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Abstract. We consider interval measurement logic IML, a sublogic of
Zhou and Hansen’s interval logic, with measurement functions which
provide real-valued measurement of some aspect of system behaviour in
a given time interval. We interpret IML over a variety of time domains
(continuous, sampled, integer) and show that it can provide a unified
treatment of many diverse temporal logics including duration calculus
(DC), interval duration logic (IDL) and metric temporal logic (MTL).
We introduce a fragment GIML with restricted measurement modalities
which subsumes most of the decidable timed logics considered in the
literature.

Next, we introduce a guarded first-order logic with measurements
MGF . As a generalisation of Kamp’s theorem, we show that over ar-
bitrary time domains, the measurement logic GIML is expressively com-
plete for it. We also show that MGF has the 3-variable property.

In addition, we have a preliminary result showing the decidability of
a subset of GIML when interpreted over timed words.

The importance of reasoning about timed systems has led to considerable re-
search on models and logics for timed behaviours. We consider a slightly more
general situation where, in addition to time, we can use other measurement
functions as well. For instance, instead of saying “during the last 24 hours, the
rainfall was 100 mm,” we can say that “the time elapsed for the last 100 mm of
rainfall was over 4 months.” We can also have measurements of quantities like
“mean value” of a proposition within a time interval. Guelev has shown how
probabilities might be incorporated into such a framework [Gue00].

Unlike data languages [BPT03], there is no finite state mechanism associated
with the measurement functions. Thus we are in the setting of the interval logic
with measurements defined by Zhou and Hansen [ZH04].

There exists quite a menagerie of timed and duration logics. In Section 1
below, we review the literature and define our logic χIML[Σ] over a signature Σ
of measurement functions, and parameterised by a set of primitive comparisons
χ dependent on Σ. We show that it can provide a unified treatment of many
diverse temporal logics including duration calculus (DC), interval duration logic
(IDL) and metric temporal logic (MTL).

In Section 2, we consider an enrichment of Kamp’s FO[<] with measurements.
The undecidability of this logic motivates us to formulate and investigate a
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fragment χMGF [<,Σ] with χ-guarded measurement quantifiers. The next two
sections show that χGIML is expressively complete for χMGF . Kamp’s syntactic
techniques were used by Venema [Ven91], and we extend these as well as the
pebble games of Immerman and Kozen [IK87] in our proofs. As in Kamp’s result,
we show along the way that χMGF has the three-variable property.

Thus the expressiveness of our logic is reasonably delineated. We would have
liked to have established a connection to aperiodic languages [Bac03] but this
must remain future work.

We now turn to decidability. We find that IML and GIML are in general
undecidable, but for a set of weak comparisons (which disallow equality tests
between measurements and constants), we use a result by Hirshfeld and Ra-
binovich [HR99] and our expressive completeness to show that Weak -GIML[�]
is decidable for continous time. We also prove by translation into one-clock
alternating timed automata [LW05, OW05], decidability over timed words of
a sublogic Punct-FgIML[�] of GIML[�], which only has nesting-free forward
guarding.

1 A Classification of Timed Behaviours and Logics

Timed logics describe the evolution of system behaviour in time. For us, time is
a linear order (T,<), and we will further assume that T is a subset of the non-
negative reals (which we designate �) with < the usual ordering. Intv(T ), the set
of (closed) intervals of T , is {[b, e] ∈ T×T | b ≤ e}. A time frame TF = (T,<, d)
is a subset of the real order (�, <) with d giving the absolute value of the distance
on the real line between two real numbers, i.e. d[b, e] = |b− e|.

Zhou and Hansen have proposed an interesting interval logic [ZH04] where
the variables (measurement functions) denote real-valued measurements of sys-
tem behaviour in a given time interval. Formally we have a signature Σ =
{m1, . . . ,mn} of measurement function symbols (of arity 2), and we assume
that it contains the distinguished function � which measures the length of the
interval. We will often abbreviate the signature {�} to �.

Zhou and Hansen’s logic allows first order real arithmetic over such measure-
ments. In this section, we introduce a restricted version of this logic where a
measurement may only be compared with an integer constant. We call this logic
interval measurement logic, IML.

