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Abstract. Etessami, Vardi and Wilke [5] showed that satisfiability of
two-variable first order logic FO2[<] on word models is Nexptime-complete.
We extend this upper bound to the slightly stronger logic FO2[<, succ,≡],
which allows checking whether a word position is congruent to r modulo
q, for some divisor q and remainder r. If we allow the more powerful mod-
ulo counting quantifiers of Straubing, Thérien and Thomas [22] (we call
this two-variable fragment FOmod2[<, succ]), satisfiability becomes Ex-
pspace-complete. A more general counting quantifier, FOunC2[<, succ],
makes the logic undecidable.

1 Introduction

It is well known that first order logic cannot express counting properties like
modulo counting. Two-variable logic cannot express threshold counting. One
option is to add counting quantifiers, but there are many ways of doing this, see
for example Paris and Wilkie [14], Cai, Fürer and Immerman [3], Straubing,
Thérien and Thomas [22], Schweikardt [16]. In this work, we look at extensions
of first order logic with a few counting quantifiers.

In the most general setting FOunC, we have counting terms and allow their
comparison. This logic can define addition [9] and is equivalent to the well studied
majority logic [7]. Hence, by an old result of Robinson [15], in the presence of
the unary predicates (for |Σ| ≥ 2), satisfiability is undecidable.

In the more restricted FOmod, counting can only be done modulo a number.
From Büchi’s theorem [2], the satisfiability problem can be decided by building
an automaton and checking for its emptiness. This is, like FO, nonelementary
on the quantifier depth.

So it is of interest to study the counting quantifiers in a weaker framework,
such as the two-variable sublogic, studied in Grädel, Otto and Rosen [6], Pa-
cholski, Szwast and Tendera [13], Straubing and Thérien [21]. Etessami, Vardi
and Wilke [5], showed that satisfiability of FO2[<] over finite words is Nexp-
time-complete. This was further extended to words over arbitrary linear order-
ings in [11]. On the other hand satisfiability of FO2[<] over constant alphabet
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is Np-complete as shown by Weis and Immerman [26]. With only two vari-
ables, having successor as an atomic formula increases expressiveness and the
logic FOmod2[<, succ] is a well studied class. Straubing, Tesson and Thérien
[20] give an algebraic characterisation of this logic. In another paper Straubing
and Thérien [21] show that any formula in this logic is equivalent to a for-
mula with all modulo quantifiers inside existential quantifiers. Moreover they
show that FOmod2[<, succ] = Σ2MOD[<, succ] ∩ Π2MOD[<, succ]. Interest-
ingly the language (ab)∗ can be expressed in the logic FOmod2[<] and FO[<],
but not in FO2[<] [21]. Tesson and Thérien [23] review the connections between
FOmod2[<, succ], algebra and circuit complexity.

Logic |Σ| ≥ 2

FO2[<]
Nexptime-complete [5]

(over fixed alphabet, Np-complete [26])
FO2[<, succ] Nexptime-complete [5]
FO2[<,≡] Nexptime-complete
FO2[<, succ,≡] Nexptime-complete
FOmod2[<] Expspace-complete
FOmod2[<, succ,≡] Expspace-complete
FOunC2[<] undecidable

Table 1. Complexity of satisfiability of various fragments of two variable logics. Those
not cited are the results of this paper.

Our contribution. What is known about the satisfiability problems for these log-
ics over word models? The complexities in the table are tight. In this paper we
show that the Etessami, Vardi, Wilke upper bound for FO2[<, succ] [5] extends
to the slightly stronger FO2[<, succ,≡], and also that their lower bound holds
for FO2[<,≡] for a constant alphabet size; recall that FO2[<] is Np-complete
for a constant alphabet [26]. Secondly, we show that FOmod2[<, succ] is Ex-
pspace-complete. Our upper bound results assume that the integers in modulo
quantifiers and modulo predicates are in binary, whereas our lower bound re-
sults assume they are in unary. Thus the complexity does not depend on the
representation of integers. Our third contribution is to show that the two vari-
able fragment of counting logic FOunC2[<] is undecidable. The PhD thesis [19]
contains many of these results. It also shows that two-variable Presburger arith-
metic (where y = x + 1 and y = x + x are definable) in the presence of unary
predicates is undecidable.

