has F permission.
Thus, it is permissible for C to alter p.left .

We verify that RI is re-established in the post-condition.

– For the resource permission RP , note that the only node whose status is
changed is l, the initial left child of p, since the edge from p to l has been
removed.
– If l is reachable via some other path then the post-condition retains the ρ

permission for it as part of mutP pU, V q. A read permission is left with the
resource invariant, as required.



28 Kalpesh Kapoor et al.

– If l becomes unreachable then the post-condition has no permission for l
any more. The resource invariant is left with the F permission for l, which
is again as required because l has been moved to the unreachable part of
the heap (W ).

– For the white invariant, if we are in the marking phase, we need that every
white reachable node is reachable via a propagation path. Since the edge from
p to l has been removed, we must consider the case where l is a white node.
(Outside the marking phase, this is not an issue and the white invariant is
automatically preserved.)
– If l continues to be reachable, say via another edge ph, lq then, by bwI ^

pladd � NIL � raddq ^ in marking we infer that h is not black in the initial
state. It must be either gray or, if white, reachable via a propagation path.
Since h is not altered in the command, l continues to be reachable via
propagation path in the final state.

– If l ceases to be reachable in the final state then the white invariant is not
affected.

– The gray invariant grayI is unaffected by the command.
– Since ladd � NIL � radd initially, inside the marking phase, bwI implies there

is no black-to-white edge or C-edge to a white node. In the post-state there
is a potential black-to-white edge, or C-edge, from p to q. However, bwI is
maintained because ladd has been set to p.

(Notice that, if l becomes unreachable, the node l silently moves in the resource
invariant from reachGraph into garbage. This means a permission transfer : the mu-
tator retains no permissions on it in the post-condition and the resource invariant
takes on F permission. This enables the collector to later sweep this node into the
free list.)

The next proof segment to be proved, in the context of the resource invariant
RI, is RI $ tQu xC1y tRu with

Q � DU, V :mutP pU, V q ^ p
ρ

ãÝÑ pq,m, q ^ q P pU Y V Y tNILuq ^ ladd � p^ radd � NIL

C1 � (atleastgrey(q); ladd := NIL)

R � DU, V :mutP pU, V q ^ p
ρ

ãÝÑ pq,m, q ^ q P pU Y V Y tNILuq ^ ladd � NIL � radd

As before, RI � Q has F permission for node q, either by combining the ρ and
ρ permissions from the two conjuncts or using RI’s F . This gives the command a
1 permission for the colour field of q in case testedrqs is false. If, on the other hand,
testedrqs is true, the node cannot be white (using the black invariant) and, in this
case, the ρ permission available in RI is enough for the execution of atleastgrey.

The local post-condition R is easily established because ladd has been set to
NIL. Re-establishing the resource invariant requires a careful argument.

– The resource permission RP is unaffected by the command.
– The white invariant is preserved. If q is initially white and any propagation

path passed through q, then the path can be replaced by the suffix that just
begins at q, because q is gray in the final state.

– The gray invariant is affected if the node q was white before the greying action,
and happened to be scanned. However, by the white invariant, q is reachable
from a gray node g in the initial state, and hence by the gray invariant, there
is a gray unscanned node g1 � q. The node g1 is unaffected by the greying of q
and so the gray invariant continues to hold in the final state.
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– As for the black-to-white invariant, the edge pp, qq in the initial state is a
potential black-to-white edge or a C-edge to a white node, since ladd � p.
Since it is the only edge of this kind, greying q and setting ladd � NIL restores
the invariant. [\

This proof of addleft is a key step in the correctness of the algorithm. It is in
fact surprising that the sequence of operations

[p.left] := q; atleastgrey(q);

can possibly work because the first update operation potentially creates a black-
to-white edge from p to q and one would wonder if the collector might reclaim q

at this stage. It seems safer to use the opposite order of the operations:

atleastgrey(q); [p.left] := q;

In fact, the early version of the DLMSS algorithm given in [10] had this sequence
of operations and most computer scientists seem to believe, at first sight, that it is
safe. However, it is faulty. Stenning and Woodger found an error trace that showed
that this version of the algorithm allowed reachable nodes to be garbage collected,
invalidating the original correctness proof.5

We argue that our approach of using Separation Logic with permissions makes
it almost impossible to commit such an error. In order for the greying action to be
useful, one must be able to assert that q is gray as a result of the greying action:

atleastgrey(q); tmutI ^ q.colour
p

ãÝÑ gu [p.left] := q;

However, as argued in Sec. 4.1, the mutator cannot have any permissions for the
colour fields of nodes. So, it is not possible to refer to the colour fields in the local
assertions of the mutator. The techniques of Concurrent Separation Logic provide
a formal framework to help one avoid such serious pitfalls in reasoning.

6.2 Restart run

We look at the proof outline of the action “Restart run on gray node” carried out
by the collector when it encounters a gray node during the marking phase. This
is shown in Table 3.

Unlike the mutator, the collector has no direct permissions to the link fields of
nodes other than the tail of the free list. It has ρ permission to the colour fields
of tested nodes. All its actions are performed by borrowing permissions from the
resource in atomic operations.

Proof The first proof segment to be proved is RI $ tP1u xC1y tP2u with

P1 � markIpiq ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pNIL,NILq � rgray

C1 � pj := [i.left]; lgrays := i; lgrayt := j)

P2 � markIpiq ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi, jq ^ rgray � pNIL,NILq

5 The reason that the seemingly unsafe order of operations above works correctly is very
subtle. The node q is a reachable node before assigning it as the left successor of p and, so, it
has an independent propagation path as per the white invariant.
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RI � markIpiq has at least a read permission for the link fields and, so, it is
permissible to read the left link of i. The local post condition P2 clearly holds in
the final state and the resource invariant is not affected.