Let Pvar be a finite set of propositional variables. A behaviour of a system
over TF is a pair of maps θ : (Pvar → T → {0, 1})× (Σ → Intv → �), where Σ
might depend on Pvar. For convenience we write θ(p) as a boolean function of
time and θ(m)[b, e], for m ∈ Σ, as giving the value of the measurement function
m on the interval [b, e]. Moreover, we require that the measurement � is always
interpreted as length of the interval, i.e. θ(�)[b, e] = d[b, e] = |b− e|. An interval
model is a pair θ, [b, e].

It is useful to consider several classes of time frames TF = (T,<, d) where
T ⊆ �. In the literature, we find a variety of timed logics which use these different
classes as time frames. Some such logics are listed in the next section.
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Continuous infinite time. T = �.
Continuous time finitely variable behaviours. We call a continuous time

behaviour θ finitely variable if for any p in Pvar, θ(p) changes only finitely
often within a finite interval.

Continuous time prefix behaviours. T = [0, r] for some r ∈ � where [0, r]
denotes the set of reals between 0 and r. Let max(T ) = r give the maximum
time-point upto which the behaviour is captured.

Sampled time infinite behaviours. T has the form {r0, r1, . . .}, the count-
ably infinite set of sampling points where r0 = 0 and r0, r1, . . . forms an
unbounded increasing sequence within �. These behaviours are also called
timed ω-words.

Sampled time prefix behaviours. T has the form {r0, r1, . . . , rk}, the finite
set of sampling points where r0 = 0 and ri ∈ �. Also ri < ri+1. Let
max(T ) = rk. These behaviours are also called finite timed words.

Discrete time. This is a subclass of sampled time behaviour (infinite or prefix)
where all sampling points have integer values.

1.1 Interval Measurement Logic

The formulae of interval measurement logic χIML[Σ] are parameterised by a set
χ of atomic measurement comparisons. For concreteness, let us fix Punct(Σ) to
be the countable set of comparisons m ∼ c, for all m ∈ Σ, ∼ in {<,=, >} and c
in Z, the set of integers. Since punctuality is a strong requirement [AFH96], we
also define Weak(Σ) to be the subset of weak comparisons made only using the
< symbol, and Test(Σ) to be the set of comparisons of the form m = 0.

Boolean combinations of the propositional variables Pvar and 0, 1 (denoting
false and true respectively) are called propositions, Prop. Let P,Q range over
propositions, m ∼ c over comparisons from a set χ and D1, D2 over formulae.
The formulae of χIML[Σ] have the syntax

�P 	0 | �P 	 | m ∼ c | D1
�D2 | D1

�
+D2 | D1

�−D2 | D1 ∧D2 | ¬D

When we write IML[Σ] we mean that χ is the full set of comparisons Punct(Σ).

Semantics of IML. For a proposition P and time point t, θ, t |= P is defined
inductively as usual. Let θ, [b, e] |= D denote that the formulaD ∈ IML evaluates
to true in the behaviour θ at interval [b, e] ∈ Intv(θ). Omitting the boolean cases,
this is defined as follows.

θ, [b, e] |= �P 	0 iff b = e and θ, b |= P
θ, [b, e] |= �P 	 iff b < e and for all t : b < t < e. θ, t |= P
θ, [b, e] |= m ∼ c iff θ(m)[b, e] ∼ c
θ, [b, e] |= D1

�D2 iff for some z : b ≤ z ≤ e. θ, [b, z] |= D1 and θ, [z, e] |= D2

θ, [b, e] |= D1

�
+D2 iff for some z : e ≤ z. θ, [b, z] |= D1 and θ, [e, z] |= D2

θ, [b, e] |= D1

�−D2 iff for some z : z ≤ b. θ, [z, e] |= D1 and θ, [z, b] |= D2
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Derived operators. Note that �1	0 holds for all point intervals whereas �1	 holds
for all extended intervals. The formula ��P 	 def= �P 	0 ��P 	 states that P must
hold invariantly over the interval, except possibly at the last point.

– �D
def= true�D�true holds provided D holds for some subinterval.

– �D
def= ¬�¬D holds provided D holds for all subintervals.

–
→
� D

def= D
�
+true holds provided some forward extension of the interval

satisfies D. Symmetrically
←
� D

def= true
�−D.

Validity. As usual D is valid iff for all behaviours θ, θ |= D, where

– For prefix behaviours, θ |= D iff θ, [0,max(θ)] |= D
– For infinite behaviours, θ |= D iff θ, [0, e] |= D for all e ∈ dom(θ).