Structure of the paper. In the next section, we formally introduce the counting
quantifiers and the various logics we look into. In Section 3, we give the upper
bound results, namely the Expspace upper bound for FOmod2[<, succ] and the
Nexptime algorithm for FO2[<, succ,≡]. Section 4 gives corresponding lower
bounds and the undecidability of FOunC2[<].
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2 Preliminaries

We denote by N the set of all natural numbers {0, 1, 2, . . . }. An alphabet Σ is
a finite set of symbols. Each letter a of Σ is also the name of a unary predicate
which holds at positions which have that letter. We will use a left end-marker
for a word, which is outside Σ. The set of nonempty subsets of Σ is denoted
by P(Σ). The set of all finite words over Σ is denoted by Σ∗. The length of a
word w is denoted by |w|. For a word w ∈ Σ∗ the notation w(i) denotes the ith

letter in w, i.e. w = w(0)w(1)w(2) . . . w(|w|), here w(0) is the left end-marker,
w(1) . . . w(|w|) are the letter positions. Let V = {x1, x2, . . . } be a set of variables.
A word model over (Σ,V) is a pair (u, s), where u ∈ Σ∗ and s : V → {0, . . . , |u|}.

First order logic (FO[<]) over a finite alphabet Σ is a logic which can be
inductively built using the following operations.

a(x), a ∈ Σ | x < y | x = y | α1 ∨ α2 | ¬α | ∃x α

We will also consider other regular relations like (a) succ : where succ(x, y) says
that y = x+ 1 and (b) x ≡ r mod q, where q > 1.

We use the superscript 2 to denote the sublogics which (perhaps repeatedly)
use only two variables. For example, the two-variable fragment of FO[<] is de-
noted by FO2. Over finite words, FO2 can talk about occurrences of letters and
also about the order in which they appear [17]. The satisfiability problem for a
formula α checks if there is a model (in our case, a word model) for it. Complexity
of satisfiability problems for two-variable logics are the focus of this study.

Counting quantifiers. We now introduce the syntax for the counting capabilities
which extend FO. In the most general setting FOunC[<], we have counting terms
and allow their comparison. The additional syntax is

#x(α) ∼ xj | #x(α) ∼ max | #x(α) ∼ n, n ∈ N

Here α is an inductively defined FOunC[<] formula, max denotes the last po-
sition of a word, x, xj ∈ V and ∼ is in {<,=, >}. The interpretation of the
counting term #x(α) is |{i | w, s[x 7→ i] |= α, 1 ≤ i ≤ |w|}|. Quantification is over
letter positions and not over the end-marker. The positions 0, 1, . . . , |w| inter-
pret the counts 0, 1, . . . , |w| respectively. Counts greater than |w| do not have an
interpretation on this word. Hence in the semantics below we do not require a
different sort for numbers, a formal difficulty pointed out to us by Anand Pillay.

(w, s) |= #x(α) ∼ xj ⇔ |{i | (w, s[x 7→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ s(xj)
(w, s) |= #x(α) ∼ max⇔ |{i | (w, s[x 7→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ |w|
(w, s) |= #x(α) ∼ n⇔ |{i | (w, s[x 7→ i]) |= α, 1 ≤ i ≤ |w|}| ∼ n, n ∈ N
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Modulo counting quantifiers. In the more restricted FOmod[<], counting terms
cannot be compared with variables, but only compared modulo a number. The
extended syntax is:

#x(α) ≡ r mod q

The semantics is given as follows for r, q ∈ N, q > 1.

(w, s) |= #x(α) ≡ r mod q ⇔ |{i | (w, s[x 7→ i]) |= α, 1 ≤ i ≤ |w|}| ≡ r mod q

For example, if a count in a word is 0, it maps to the position 0, and this
is interpreted as even because 0, an even number, maps to this position. For
later convenience, we define the abbreviated quantifier Odd y(α) to stand for
#y(α) ≡ 1 mod 2, and similarly Even y(α). Counting the parity of a letter a
requires an FOmod formula, such as Even y(a(y)).

We will use MOD[<] when first order quantifiers are not allowed. Also, we use
FOmod(q)[<] (respectively MOD(q)[<]) and FOmod(D)[<] (resp. MOD(D)[<])
when the divisors in the modulo counting is restricted to be q or from the set of
divisors D.