The second proof segment to be proved is RI $ tP2u C2 tP3u with

C2 � patleastgrey(j); lgrayt := NIL)

P2 � markIpiq ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi,NILq ^ rgray � pNIL,NILq

RI � markIpiq has 1 permission for the colour fields of reachable nodes and, so, it
is permissible to grey i. The local post-condition is immediate. So, it remains to
show that RI is re-established in the final state.

If l is the initial left successor of i (i.e., i.left ãÝÑ l) then either l � j � lgrayt
or, if the mutator has modified the target of the edge, l � j and pi, lq is a C-
edge. If l � j, the white invariant requires that all reachable nodes should have a
propagation path that does not pass through C-edges. The operation atleastgrey(j)
makes this possible. If there was a propagation path in the initial state that passed
through pi, jq then, in the final state, it can be replaced by the suffix of the path
beginning at j, since j is now gray. Hence the white invariant is preserved. If, on
the other hand, l � j, then the white invariant is not affected because propagation
paths do not pass through the C-edge pi, lq.

Since the node i is gray and remains unscanned, the gray invariant is preserved.
The black-to-white invariant is preserved because, even though a new C-edge pi, jq
is potentially created by C2, its target is non-white. If the left successor of i is
some other node l then pi, lq would have been a C-edge already in the initial state,
and would have satisfied the black-to-white invariant.

(We cannot assert after greying j that it is not white, since we can’t establish
that j is tested. In fact, j may not be the left successor of i any more. The mutator
may modify the left pointer after the greying, perhaps to a white node, leading
to ladd � lgrays � i holding. This is why the notion of C-edges was introduced in
[11]. The black-to-white invariant captures the maximum information that can be
assumed at this point.)

The proof for greying the right child is symmetric. So let us come to the proof
of the blackening step. We must show RI $ tP5u xC5y tP6u with

P5 � markIpiq ^ testedris ^ i.colour
ρ

ãÝÑ g ^ lgray � pi,NILq � rgray

C5 � ([i.colour] := black; lgrays := NIL; rgrays := NIL;
for j := 0 to i-1 do scanned[j] := false od)

P6 � markIp0q ^ testedris ^ i.colour
ρ

ãÝÑ b^ lgray � pNIL,NILq � rgray

RI � markIpiq allows write access to i.colour, just as in the case of C2 above. The
local post-condition markIp0q holds in the final state because all the scanned flags
have been set to false. It remains to show that RI is re-established.

Let l and r stand for the initial left and right successors of i respectively. Since
lgrays � i � rgrays, both pi, lq and pi, rq are C-edges in the initial state. The black-
to-white invariant says that there is at most one edge that is a black-to-white edge
or a C-edge to a white node and, further, the source of this edge is one of ladd

and radd . So, at most one of l and r is white and, if one of them (say l) is white,
then ladd � i. Since i is black in the final state, pi, lq has turned into a black-to-
white edge with ladd � i, as allowed by the black-to-white invariant. Setting lgrays



Fine-grained concurrency with Separation Logic 31

and rgrays to NIL removes the C-edges, but does not affect the black-to-white
invariant. If both l and r are non-white, the black-to-white invariant is preserved
trivially.

The black invariant is preserved as testedris is true. The gray invariant holds
in the final state since all nodes are unscanned. (The nodes that have been freshly
greyed in this operation might have been previously scanned. So, those scans are
now obsolete and a fresh scan is warranted.) The white invariant is preserved since
no edges are changed or turned into C-edges in this step.

The last step of the operation is a straightforward assignment to a local variable
and does not affect the resource invariant. [\

7 Multiple Mutators

One advantage of using a modular proof method such as ours is that it allows the
components to be modified with relatively minor adaptations to the correctness
proof. To illustrate how this works, we consider the modification of replacing the
single mutator in our algorithm by multiple mutator processes mutator1, . . . , mu-

tatorn [18], which have identical program code in our abstract treatment. Since
our interest is in demonstrating how to adapt the proof, we will assume that the
mutators are independent, that is, they manipulate disjoint data graphs, each of
which is reachable from a distinct root node ROOT i. However, the free list is
unique. So, there is potential contention among the mutators in acquiring new
nodes from the free list. The procedure for acquiring new nodes needs to be more
elaborate to resolve the contention.

We first consider the issue of distributing permission resources across the mu-
tators. The total permissions used for the composition of the multiple mutators
are exactly the same as those used for the single mutator in the original algorithm.
But since the free list is unique, its “head” needs to be shared by all the mutators.
We envisage that the permission for the free list head is deposited in a “local”
shared resource, separate from the central resource, so that each mutator can grab
the permission to it in critical sections. This leads to a scheme of permissions such
as the following:

mutP pU, V q
def
� pDU1, . . . , Un : U �

�n
i�1 Ui ^

±n
i�1mutPipUiqq � LP pV, , q

mutPipUq
def
� reachGraphρi pU, tNILuq

Here, LP stands for the permissions deposited with the local resource and mutPi
stands for the permissions held by the i’th mutator. The predicate reachGraphi
denotes reachability from ROOT i.