Example 1. The formula �(��P 	 ⇒ � ≤ c) states that P can be continuously
true for at most c time units.

Various sublogics of IML have appeared in the literature. We use different signa-
tures to relate our work to a few of these. (The original versions of some of these

logics do not include the modalities D1

�
+D2 and D1

�−D2 which were introduced
by Venema [Ven90].)

Duration calculi. Let the signature Duration(Pvar) = {�}∪{∫P | P ∈ Prop}.
The term

∫
P is interpreted to measure the accumulated amount of time for

which proposition P is true in an interval. Thus, we obtain the logic Punct-
IML[Duration(Pvar)]. This logic is called duration calculus, DC, when inter-
preted over continuous time finitely variable models [ZH04]; interval duration
logic, IDL, when interpreted over sampled time prefix models [Pan02]; and
DDC when interpreted over integer time prefix models.

Mean value calculus. Let the signature Mean(Pvar) = {�}∪{P | P ∈ Prop}.
The term P is interpreted to measure the mean value of proposition P in an
interval [b, e]. The logic Punct-IML[Mean(Pvar)] is the mean value calculus,
MVC, interpreted over continuous time finitely variable models [ZL94].

CDT. Consider a signatureΣ of measurement functions without �. If we only al-
low comparisons with zero—that is, χ is Test(Σ)—effectively we are restrict-
ing from real-valued measurements to boolean-valued ones. Such a measure-
ment function is nothing but an atomic proposition (such as “did it rain?”)
evaluated at every interval. This is an idea which has been long studied by
philosophers of time. The corresponding logic Test -IML[Σ] was called CDT

[Ven91], as the modalities �,
�−,

�
+ are named C, D and T respectively.

Interval length logic. On the other hand, we can consider the signature {�}
without any other measurement functions. The logic Punct-IML[�] is called
interval length logic. As in most real-time logics, it only includes the mea-
surement of time distance using the distinguished function �.

Interval temporal logic. Finally, the trivial logic IML[∅] with the empty sig-
nature is called interval temporal logic, ITL. This logic has been studied over
all the classes of models discussed above.
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The discrete time logic DDC has been shown to be decidable using an auto-
mata-theoretic decision procedure [Pan02]. The general situation is bleaker.

Proposition 1. The logic Punct-IML[�] is undecidable for continuous, finitely
variable and sampled behaviours whether infinite or prefix. Test-IML[Σ] is un-
decidable for infinite time.

Proof. As in the undecidability proof for DC [ZH04], for each 2-counter machine
M we can define a formula D(M) of Punct-IML[�] which is satisfiable iff M has
a halting run. The nonhalting problem is encoded using a very narrow subset of
CDT, with unary modalities definable from �, in [Lod00].

1.2 Guarded Measurement

Faced with the strong undecidability results described above, we restrict the
logic by permitting only guarded use of measurement formulae. A χ-guarded
modality has the syntax

G→ D | G← D,

where the guard G is a boolean formula over the set of comparisons χ. The
meaning of guarded modalities is as follows:

θ, [b, e] |= G→ D iff b = e and for some z : b ≤ z. θ, [b, z] |= G ∧D
θ, [b, e] |= G← D iff b = e and for some z : z ≤ b. θ, [z, b] |= G ∧D

Formally, G→ D
def= �1	0∧ →� (G ∧D) and G← D

def= �1	0∧ ←� (G ∧D).

Example 2. The formula �(¬(� ≤ c)→ ¬��P 	) is Weak -guarded and states that
P can be continuously true only for at most c time units.

χGIML[Σ] is the sublogic of IML[Σ] where measurements only appear in χ-
guards. Thus, Punct-GIML[Σ] guards use boolean combinations of comparisons
from Punct(Σ). If only forward (resp. backward) measurement guards are used,
we call the logic FGIML (resp. BGIML). If in the modality G→ D of FGIML,
we do not allow guarded modalities in D, we get a logic with nesting-free for-
ward guarding, which we denote Punct -FgIML. Guarded modalities exist in the
literature, though not in direct fashion.

Relative distance. A subset of interval duration logic IML[Duration(Pvar)]
where measurements only occur within the guard G of a modality P � G
(originally due to [Wil94]) has been called LIDL [Pan02]. This logic can be
encoded in the backwards guarded logic BGIML[Duration(Pvar)] by encod-
ing the LIDL formula P � G as the BGIML formula G← �P 	0 ��¬P 	. All
the other constructs of LIDL are already available in BGIML.