Modulo counting positions. The logic FO[<,≡] extends FO[<] with the following
unary relations.

xi ≡ r mod q, r, q ∈ N, q > 1

which is true iff s(xi) when divided by q leaves a remainder of r mod q. This
allows comparison of positions.

Examples. Let us look at some example languages definable in the logics. Even
length words over alphabet {a, b} can be expressed in FO2[<,≡] by max ≡ 0
mod 2, and in MOD2(2)[<] by #x(a(x) ∨ b(x)) ≡ 0 mod 2. By refining this
sentence with the one below, the language (ab + ba)∗ can also be described in
FO2[<,≡].

∀x∀y
((

succ(x, y) ∧ x ≡ 1 mod 2
)
⇒
(
(a(x)⇒ b(y)) ∧ (b(x)⇒ a(y))

))
The regular language which allows at most k more a’s than b’s in every prefix
can be defined in first order logic [24]. The simple FOunC[<,+k] sentence below
can be written using the successor relation and one additional variable. We do
not know whether the language can be defined in FOunC2[<, succ]. A similar
example was brought to our notice by Diego Figueira.

∀x∃y
((

#y
(
y ≤ x ∧ a(y)

)
= y
)
∧
(
y ≤ #y

(
y ≤ x ∧ b(y)

)
+ k
))

The FOunC2[<] sentence below defines the nonregular context-free language
{anbn | n ≥ 1}.

∃x∃y
( (

y = #y
(
y ≤ x ∧ a(y)

)
∧ y = #y

(
y ≤ x ∧ (a(y) ∨ b(y))

))
∧(

y = #y
(
y > x ∧ b(y)

)
∧ y = #y

(
y > x ∧ (a(y) ∨ b(y))

)))
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Sizes. The size of a formula is defined inductively as usual. We use binary-size
and unary-size to mean that the length of natural number constants is counted
as written in binary and unary respectively. For example the number ten (10 in
the decimal notation we use) has binary-size 4 and unary-size 10.

3 Upper bounds via linear temporal logic

Temporal logic. The temporal logic UTL over the set of propositions A is the
logic with the set of formulas closed under Boolean operations, and including a
when a is a letter in A, and Fϕ,Pϕ,Xϕ,Yϕ when ϕ is a formula. To state the
semantics fix a word u ∈ P(A)∗. A position i ≤ |u| satisfies the formula a if i
is labeled with the letter a, the formula Xϕ (resp. Yϕ) if position i + 1 (resp.
i − 1) satisfies formula ϕ, and the formula Fϕ (resp. Pϕ) if there is a position
i ≤ j ≤ |u| (resp. i ≥ j) that satisfies the formula ϕ. The semantics for Boolean
connectives are defined in the usual way. The language of the formula ϕ is the
set of all u ∈ P(A)∗ that satisfy ϕ.

Modulo counting temporal logic. The logic UTLmod extends UTL with the
following modulo counting operators.

MODP
r,qϕ | MODF

r,qϕ

For a word u ∈ P(A)∗, formula MODP
r,qϕ (resp. MODF

r,qϕ) is satisfied at a
position i ≤ |u| if the number of positions j ≤ i (resp. j ≥ i) which satisfy ϕ is
r mod q.

The logic UTLmod gives a linear time translation into FOmod2[<, succ].
There is an exponential time translation in the reverse direction.

Lemma 1. [5, 18] For an FOmod2[<, succ] formula α of quantifier depth d
and binary-size n there exists an UTLmod formula α′ of operator depth 2d
and binary-size at most O(2n), such that α and α′ accept the same set of word
models. Moreover this translation can be done in exponential time.

From our earlier work, we know that UTLmod satisfiability is in Pspace.

Theorem 2. [10] Satisfiability of UTLmod is Pspace-complete.

Combining Lemma 1 with the above Theorem we get:

Theorem 3. FOmod2[<, succ] satisfiability is in Expspace.

Length counting temporal logic. For FO2[<, succ,≡] we can do better. For this,
we introduce the logic UTLlen that extends UTL with a restricted modulo
counting operator.

MODP
r,q true | MODF

r,q true
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Note that in this logic, we can measure the distance of a position (modulo some
number) from the start or end of a word.