For managing the shared access to the free list head, we use an additional
control variable called get with the possible values 0, 1, . . . , n. If the value is 0, the
permission to the free list head is deposited with the local resource. If it is some
i P 1 . . . n, then the permission is deemed to be with the mutator i. Each mutator
follows a protocol whereby it waits until get � 0 and then atomically sets get to
its own index i. To reason about the status of get in each mutator, we need an
auxiliary variable in each mutator, denoted acqi, to indicate that the mutator i
has acquired the permission for the free list head.
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Hence, the local resource permission is defined by:

LP pV, f, gq
def
� p@i P r1..ns : acqi ðñ get � iq ^�

pget � 0^ freeHeadρpf, g, V qq _ p1 ¤ get ¤ n^ empq
	

The central resource invariant remains essentially the same, except that it has
to account for the fact that each mutator can be adding edges to its data graph.
So we use a separate set of auxiliary variables ladd i and radd i in each mutatori for
recording the node to which it is adding an edge, and modify the black-to-white
invariant as follows:

bwIpXq
def
� in marking ñ

@k, j P X : pbwedgepk, jq _ Cwedgepk, jqq ñ

Di. pk � ladd i ^ k.left
ρ

ãÝÑ jq _ pk � radd i ^ k.right
ρ

ãÝÑ jq

We now have a parallel structure of n mutators, with the i’th mutator process

maintaining the invariant mutIi
def
� DU : mutPipUq ^ ladd i � NIL � radd i.

mutator
def
�

var get: [0..n] updated by mutator1,. . . ,mutatorn;
auxvar acq1 : bool updated by mutator1;
. . .
auxvar acqn : bool updated by mutatorn;
get := 0; acq1 := false; . . . acqn := false;
resource l(get, acq1, . . . , acqn) in

tmutI1 � � � � � mutInu

mutator1 || . . . || mutatorn
tfalse � � � � � falseu

where
mutIi

def
� DU : mutPipUq ^ ladd i � NIL � radd i

The definitions of the operations “modify left edge” and “modify right edge”
as well as their correctness proofs remain exactly the same as in the single mutator
case. For the operation “get new left edge,” we offer the following algorithm shown
in Table 5 along with the assertion annotations. This is a coarse-grained solution
for resolving the contention between the mutators. A mutator busy-waits until
the get flag turns 0 and grabs the free list head by setting the flag to its own
index. We use a simple version of the atomic iterative command for this purpose
(see Appendix A.1 for the full syntax). Its proof rule (Appendix A.2) allows us
to derive the local assertion acqi from the exit condition which tests the shared
variable get, and in fact get is never mentioned in the local assertions of mutatori,
satisfying the side conditions of the atomic iteration and the parallel composition
with the other mutators. Following Lamport [18], we note that this is only the
second instance, after that in atleastgrey, where an atomic command (after removal
of auxiliary variables) includes a test and set of a shared variable, and thus needs
hardware support.

At this point, the mutator has access to the free list head and the usual pro-
cedure for detaching the first free node is used. By setting the get flag to 0 at the
end, the free list head is returned to the local resource.
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get new left edge(k) in mutatori:
tmutIi ^ acqiu
tp acqi ^ pmutIi � empqq _ pacqi ^ pmutIi � freeHead

ρp , , qqqu
atomic do get � 0 ñ | get := i; acqi := truey

8get R t0, iu ñ | skipy od;
tacqi ^ pmutIi � freeHead

ρp , , qqu
xf := [FREE.left]y;
xe := [ENDFREE.left]; avail := (f � e)y;
do f = e ñ xe := [ENDFREE.left]; avail := (f � e)y od;
xm := [f.left]y;
addleft(k, f);
xaddleft(FREE, m); avail := falsey;
addleft(f, NIL);
tacqi ^ pmutIi � freeHead

ρp , , qqu
xget := 0; acqi := false y
tmutIi ^ acqiu

Table 5 Get new left operation for mutator i in case of multiple mutators

8 Conclusion

Separation Logic was initially conceived as a logic to conveniently reason about
spatial separation of program components. However, it is slowly emerging that
the notion of separation can be stretched by inventing novel kinds of components.
O’Hearn [21] made the first break by treating resources and critical sections as
components through which shared data can be manipulated. Still, critical sections
represent a powerful barrier demarcating the separation of components. In this
work, we have made an attempt to break the barrier by treating an example with
fine-grained concurrency where race conditions arise in a natural (albeit controlled)
way. In work done concurrently with ours, Parkinson et al [25] make another
attempt at breaking the barrier by treating non-blocking algorithms.

The moral to be extracted from our exercise is that permissions play a cru-
cial role in reasoning about such fine-grained concurrent programs. The notion
of “separation of storage” gives way to one of “separation of permissions”. By
controlling the permissions held by the invariant via suitable control variables, it
becomes possible for processes to exchange permissions with the invariant in a
sophisticated manner.

We found the exercise of proving this algorithm quite challenging. This is
not surprising, given the history of the challenges posed by this algorithm. We
have learnt much from the previous attempts to prove its correctness [11,13],
but our methods in turn posed their own challenges. The main difference from
the proof of Gries is that our proof is based on global invariants, which is more
modular than the former but less flexible in the treatment of interference between
processes. Our proof extended to handle multiple mutators, as was informally done
by Lamport [18], without changing a single assertion inside the collector process,
a slight addition to the resource invariant and a modification of the mutator code
for interacting with the free list. Ours are the first global invariant proofs (rather
than ones using interference-freedom) of these two concurrent garbage collection
programs within a formal proof system.
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In a recent development, Vafeiadis and Parkinson [33] have found a way to
combine Separation Logic and rely/guarantee reasoning (which is a modular al-
ternative to Owicki-Gries interference handling). This should pave the way for
using separation concepts along with reasoning about interference whereas, in our
approach, all sharing had to be mediated by the central resource.
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Appendix

A Review of Separation Logic

Separation Logic, formulated by Reynolds, O’Hearn and colleagues [30], is a programming
logic similar to Hoare Logic with the main difference being that the assertions are written in
a resource-sensitive logic that is tailored to reasoning about heap storage.