Metric temporal logic. The logic MTL [Koy90] can be encoded in Punct-
FGIML[�] as follows (see [Pan96] for details). For every MTL formula φ

we define a translation α(φ): Let α(p) = �p	0 �true. Let BP (D) def=
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(�1	0∧ →� D) �true. Then, the constrained until modality of MTL is encoded
as follows.

α(φ UI ψ) = (I(�)→ ¬(true�BP (α(φ) �true)) �BP (α(ψ))) �true

Here I(�) is the constraint corresponding to the interval I, e.g. for [3, 5) we
get � ≥ 3 ∧ � < 5. It can be shown that for all θ, b, e, φ we have θ, b |=mtl

φ iff θ, [b, e] |=iml α(φ). By a variation of this construction, we can model
MTL with both past and future modalities in Punct-GIML[�].

Guarding in first order logic has been an important tool for obtaining decidabil-
ity. Unfortunately, we can show that in the presence of punctual measurements
guarding does not guarantee decidability. MTL with future operators is unde-
cidable over continuous infinite time and MTL with past and future operators is
undecidable over sampled prefix time [OW05] and the second author and Vijay
Suman have recently shown that LIDL is undecidable over sampled time, prefix
or infinite. (However, LIDL with only length measurements is decidable over
sampled prefix time [Pan02].) All these logics can be encoded within fragments
of GIML giving the following results.

Proposition 2. 1. The logic Punct-FGIML[�] is undecidable for continuous
infinite time.

2. The logic Punct-GIML[�] is undecidable for sampled time.
3. The logic Punct-BGIML[Duration(Pvar)] is undecidable for sampled time.

2 First Order Logics with Measurement

In place of interval measurement logic, we can specify a behaviour θ using the
first order logic with measurement MFO [Σ̂]. This is the first order logic with
equality over the signature Σ̂ = (Pvar, {<}, Σ) where each p ∈ Pvar denotes a
monadic predicate.

Example 3. The formula ∀x, y. x < y ∧ (∀z. x < z < y ⇒ P (z)) ⇒ �(x, y) ≤ c
states that P cannot be true continuously for more than c time units.

We can associate a classical first order structure θ interpreting Σ̂ with a given
behaviour θ. The domain of θ is T with linear order <. For each p ∈ Pvar there
is a monadic predicate p(x) which is interpreted as the set θ(p). The functions
m ∈ Σ are interpreted as θ(m). The semantics of MFO [Σ̂] is given as usual and
omitted here.

Proposition 3. There is a bijection (θ, θ) between the IML[Σ] behaviours and
the first-order structures interpreting Σ̂.

While the monadic theory of linear order MonFO[<] is decidable [LL66], in-
troduction of even the basic measurement Σ = {�} makes the logic MFO [Σ̂]
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undecidable [ZH04]. Hence we resort to a notion of guarded use of measure-
ments. Let χMGF [Σ] be the measurement-guarded fragment of MFO [Σ̂] which
extendsMonFO[<] by the χ-guarded quantifier φ(t0) = ∃t(G(t0, t)∧ψ(t0, t)),
where ψ is a formula with at most two free variables t0 and t, and the guard G
is a boolean combination of comparisons from the set χ over the signature Σ.
Thus the measurement terms appear in a very restricted context.

We now translate our interval measurement logics into measurement guarded
first order logics.

The notation φ(x, y) indicates a formula with at most two free variables x and
y. We will use notation such as FO(x, y) to indicate a logic with formulas with
at most two free variables x and y. Superscripts as in FOk designate k-variable
fragments of a logic (now including bound as well as free variables).

STz(�P 	0)(x, y) def= x = y ∧ P (x)
STz(�P 	)(x, y) def= x < y ∧ ∀z(x < z < y ⇒ P (z))
STz(G→ D)(x, y) def= x = y ∧ ∃z(ST (G)(y, z) ∧ y ≤ z ∧ STx(D)(y, z))
STz(G← D)(x, y) def= x = y ∧ ∃z(ST (G)(z, x) ∧ z ≤ x ∧ STy(D)(z, x))
STz(D1

�D2)(x, y)
def= ∃z(x ≤ z ≤ y ∧ STy(D1)(x, z) ∧ STx(D2)(z, y))