We next show that a satisfiable UTLlen formula ϕ has a model which is
exponential in the modality depth and number of propositions (the size of the
formula is irrelevant) and polynomial in lcm(ϕ). Here, lcm(ϕ) stands for the
least common multiple of the integers q which occur as divisors in a modulo
predicate in ϕ. Following Etessami et al [5] we define an UTLlen formula ϕ to
be of depth (k, k′) if its {F,P} depth is k and its {X,Y} depth is k′.

For a word w and a position i, the (k, k′,m)-type of i in w is the set of all
UTLlen(m) formulas of depth (k, k′) that hold in w at i. The following lemma
says that the question of satisfiability can be reduced to counting the number of
(k, k′,m)-types possible in a word. Let T (k, k′,m) be the maximum number of
distinct (k, k′,m)-types possible in a word. It can be counted inductively.

Lemma 4. For all k, k′,m, T (k + 1, k′,m) ≤ (2T (k, k′,m) + 1)T (0, k′,m).

Proof (following [5], Lemmas 2,5). Let w be a word. Then the (k+1, k′,m)-type
at position i in w is uniquely given by the (0, k′,m)-type at i, the (k, k′,m)-types
that occur to its right and the (k, k′,m)-types that occur to its left. ut

A “snipping” lemma gives a small model property for formulas in UTLlen.

Lemma 5. Let m ∈ N and let ϕ be an UTLlen(m) formula of depth (k, k′).
Then if ϕ is satisfiable, it is satisfiable in a model of size T (k, k′,m) + 1.

Proof (following [5], Lemma 4). Let w = u0u1 . . . un be a model for ϕ and let
n > T (k, k′,m) + 1. Then there exists i < j ≤ n such that the (k, k′,m)-type at
positions i and j are the same. The word ŵ = u0u1 . . . uiuj+1 . . . un obtained by
removing the intervening portion continues to be a model for ϕ. ut

Lemma 6 now shows that a satisfiable UTLlen formula ϕ has a model which
is exponential in the operator depth and number of propositions (the size of the
formula is irrelevant). The divisors contribute a multiplicative factor.

Lemma 6. Let ϕ be an UTLlen formula of operator depth d and number of
propositions p. If ϕ is satisfiable, it has a satisfying model of size O(lcm(ϕ)2d

2

22pd
2

).

Proof. Let m = lcm(ϕ) and let w be a word model over p propositions and let
the depth of ϕ be (k, k′). The lemma follows from Lemma 5 if we can show that

the number of (k, k′,m)-types is bounded by m2d222pd
2

. The (0, k′,m)-type at
a position depends on the current position and k′ positions to its left and k′

positions to its right. Each position satisfies some subset of propositions and
(i mod m) for some i < m. Thus T (0, k′,m) is bounded by (m2p)2k

′+1. Hence
T (k, k′,m) ≤ (2T (k − 1, k′,m) + 1)(m2p)2k

′+1 = O((m2p)2kk
′
).

The above small model property for UTLlen gives us that:

Theorem 7. FO2[<, succ,≡] satisfiability is in Nexptime.
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Proof. Lemma 1 shows that for every FO2[<, succ,≡] formula α, there exists
an UTLlen formula α′ such that α and α′ have the same satisfying models.
Moreover, if the quantifier depth of α is d, then the operator depth of α′ is 2d.
Lemma 6 shows that every satisfying UTLlen formula α′ of operator depth 2d
has a satisfying model of size s = O(lcm(α)4d

2

24pd
2

). A Nexptime machine can
guess this model and verify it in time s2 × |α|.

4 Lower bounds via tiling problems

The lower bound results in this section are shown by reducing from Tiling prob-
lems. We define the required Tiling problems now.

Tiling problems. A tiling system is a tuple S = (T,R,D), where T is a fi-
nite set of tiles, R ⊆ T × T and D ⊆ T × T are, respectively, the right (hor-
izontal) and down (vertical) adjacency relations. A tiling problem is the tuple
(S, n, top1, ..., topn, bot), where n ∈ N and top1, ..., topn, bot ∈ T. A tiling of an
m× k grid G ⊆ N2 is a mapping τ : G→ T respecting the right and down rela-
tions, that is, whenever (i, j+1) or (i+1, j) is in G, we have R(τ(i, j+1), τ(i, j))
or D(τ(i+ 1, j), τ(i, j)), as the case may be.

We give below two versions of the tiling problem (S, n, top1, ..., topn, bot)
corresponding to Expspace and Nexptime Turing machines respectively [4].