A heap is taken to be a partial map from location addresses (L) to values (V ) with L � V .
A partial operation � is defined on heaps by:

h1 � h2 �

"
h1 Y h2, if domph1q X domph2q � H,
undefined, otherwise

Variables are assigned values using partial maps called stores from variables to V . Assertions
are then interpreted in contexts ps, hq consisting of a store and a heap, as follows:

ps, hq |ù P � Q ðñ Dh1, h2. h � h1 � h2 ^ ps, h1q |ù P ^ ps, h2q |ù Q
ps, hq |ù emp ðñ h is the empty heap
ps, hq |ù P ^Q ðñ ps, hq |ù P ^ ps, hq |ù Q
ps, hq |ù true ðñ always

The idea is that, whenever h � h1 � h2, the heap h can be split into two disjoint partitions h1
and h2, each of which can be operated upon independently by a concurrent process without
interference with the other. An assertion of the form P � Q allows this fact to be recorded
at the level of assertions. Note that � and emp are “modal” connectives (interpreting their
subformulas in contexts different from the current context), whereas ^ and true are classical
connectives. Other classical connectives _, false, ñ, @ and D are also available in a similar
fashion. In addition, we use an iterated form of the � connective: if X � tx1, . . . , xnu is a finite
set, fiPXP piq means P px1q � � � � � P pxnq.

For our application, we need a version of Separation Logic with permissions [4]. In this
version, heaps are partial maps Lá V �P , with P denoting the set of permissions, where P is
equipped with a partial cancellative commutative semigroup structure whose operation is also
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denoted �. Now, h1 � h2 is defined iff ph1 � h2qplq is defined for all l P domph1q Y domph2q as
per the following rule:

ph1 � h2qplq �

$'&
'%
pv, p1 � p2q, if h1plq � pv, p1q, h2plq � pv, p2q and p1 � p2 is defined
pv, p1q, if h1plq � pv, p1q and h2plq undefined
pv, p2q, if h2plq � pv, p2q and h1plq undefined
undefined, otherwise

In our application, we use the permission algebra P � tρ, ρ, 1u with ρ � ρ � 1.
Expressions occurring in Separation Logic formulas are normal mathematical expressions

over the variable symbols that are assigned values in stores. The valuation of an expression E
in store s is denoted [[E]]s. Note that the values of expressions do not depend on the heap.
Normal atomic formulas are likewise insensitive to heap. For example: All the other atomic
formulas are insensitive to the heap, for example

ps, hq |ù E1 � E2 ðñ [[E1]]s � [[E2]]s

We only need one non-standard atomic formula E1
p
ÞÝÑ E2 which is heap-dependent. Its

interpretation is:

ps, hq |ù E1
p
ÞÝÑ E2 ðñ domphq � t[[E1]]su ^ hp[[E1]]sq � p[[E2]]s, pq

The notation E1
p

ãÝÑ E2, inherited from Reynolds [30], means pE1
p
ÞÝÑ E2q � true. Whereas

E1
p
ÞÝÑ E2 implies that the heap contains exactly one location with the address E1, E1

p
ãÝÑ E2

implies that the heap contains at least one location with address E1.
The definition of � on heaps induces a notion of a subheap

h1 ¤ h2 ðñ Dh1 : h1 � h
1 � h2

An assertion P is said to be precise if, whenever ps, hq |ù P , there is no subheap h1 ¤ h such

that ps, h1q |ù P . Examples of precise assertions include emp, E1
p
ÞÝÑ E2, P � Q whenever

both P and Q are precise, and P ^Q whenever either P or Q is precise. P _Q is in general
not precise. An assertion P is said to be intuitionistic if, whenever ps, hq |ù P , for all h1 ¥ h,

ps, h1q |ù P . Examples of intuitionistic assertions include true, E1
p

ãÝÑ E2, P � Q whenever P
or Q is intuitionistic, and P ^Q whenever both P and Q are intuitionistic. An assertion P is
said to be pure if it is heap-independent, i.e., ps, hq |ù P implies ps, h1q |ù P for all heaps h1.

The programming logic of Separation Logic is similar to Hoare Logic except that a “tight”

interpretation of the specifications is employed. We use the notation ps, hq
C
 ps1, h1q to mean

that the execution of a command C can transform an initial state ps, hq to the state ps1, h1q. It
is also possible for execution starting from state ps, hq to lead to an error. This happens if C
attempts to read or write to a heap location that is not defined in h. A specification tP uCtQu
is valid iff, for all stores s and heaps h such that ps, hq |ù P :

1. ps, hq
C
� error, and

2. whenever ps, hq
C
 ps1, h1q, ps1, h1q |ù Q.

This means that, starting from any state satisfying the pre-condition P , the command C must
execute without the possibility of error and, upon termination, result in a state satisfying Q.
The precondition P must mention and assert “ownership” of all the heap locations and their
permissions required for the command C to run. If that is not the case, then condition 1 of
validity would be violated.

In Concurrent Separation Logic, we deal with parallel execution of commands. The paral-
lel executions are interleaved respecting the atomic brackets used inside the commands, and
they access shared resources for which suitable invariants are expected to be preserved. A
specification r1pX1q : R1, . . . , rnpXnq : Rn $ tP uCtQu is valid if, starting in a state where the
shared resources r1, . . . , rn satisfy their respective invariants R1, . . . , Rn and the local state
satisfies P , any execution of the command C in parallel with an environment that preserves the
resource invariants proceeds without giving an error or a race condition and, if it terminates,
ends in a final state where the shared resources satisfy their respective invariants and the local
state of the process satisfies Q [7].
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A.1 Programming language notation

The syntax of commands used in our programming notation is as follows:

C ::� x :� E | x :� rEs | rEs :� E1 | xCy
| skip | C1; . . . ;Cn | C1 ‖ C2

| if E1 ñ C1 8 � � � 8 En ñ Cn fi
| do E1 ñ C1 8 � � � 8 En ñ Cnod
| resource rpXq in C

The command x :� E means the variable x should be modified (in the store) to have the value of
E, whereas x :� rEs means that it should be modified to have the contents of the heap location
with address E. (Note that rEs is not regarded as an “expression”, despite its appearance. This
is because expressions in Separation Logic are required to be heap-independent.) The command
rEs :� E1 means the heap location with address E should be modified to have the value of
E1. Note that each basic command involves at most one read/write operation on the heap
memory.