STz(D1

�−D2)(x, y)
def= ∃z(z ≤ x ∧ STy(D1)(z, x) ∧ STx(D2)(z, y))

STz(D1

�
+D2)(x, y)

def= ∃z(y ≤ z ∧ STy(D1)(x, z) ∧ STx(D2)(y, z))

The translation of guards is obvious: ST (m ∼ c)(x, y) = m(x, y) ∼ c. The trans-
lation uses the standard trick of reusing variables. Thus STz(D)(x, y) produces
a MGF 3(x, y) formula using at most the variables {x, y, z}.
Proposition 4. There is a standard translation from χGIML[Σ] to χMGF 3[Σ]
which has the property that θ, [b, e] |= D iff θ |= STz(D)[b/x, e/y].

3 Expressive Completeness of GIML for MGF 3

Without loss of generality we assume the logic χMGF 3 consists of formulae
with variables x1, x2, x3. In this section, following the proof of Kamp’s theorem
[Kamp68] as used by Venema [Ven91], we show that the measurement logic
χGIML has the same expressive power as χMGF 3.

The first lemma is routine [GO]. Let Li,j , i �= j, i, j ∈ {1, 2, 3}, be the subset
of χMGF 3(xi, xj) consisting of boolean combinations of quantifier-free formulas
of MGF 3 and quantified MGF 3 formulas with one free variable in {xi, xj}. Li,j

is the same as Lj,i.

Lemma 1. Any MGF 3 formula is equivalent to a boolean combination of for-
mulae from L1,2 ∪ L2,3 ∪ L3,1.

Now we translate Li,j to GIML. Following [Ven91], we use a forward translation
α+ : Li,j → GIML and a backward translation α− : Li,j → GIML. The boolean
cases are routine. We assume the measurement functions are symmetric.
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α+(x = x) = true α−(x = x) = true
α+(xi = xj) = �1	0 α−(xi = xj) = �1	0
α+(xi < xj) = ¬�1	0 α−(xi < xj) = false
α+(xj < xi) = false α−(xj < xi) = ¬�1	0
α+(x < x) = false α−(x < x) = false
α+(P (xi)) = �P 	0 �true α−(P (xi)) = true��P 	0
α+(P (xj)) = true��P 	0 α−(P (xj)) = �P 	0 �true
α+(m(x, y) ∼ c) = m ∼ c α−(m(x, y) ∼ c) = m ∼ c
α+(φ1(xi, xj) ∧ φ2(xi, xj)) α−(φ1(xi, xj) ∧ φ2(xi, xj))

= α+(φ1(xi, xj) ∧ α+(φ2(xi, xj)) = α−(φ1(xi, xj)) ∧ α−(φ2(xi, xj))
α+(¬φ(xi, xj)) = ¬α+(φ(xi, xj)) α−(¬φ(xi, xj)) = ¬α−(φ(xi, xj))

The translation of a quantifier uses the fact that the �,
�− ,

�
+ modalities cover

all cases in which a third time point can be oriented with respect to two points.

α+(∃xk. φ1(xi, xk) ∧ φ2(xk, xj)) = α+(φ1(xi, xk)) �α+(φ2(xk, xj)) ∨
α+(φ1(xi, xk))

�
+α−(φ2(xk, xj)) ∨ α−(φ1(xi, xk))

�−α+(φ2(xk, xj))
α−(∃xk. φ1(xi, xk) ∧ φ2(xk, xj)) = α−(φ2(xk, xj)) �α−(φ1(xi, xk)) ∨
α−(φ2(xk, xj))

�
+α+(φ1(xi, xk)) ∨ α+(φ2(xk, xj))

�−α−(φ1(xi, xk))

The translation of a measurement guarded formula uses the forward and back-
ward guarded modalities to cover the way the quantified variable is oriented with
respect to the free variable of the formula.

α+(∃xk. G(xi, xk) ∧ ζ(xi, xk)) =
[α+(G(xi, xk))→ α+(ζ(xi, xk)) ∨ α−(G(xi, xk))← α−(ζ(xi, xk))] �true

α−(∃xk. G(xi, xk) ∧ ζ(xi, xk)) =
true�[α+(G(xi, xk))→ α+(ζ(xi, xk)) ∨ α−(G(xi, xk))← α−(ζ(xi, xk))]

α+(∃xk. G(xj , xk) ∧ ζ(xj , xk)) =
true�[α+(G(xj , xk))→ α+(ζ(xj , xk)) ∨ α−(G(xj , xk))← α−(ζ(xj , xk))]

α−(∃xk. G(xj , xk) ∧ ζ(xj , xk)) =
[α+(G(xj , xk))→ α+(ζ(xj , xk)) ∨ α−(G(xj , xk))← α−(ζ(xj , xk))] �true

By a careful case analysis over the syntax of Li,j , we can show that the transla-
tions α+ and α− preserve the semantics in the expected way.