Rectangle tiling problem. Do there exist an m and a tiling of an m×2n grid such
that the first n tiles in the top row are top1, ..., topn in order and there exists a
tile bot in the bottom row?

Proposition 8. [4] There exists a tiling system S = (T,R,D), such that its
Rectangle tiling problem (S, n, top1, ..., topn, bot) is Expspace-complete.

Square tiling problem. Does there exist a tiling of a 2n × 2n grid, such that the
first n tiles in the top row are top1, ..., topn in order and there exists a tile bot in
the bottom row?

Proposition 9. [4] There exists a tiling system S = (T,R,D), such that its
Square tiling problem (S, n, top1, ..., topn, bot) is Nexptime-complete.

4.1 Modulo counting is Expspace-hard

We show that satisfiability of FOmod2[<] is Expspace-hard by reducing from
the Expspace-complete Rectangle tiling problem. The following lemma shows
that x ≡ y mod 2n is definable by a MOD2[<] formula, which allows us to assert
the down relation of the tiling system.

Lemma 10. There is a polynomial time algorithm which given an n ∈ N out-
puts Congn1 (x, y) in MOD2[<] , where Congn1 (x, y) is of binary-size O(n) and
quantifier depth 2 such that Congn1 (x, y) is true if and only if x ≡ y mod 2n.

There is also a formula Congn2 (x, y) ∈ MOD2(2)[<] of unary-size O(n2) and
quantifier depth n2, such that Congn2 (x, y) is true iff x ≡ y mod 2n.
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Proof. We first give Congn1 which is of quantifier depth 2. For all i ≤ n, we give
formulas lsbi(x) such that lsbi(x) is true if and only if the ith least significant bit
of x is 1. lsb1(x) is true if x is odd and is given by the formula Odd y(y ≤ x).
For all i ≥ 2:

lsbi(x) := Odd y
(
y < x ∧

(
#x(x ≤ y) ≡ (2i−1 − 1) mod 2i−1

))
The claim is now proved by induction on the number of positions y which satisfy
the conditions

y < x and y ≡
(
2i−1 − 1) mod 2i−1. (1)

When this number is 0 there is no y which satisfies property (1). This means
the ith lsb is 0. For the induction step, assume the claim to be true for a number
k. Consider the first position z where the count is k + 1. Then we know that
z − 1 ≡

(
2i−1 − 1) mod 2i−1. This implies that if we add 1 to z − 1 the ith bit

toggles. Since the claim is true when the count is k + 1, we have by induction
that lsb1(x) is true if x is odd. Now Congn1 (x, y) :=

∧n
i=1

(
lsbi(x) ⇔ lsbi(y)

)
.

The binary-size of Congn1 (x, y) is O(n).

Note that the unary-size of Congn2 is exponential in n, because we need to en-
code numbers 2i. This can be reduced as follows. We can replace the subformula
x ≡ (2i−1 − 1) mod 2i−1 in lsbi by Congi−12 (x, 2i−1 − 1). An inductive replace-
ment will give us a formula Congn2 ∈ MOD2(2)[<] of size O(n2) and quantifier
depth n2. ut

In the above lemma, Congn1 has quantifier depth 2 and in binary notation,
and Congn2 is in unary notation and has quantifier depth polynomial in n. If we
want both unary notation and constant quantifier depth, we need to introduce
modulo counting over primes and use Chinese remaindering.

Lemma 11. For every n > 1, there is a number q > 2n and a formula Congn3 (x, y)
in MOD2[<] of unary-size O(n4) and quantifier depth 1 such that Congn3 (x, y)
is true if and only if x ≡ y mod q.

Proof. Let p1, ..., pn be the first n primes and q =
∏n
i=1 pi be their product.

Clearly q ≥ 2n. For all numbers x, y ∈ N, Chinese remaindering says that the
vector (x mod p1, . . . , x mod pn) = (y mod p1, . . . , y mod pn) if and only if
x ≡ y mod q. The following formula asserts this

Congn3 (x, y) :=
∧
j≤n

∨
rj<pj

((
x ≡ rj mod pj

)
∧
(
y ≡ rj mod pj

))
Note that (x ≡ rj mod pj) can be asserted by the following MOD2[<] formula,(
#y(y ≤ x) ≡ rj mod pj

)
. By the prime number theorem, asymptotically there

are n primes within the first n log n numbers and hence one can generate the
first n primes in time polynomial in n. Therefore, the unary-size of Congn3 is∑
j≤n

∑
i≤pj i ≤

∑
k≤q k ≤ n4. ut
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We will now go to our Expspace-hardness result. Assume |Σ| ≥ 2. Below
we show the hardness for three classes of logics, each depending on the formula
Congni , where i ∈ {1, 2, 3} we choose from the above Lemmas.