The if and do commands represent the guarded command notations popularized by Dijk-
stra. The if command represents a nondeterministic choice between alternatives depending on
the conditions Ei (more than one of which might hold). If Ei holds, execution can continue
with the command Ci. If none of the conditions holds, the command leads to an error. The
do command is a repeated iteration of the alternatives Ci, governed by the enabling conditions
Ei. If none of the Ei holds, the command terminates.

The resource command declares a resource r with protected variables X for use within
a command that presumably uses parallel composition. All the variables listed in X must be
used only inside atomic brackets in C.

We also use, by “syntactic sugar,” a more elaborate version of the conditional command
with atomic branching:

atomic xC0| if E1 ñ |B1y;C1 8 � � � 8 En ñ |Bny;Cn fi
def
� begin var b : integer;

xC0; if E1 ñ B1; b :� 1 8 � � � 8 En ñ Bn; b :� n fiy;
if b � 1 ñ C1 8 � � � 8 b � nñ Cn fi

end

where b is a fresh variable. Its semantics is that the initial setup command C0, the conditional
test Ei and the corresponding initial steps of the chosen branch Bi are done atomically. After
this, the command Ci is executed, but outside the atomic section.

There is also a corresponding version of the do command with atomic branching:

atomic xC1
0| do E1 ñ |B1y;C1; xD1| 8 � � � 8 En ñ |Bny;Cn; xDn| od

def
� begin var b : integer;

xC0; testy;
do b � 1 ñ C1; xD1; testy 8 � � � 8 b � nñ Cn; xDn; testy od

end
where

test
def
� if E1 ñ B1; b :� 1 8 � � � 8 En ñ Bn; b :� n 8

�n
i�1 Ei ñ b :� 0 fi

The first iteration of the loop is similar to atomic-if. The setup command C0 is executed
atomically with the chosen test Ei and the corresponding Bi. For subsequent iterations, the
trailing command Di of the chosen branch in the current iteration and the chosen test Ej and
the corresponding Bj of the next iteration are done atomically. If the Ci and Di are omitted,
they are taken to be skip.

A.2 Proof rules

Our programming language is a revised version of O’Hearn’s Concurrent Separation Logic [21]
adapted to the use of fine-grained concurrency and extended to allow nested atomic sections
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and multiple resources. We borrow the notation of Brookes [7] to formalize some of these
aspects.6

A judgement in the logic is of the form Γ $ tP uCtQu with Γ being a resource context
of the form r1pX1q : R1, . . . , rnpXnq : Rn, where ri are resource names, Xi are lists of “pro-
tected” variables of the resources and Ri are their respective resource invariants, satisfying the
condition Xi X Xj � H for i � j. We use fΓ to denote R1 � � � � � Rn. The free variables
of Γ are FV pΓ q � X1 Y . . . Y Xn. (The rules ensure that the free variables of the resource
invariants are included among these.)

If there is a single central resource with a resource invariant R, as it is in the majority of
this paper, we abbreviate the judgement to R $ tP u C tQu.

If P is a formula, the notation FV pP q denotes the set of free variables of P . If C is a
command, FV pCq denotes the set of variables that occur outside atomic brackets in C. We
also use the FV notation with multiple arguments, e.g., FV pΓ, P,C,Qq, in which case we mean
the union of the individual sets of free variables.

The structural rules of the logic are the following:

CONSEQ
P 1 ñ P Γ $ tP u C tQu Qñ Q1

Γ $ tP 1u C tQ1u

EXIST
Γ $ tP u C tQu

Γ $ tDx:P u C tDx:Qu
if x is not in FV pΓ,Cq

SUBST
Γ $ tP u C tQu

Γ $ tP rE{xsu C tQrE{xsu
if x is not in FV pCq

INV
Γ $ tP u C tQu

Γ $ tP ^Ru C tQ^Ru

if R is pure and C does not modify any
variable in FV pRq

FRAME
Γ $ tP u C tQu

Γ $ tP � Ru C tQ � Ru

if C does not modify any variable in
FV pRq

AUXILIARY
Γ $ tP u C tQu

Γ $ tP u CzX tQu

if X is auxiliary for C and
X X FV pP,Qq � H

A set of variables X is said to be auxiliary for C if every free occurrence of a variable from X
in C is in an assignment that only affects the variables in X. The command CzX is obtained
by deleting all assignments to variables in X.

The proof rules for the sequential part of the programming language are straightforward
adaptations of the sequential Separation Logic [30]:

Γ $ tx � m^ empu x :� E tx � Erm{xs ^ empu

Γ $ tx � m^ E
p
ÞÝÑ E1u x :� rEs tx � E1 ^ Erm{xs

p
ÞÝÑ E1u

if x not in FV pE1q

Γ $ tE
1
ÞÝÑ u rEs :� E1 tE

1
ÞÝÑ E1u

Γ $ tP u skip tP u

Γ $ tP u C1 tQu Γ $ tQu C2 tRu

Γ $ tP u C1;C2 tRu

P ñ E1 _ � � � _ En Γ $ tP ^ Eiu Ci tQu pi � 1, . . . , nq

Γ $ tP u if E1 ñ C1 8 � � � 8 En ñ Cn fi tQu

Γ $ tP ^ Eiu Ci tP u pi � 1, . . . , nq

Γ $ tP u do E1 ñ C1 8 � � � 8 En ñ Cn od tP ^ p E1 ^ � � � ^  Enqu

6 Brookes’s framework has subtle differences from that of O’Hearn. Our logic follows the
O’Hearn system despite the use of Brookes’s notation.
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Note that any permission p is enough to read a heap cell (at address E), but a 1 permission is
needed to write to it.

The proof rules dealing with concurrent constructs are as follows:

RESOURCE
Γ, rpXq : R $ tP u C tQu

Γ $ tR � P u resource rpXq in C tR � Qu

if R is precise and
FV pRq � FV pΓ q YX

PAR
Γ $ tP1u C1 tQ1u Γ $ tP2u C2 tQ2u

Γ $ tP1 � P2u C1 ‖ C2 tQ1 � Q2u

if Ci does not modify variables
in FV pPj , Cj , Qjq (for i � j)

ATOMIC
$ tP � pfΓ qu C tQ � pfΓ qu

Γ $ tP u xCy tQu

if no other process modifies
variables in FV pP,Qq

The RESOURCE rule requires a resource invariant R to be extricated from both the pre-
condition and post-condition of the resource command which can be used as part of the
resource context for the body C. The rule ATOMIC allows all the resource invariants in
the context to be retrieved in the pre-condition and post-condition of an atomic block. The
side condition for the rule, which is informally stated, requires that the local pre-condition
and post-condition should not have free variables that are modified by “other processes”. It
is possible to formalize the informal statement by using more sophisticated judgements that
track variables used in the assertions and commands, but the simple rule should suffice for our
purposes. It is worth noting that all the resources in the resource context are absorbed in an
atomic block. This is in contrast the conditional critical regions treated in [7,21] which absorb
a single resource named in the critical region. Likewise, all the protected variables of Γ can
occur in the atomic block, but they cannot occur in commands outside atomic blocks.

The following proof rules can be derived for the atomic-branching commands from their
sequential definition. Their side conditions are similar to those of the ATOMIC rule above.
Note that the atomic iteration allows a loop invariant L.

$ tP � pfΓ qu C0 tP 1 ^ pE1 _ � � � _ Enqu
$ tP 1 ^ EiuBi tQi � pfΓ qu Γ $ tQiu Ci tRu pi � 1, . . . , nq

Γ $ tP u atomic xC0| if E1 ñ |B1y;C1 8 � � � 8 En ñ |Bny;Cn fi tRu

$ tP � pfΓ qu C0 tLu L^ E1 ^ � � � ^  En ñ R � pfΓ q
$ tL^ EiuBi tQi � pfΓ qu Γ $ tQiu Ci tRiu $ tRi � pfΓ quDi tLu pi � 1, . . . , nq

Γ $ tP u atomic xC0| do E1 ñ |B1y;C1; xD1| 8 � � � 8 En ñ |Bny;Cn; xDn| od tRu

B The invariants used in proving the DLMSS algorithm

The algorithm presented in [11] is a rather challenging concurrent program to prove correct.
We summarize the critical ideas used in the correctness proofs, right from the 1970s [11,13].

The black-to-white invariant (corresponding to P1, P3 and P3a in [11]) says that there
are no black-to-white edges in the graph (because all paths from black nodes to white nodes
are mediated by gray nodes). Unfortunately, this invariant can be violated by the mutator
actions “modify left edge(k, j)” and “modify right edge(k, j).” If k and j are the addresses of
a black node and white node respectively, then the modification introduces a black-to-white
edge. Even though the algorithm greys the new target node in:

modify left edge(k, j): [k.left] := j; atleastgrey(j);

the invariant can still be falsified in between the two steps of this operation. Hence it is
necessary to weaken the invariant to say that there is at most one black-to-white edge in
the graph, and this can occur precisely when the mutator is in the middle of such a modify
operation.

Gries’s proof [13] makes do with this weaker version of the invariant because of the way
Owicki-Gries interference freedom works, but this version is not actually a global invariant.
So, Dijkstra et al. define a further variation. They define a C-edge to be a gray-to-white edge
which occurs in the marking phase in the midst of greying the (original) children of a node.
A C-edge can turn into a black-to-white edge in the course of marking. The black-to-white
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invariant above is now strengthened to say that there is at most one edge that is either a
black-to-white edge or a C-edge leading to a white node.

The white invariant (corresponding to P2 of [11]) is a consequence of the original black-to-
white invariant which does not need to be weakened to account for the mutator actions: every
white node is reachable from a gray node by a path consisting only of white nodes. This pretty
picture of the collector can be potentially spoiled by the mutator, which can get and modify
nodes, changing the data graph and the free list. Hence it can violate the collector’s invariant.
However, the trick mentioned above of greying the target of every new edge created by the
mutator is adequate for ensuring that the mutator maintains the white invariant.

A gray invariant is also used in the proof of the marking phase: if there is a gray node
among those already processed by the collector during its run, then (this gray node could only
have been coloured gray by the mutator and because of the white invariant it follows that)
there is a gray node among those not yet processed by the collector during its run. This gray
invariant is preserved by the marking actions of the collector. So the updates of the mutator
and the collector’s marking phase preserve the conjunction of the white and gray invariants.

C Proving the operations

We gather all the resource and local invariants into Table 6 for easy reference.