Theorem 12. The satisfiability problem for the following logics over a constant
alphabet is Expspace-hard.

1. FOmod2(2)[<] formulas (using unary notation).
2. FOmod2(D)[<] formulas (using binary notation) of quantifier depth 3, where

D = {2i | i ∈ N}.
3. FOmod2[<] formulas (using unary notation) of quantifier depth 3.

Proof. The proof of the three claims differ only on the use of Congn formula and
therefore we follow the same proof for all the three claims. We show Expspace
hardness by reducing from the Expspace-complete Rectangle tiling problem
I = (S, n, top1, . . . , topn, bot) where S = (T,R,D) and T = {T1, . . . , Tt} given
by Proposition 8.

We give a polynomial time algorithm which when given the tiling problem
I outputs the formula ψI such that there is a tiling for I if and only if ψI is
satisfiable. The alphabet for ψI is Σ = T × P(TDn) × P(TRt), where TDn =
{TDn1 , . . . , TDnt } and TRt = {TRt1 , . . . , TRtt } are two copies of T. Note that we
are overriding the symbol T to mean both tiles and part of the alphabet. It will
be clear from the context of the proof what we refer to.

We associate a word model wτ ∈ Σ∗ with a tiling τ such that τ is a tiling
for I iff wτ |= ψI. In fact every position in wτ contains atmost 2 letters from
TDn and atmost 2 letters from TRt. We denote by wτ (i, j) the letter at the
(i− 1)2n + jth position in wτ . We will ensure that wτ will satisfy the property
τ(i, j) = Tl ⇔ wτ (i, j) ∈ Tl × P(TDn)× P(TRt).

The formula ψI is written as a conjunction of the formulas ψinit, ψfinal, ψnext
and ψconstraints describing the initial configuration, the final configuration, the
next move, and the tiling constraints respectively. The formula for the initial
configuration, ψinit is the conjunction of α1, ..., αn, where αi says that the ith

cell in the first row contains the tile topi. This is encoded by saying that the first
location x which satisfies x ≡ i (mod 2n) is the ith cell in the first row.

αi := ∀x
((

Congn(x, i) ∧ ∀y < x ¬Congn(y, i)
)

=⇒ topi(x)
)

Congn denotes one of Congnj , where j ∈ {1, 2, 3} (comes from either Lemma
10 or Lemma 11). Similarly, ψfinal is given by saying ∃y bot(y). We also need
to ensure that there is exactly one tile Tk ∈ T in a cell. This is asserted by a
sentence ψconstraints in FO2[<]. The hardest part of the reduction is to ensure
that the relations down D and right R are respected in the word model. This is
given by the sentence ψnext which is a conjunction of the formulae ψdown and
ψright.

We will now explain how the down constraints are respected. Let us assume
Tk ∈ τ(i, j) and the down constraint D(Tk, Tl) is true. We need to now assert
that wτ (i + 1, j) contains Tl. The idea is to count modulo 2, the number of
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occurrences of TDnl in all cells above i and in the same column. That is, we
count the size of the set {k | TDnl ∈ τ(k, j), k < i}. If this count is even then
we force TDnl to be true at wτ (i, j), otherwise we force TDnl to be false. This
ensures that the count {k | TDnl ∈ τ(k, j), k ≤ i} is odd. For other tiles we
ensure that the count is even. We preserve this invariant at every cell. Hence the
tile at (i + 1, j) can be determined by looking at the counts for every tile TDnl

and setting that tile whose count is odd. The following formula says that in the
column strictly above x, there is an even number of occurrences of TDnl .

φl(x) := Even y
(
TDnl (y) ∧ y < x ∧ Congn(x, y)

)
Now if we want to transfer the information that the cell right below x has to
contain letter Tl, we set the count of TDnl on this column above and including
position x to be odd. This can be asserted by the formula, φl(x) ⇔ Tl(x). The
following formula ψ1(x) transfers this information by taking into consideration
the down constraints.