RI
def
� DU, V,W,X: RP pU, V,W q ^X � tNILu Y U Y V ^ r0..Ns � X YW ^

whiteIpXq ^ grayIpXq ^ bwIpXq ^ blackI

RP pU, V,W q
def
�

cellF pNILq � freeListρFρpV q � reachGraphρpU, V Y tNILuq � cellsF pW q

whiteIpXq
def
� @i P X : i.colour

ρ
ãÝÑ w ñ

pin marking ñ Dj : j P X ^ propathpj, iqq ^
p in marking ñ  scannedrisq

grayIpXq
def
� in marking ñ pDi : i P X ^ i.colour

ρ
ãÝÑ gq ñ

pDj : j P r0..Ns ^ j.colour
ρ

ãÝÑ g ^ scannedrjsq

bwIpXq
def
� in marking ñ

@k, j P X : pbwedgepk, jq _ Cwedgepk, jqq ñ pk � ladd ^ k.left
ρ

ãÝÑ jq _

pk � radd ^ k.right
ρ

ãÝÑ jq

blackI
def
� p@i P r0..Ns : i.colour

ρ
ãÝÑ bñ testedrisq ^

p@i P r0..Ns : testedris ñ i.colour
ρ

ãÝÑ g _ i.colour
ρ

ãÝÑ bq

mutI
def
� DU, V0 : mutP pU, V0q ^ ladd � NIL � radd ^ avail

mutP pU, V q
def
� reachGraphρpU, tNILuq � freeHeadρp , , V q

colP
def
� De.ENDFREE

ρ
ÞÝÑ pe,NIL, q � listsegρpe,NIL, q � tested colours

tested colours
def
� fkPr0..Nsp testedrks ^ empq _

pDc : testedrks ^ k.colour
ρ
ÞÝÑ c^ c P tg, buq

colI
def
� colP ^ lgray � pNIL,NILq � rgray ^ reclaim � NIL

markI piq
def
� colI ^ in marking ^ i P r0..N � 1s ^ @k P r0..Ns : pscannedrks ðñ k   iq

sweepI piq
def
� colI ^ in marking ^ i P r0..N � 1s^
@k P r0..Ns : pk   iñ  scannedrks ^  testedrksq ^ pk ¥ iñ scannedrksq

Table 6 Resource and local invariants
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C.1 Mutator getting a node from the free list

get new left edge(k):
tDU : reachGraphρpU, tNILuq � freeHeadρp , ,Hq ^ k P U ^ availu
xf := [FREE.left]y;
tDU : reachGraphρpU, tNILuq � freeHeadρpf, ,Hq ^ k P U ^ availu
xe := [ENDFREE.left]; avail := (f � e)y;
tDU, V : reachGraphρpU, tNILuq � freeHeadρpf, , V q ^ k P U ^ avail � pf � equ
do f = e ñ xe := [ENDFREE.left]; avail := (f � e)y od;
tDU : reachGraphρpU, tNILuq � freeHeadρpf, , tfuq ^ k P U ^ availu
xm := [f.left]y;
tDU : reachGraphρpU, tNILuq � freeHeadρpf,m, tfuq ^ k P U ^ availu
addleft(k, f);
tDU : reachGraphρpU, tf,NILuq � freeHeadρpf,m, tfuq ^ k P U ^ availu

tDU : reachGraphρpU, tf,NILuq � FREE
ρ
ÞÝÑ pf,NIL, q � f

ρ
ÞÝÑ pm,NIL, q ^ availu

xaddleft(FREE, m); avail := falsey;

tDU : preachGraphρpU, tm,NILuq ^ f
ρ

ãÝÑ pm,NIL, qq � FREE
ρ
ÞÝÑ pm,NIL, q ^  availu

tDU : preachGraphρpU, tm,NILuq ^ f
ρ

ãÝÑ pm,NIL, qq � freeHeadρpm, ,Hq ^ availu
addleft(f, NIL);
tDU : reachGraphρpU, tNILuq � freeHeadρp , ,Hq ^ availu

Table 7 Mutator get operation

The proof of the get operation of the mutator, outlined in Table 7 is also interesting,
since a node has to be extricated while carefully avoiding trespassing on the free list except
for the first free node, and the node must not get detached from both the structures at any
time. (The procedure addleft is called with different preconditions/postconditions in different
occurrences. For instance, if n R U in the precondition then, in the postcondition, we have
reachGraphρpU, V Y tnuq. These specifications should be easy for the reader to reconstruct if
needed.) Note that freeHeadρpf, g, V q means

FREE
ρ
ÞÝÑ pf,NIL, q � pp avail^f � g^V � H^empq_pavail^f � g^f

ρ
ÞÝÑ pg,NIL, q^V � tfuqq

The freeHead could be either empty or a singleton list segment. Which it is depends on
whether the free list has any nodes other than the end node. The auxiliary variable avail
makes this information available to the mutator.

1. In the first step, the header node FREE is read using the read-complement permission
available for the freeHead.

2. After the second step, a busy wait, we are assured that f is distinct from ENDFREE , and
hence the free list is nonempty. The node f is now a free node.

3. In the third step, the node f is read.
4. In the fourth step, the node f is attached to the graph at the node k. However, we are

careful not to count the node f as part of the reachable graph because it is still a part of the
free list. The reachable graph and the free list are required to be separate in our invariants.
The predicate reachGraphpU, tf,NILuq spans all the cells reachable from ROOT except
for f and NIL.

5. Next the node f is detached from the free list by advancing the pointer FREE .left . It
becomes an integral part of the reachable graph (and, hence, the set U). However, since
the node f still points into the free list starting at node m, the reachable graph must be
blocked from encroaching into the free list at node m.