ψ1(x) :=
t∧

k=1

(
Tk(x) =⇒

( ∨
(Tk,Tl)∈D

(
φl(x) ∧

∧
j 6=l

¬φj(x)
)))

Now we need to set the tiles at wτ (i + 1, j) by looking at the count of TDnl

strictly above and in the same column as x. The following formula ψ2(x) says
that if you see an odd number of occurrences of the letter TDnl ∈ TDn in the
column strictly above x, then we set letter Tl ∈ T to be true at x.

ψ2(x) :=

t∧
l=1

(
Odd y

(
TDnl (y) ∧ y < x ∧ Congn(x, y)

))
=⇒ Tl(x)

The formula ψdown is a conjunction of the formulas ψ1 and ψ2. A similar formula
ψright using the letters TRt can assert that the right relations R are ensured. ut

4.2 Modulo predicates are harder than linear order

We now show that FO2[<,≡] is Nexptime-hard even for a constant alphabet,
as opposed to FO2[<] being Np-complete [26].

Theorem 13. FO2[<,≡] satisfiability is Nexptime-hard (constant alphabet size).

Proof. We reduce from the Nexptime-complete Square tiling problem given
by Proposition 9. We introduce 2n distinct primes, p1, ..., pn (for encoding row
index), and q1, ..., qn(for encoding column index). These primes can encode any
cell (i, j). One now writes a formula αdown(x) which asserts there exists a y such
that the row index of y is one more than that of x and the column index of x
and y are the same. The formula can also specify that y should satisfy the down
constraints. Similarly one can write a formula to force the right constraints. It
is easy to write the initial and final conditions. ut
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4.3 General counting is undecidable

We show that the satisfiability problem of FOunC[<, succ] with just two vari-
ables is undecidable. Grädel, Otto and Rosen [6] had showed this over graphs.
Here we show that it is undecidable even over words.

Theorem 14. Satisfiability of FOunC2[<, succ] over words is undecidable.

Proof. Recall that a 2-counter automaton M = (Q,→, q0, qn) is a finite automa-
ton over the alphabet A = {inck, deck, zerok | k = 1, 2} with both counters
initially set to zero. Reachability over 2-counter automata is undecidable [12]. A

valid run q0
a0→q1

a1→ . . .
an→qn on the word a0a1 . . . an satisfies the property that

for all i from 0 to n, there is an ai-labeled transition from qi−1 to qi and
ai is enabled at qi−1. Here are the enabling conditions for k = 1, 2 which en-
force the semantics of counters: inck is always enabled, zerok is enabled if the
count of inck labels for j < i equals the count of deck labels for j < i, and
deck is enabled if the count of inck labels for j < i exceeds that of deck la-
bels for j < i. A zero test on counter 1 at position x is written as follows
∃y(y = #y(y < x ∧ inc1(y)) ∧ y = #y(y < x ∧ dec1(y))). Given these condi-
tions, it is easy to see that reachability from q0 to qn can be expressed by an
FOunC2[<, succ] formula over the monadic predicates Q ∪A. ut

5 Outlook

In an earlier paper [10], we studied the effect of adding modulo counting to
linear temporal logic LTL. In this paper we carried out the same effort for two-
variable first order logic FO2, also in the presence of counting quantifiers and
unary predicates.

Over words, the logic FOmod [1] is a strict subset of monadic second order
logic; the latter is pleasant to use and has a well-developed theory [2, 25]. The
main advantage of the modulo counting logics is that they directly represent
numbers using standard binary notation and the two variable fragment provide
an elementary decision procedure. This is also the case if we add threshold
counting quantifiers [8]. We can also add both kinds of quantifiers at the cost of
an extra exponent, but we do not know whether this is necessary. We also leave
open the complexity of decidability in modulo counting logic MOD[<].

In this paper we show that once we add unary predicates (in other words, a
small alphabet of letters), even over two variables, general counting quantifiers
bring undecidability. In the absence of unary predicates, Presburger logic is well
known to be decidable, also in the presence of counting quantifiers [16].
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21. Straubing, H., Thérien, D.: Regular languages defined by generalized first-order

formulas with a bounded number of bound variables. Theory Comput. Syst. 36(1),
29–69 (2003)
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