6. Finally, f ’s left pointer is reset to NIL and the local invariant is reestablished.

Note that the last three commands have to be ordered carefully. If they are reordered, for
instance, as:
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addleft(FREE, m); addleft(k, f); addleft(f, NIL);

then the node f is detached from the free list too early. It becomes a garbage node and it is
liable to be garbage collected in between the first two commands. Our invariants prohibit this
order. Recall that the resource permission RP pU, V,W q specifies all the nodes outside U , V
and tNILu to be in W , and the central resource has full permission for the nodes in W . So it
is not possible to satisfy the precondition for addleft(k, f) which requires ρ permission for f .

The first assertion to be proved is RI $ tP0u C1 tP1u with

P0 � DU : preachGraphρpU, tNILuq ^ k P Uq � freeHeadρp , ,Hq ^ avail
C1 � f :� rFREE .lefts;
P1 � DU : preachGraphρpU, tNILuq ^ k P Uq � freeHeadρpf, ,Hq ^ avail

This only requires read permission on the node pointed to by FREE. The next assertion
RI $ tP1u xC2y tP2u with

C2 � pe :� rENDFREE .lefts; avail :� pf � eqq
P2 � DU, V : preachGraphρpU, tNILuq ^ k P Uq � freeHeadρpf, , V q ^ avail � pf � eq

establishes the invariant for the loop that follows. Note that ENDFREE can be read by bor-
rowing such a permission from the resource invariant but since the mutator has no permission
on it, it cannot be mentioned in the assertion. Thus the auxiliary avail, using the inequality of
the local copies f and e, transfers information from the central resource about whether there
is a node available for the mutator to obtain.

The next assertion RI $ tP2u C3 tP3u with

C3 � do f � eñ xe :� rENDFREE .lefts; avail :� pf � eqyod;
P3 � DU : preachGraphρpU, tNILuq ^ k P Uq � freeHeadρpf, , tfuq ^ avail

is more interesting. The exit condition of the busy wait, f � e, relates through the auxiliary
avail to the existence of a left successor for f and enables freeHead to extend to it. Using
the next RI $ tP3u C4 tP4u, mutator gets a local copy in m.

C4 � m :� rf.lefts;
P4 � DU : preachGraphρpU, tNILuq ^ k P Uq � freeHeadρpf,m, tfuq ^ avail

Now we have the sequence of three addleft commands mentioned above, where mutator at-
taches the free node to k, and advances the head of the free list to m (avail being reset to its
old status), and the local variable f is cleaned up.

C.2 Operations during the collector’s sweeping phase

We illustrate the proof of the raison d’être of this program, the collect action in Table 8. From
the white invariant, we see that a white scanned node must be in the unreachable garbage. The
invariant has full permission on its links, and, since testedris is false by the black invariant, the
colour field as well. By setting reclaim to i, the collector process extracts the full permission to
the node i from the resource invariant. This is represented in the pre-condition of the collect
action.

The action starts by setting the scanned flag of i to false, a necessary step to preserve the
white invariant before the node i is made accessible. Next, the link fields of i are set to NIL
using the 1 permission.

Since the collector has ρ permission for ENDFREE as well as the sentinel node e of the free
list, it is able to link in the node i as the successor to e. This is done in the command x[e.left]
:= i; reclaim := NILy. Once the node i is linked in, it becomes reachable from ENDFREE and,
so, ρ permission should be given to the resource invariant. Thus it is necessary to set reclaim
to NIL. The collector now retains only ρ permission for node i.

When the pointer ENDFREE is moved to i, the former sentinel node e becomes part of
the usable portion of the free list, and its ρ permission is transferred to the resource invariant.
The node i becomes the new sentinel node. None of the resource invariants are affected by
these actions.
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Collect white node(i):

tsweepIpiq � i
1
ÞÝÑ p , , wq ^ i ¤ N ^ reclaim � iqu

xscanned[i] := falsey;

tsweepIpi� 1q � i
1
ÞÝÑ p , , wq ^ i ¤ N ^ reclaim � iu

x[i.left] := NILy; x[i.right] := NILy;

tsweepIpi� 1q � i
1
ÞÝÑ pNIL,NIL, wq ^ i ¤ N ^ reclaim � iu

xe := [ENDFREE.left]y;

tsweepIpi� 1q � i
1
ÞÝÑ pNIL,NIL, wq ^ i ¤ N ^ reclaim � i^ ENDFREE

ρ
ãÝÑ pe,NIL, qu

x[e.left] := i; reclaim := NILy;
tsweepIpi� 1q ^ i ¤ N ^ reclaim � NIL

^ ENDFREE
ρ

ãÝÑ pe,NIL, q ^ e
ρ

ãÝÑ pi,NIL, q ^ i
ρ

ãÝÑ pNIL,NIL, qu
x[ENDFREE.left] := iy;

tsweepIpi�1q^i ¤ N^reclaim � NIL^ENDFREE
ρ

ãÝÑ pi,NIL, q^i
ρ

ãÝÑ pNIL,NIL, qu
tsweepIpi� 1q ^ reclaim � NILu
i := i+1
tsweepIpiq ^ reclaim � NILu

Whiten black node(i):

tsweepIpiq ^ reclaim � NIL^ i ¤ N ^ i.colour
ρ

ãÝÑ bu
x[i.colour] := white; scanned[i] := false; tested[i] := falsey;
tsweepIpi� 1q ^ reclaim � NIL^ i ¤ Nu
i := i+1
tsweepIpiq ^ reclaim � NILu

Table 8 Collect and other actions

The operations skip gray node and whiten black node are straightforward. In both
cases, we know that the node i must have been tested (as per the black invariant) and, so,
the collector has ρ permission to its colour field. By combining with the resource invariant’s
ρ permission, the collector is able to change the colour field of a black node to white. The
scanned flag is set to false simultaneously in order to preserve the white invariant.