Lemma 2. For all θ and all [b, e] ∈ Intv(θ),
θ, [b, e] |= α+(ζ(xi, xj)) iff θ |= ζ[b/xi, e/xj ] and
θ, [b, e] |= α−(ζ(xi, xj)) iff θ |= ζ[e/xi, b/xj ].

By combining Lemmas 1 and 2, and observing that the translation above can
be parameterised by the set of guards χ, we get the following theorem.

Theorem 1. The logic χGIML[Σ] is expressively complete for the three-variable
measurement guarded fragment with two free variables χMGF 3[Σ](x, y).

A referee reminded us that our proof works for an even larger family of logics:
χIML[Σ] is expressively complete for χFO3[Σ](x, y).
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4 Games and the 3-Variable Property

Next we would like to show that the full logic χMGF has the three-variable
property, that is, χMGF 3 is expressively equivalent to it. To do this, we set up
Ehrenfeucht-Fräıssé games for the k-variable guarded fragments, which are an
extension of the k-pebble games for FOk [IK87].

Our game is played for n rounds by two players, Spoiler and Duplicator, on a
board consisting of a pair of structures A and B. Spoiler is trying to distinguish
the two structures, Duplicator to hide the distinctions. Each player uses k pebbles
for the syntactic restriction to k variables and a measuring tape and meters to
check lengths and measurement values. These devices work in integer units.

A k-configuration of consists of the positions of the k pebbles on each structure,
which we represent by a pair of partial functions (which are defined where the
corresponding pebbles are on the board) α : {1..k} → A and β : {1..k} → B. The
k-pebble n-round game on structures A,B with k-configurations α, β is denoted
Gk

n(A, α,B, β).
Two configurations are said to be order isomorphic if the sequence of pebble

positions, seen as linear orders, are order isomorphic. More precisely, Spoiler’s
pebble i is on the board on one structure if and only if Duplicator’s pebble i is
present on the other structure, and for each pair of pebbles i, j on the board,
both structures satisfy the same formulas from the set {i < j, i = j, i > j}. By
linearity, they will satisfy exactly one formula from this set. Two configurations
are said to be χ-measurement isomorphic if they are order isomorphic and for each
pair of pebbles i, j on the board, both structures satisfy the same measurement
formulas from the set χ.

If α, β are not order isomorphic, Spoiler wins Gk
n(A, α,B, β) immediately (af-

ter 0 rounds). Each round has one of two kinds of moves.
In a pebble move, Spoiler can place his pebble i on an element of one of the

structures. Duplicator responds by placing her pebble i on an element of the
other structure. After the move, if the resulting configurations α′, β′ are not
order isomorphic, Spoiler wins the game.

In a measuring move, Spoiler removes all pebbles but one, say pebble i (we
call this the free pebble of this move), then places another pebble j, using the
measuring tape and meters to set its length and other measurement functions
to some desired value. Duplicator has to follow suit on the other structure: she
removes all pebbles except pebble i, then places her pebble j using the measuring
tape and meters. After the move, if the resulting configurations α′, β′ are not
measurement isomorphic, Spoiler wins the game.

If Spoiler has not won the game after any of the n rounds, Duplicator wins
Gk

n(A, α,B, β).
Following [Imm98], we now relate our games to logical types. The proof relies

on the fact that the set of measurement formulas {m(i, j) ∼ c | c ∈ Z} satisfied
by a configuration is logically equivalent to a finite conjunction of such formulas,
since each value is either the point c or inside an open interval (c, c+ 1).
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Theorem 2 (E-F characterization). Given two time frames A,B and a k-
configuration α0, β0 over them, Duplicator wins an n-move game Gk

n(A, α0,B, β0)
if and only if the configurations (A, α0) and (B, β0) are indistinguishable by a
χMGF k formula of quantifier depth n.

We now show that for time domains, three variables suffice to express all MGF
properties. The proof closely follows the (admittedly tricky) one of [Imm98, The-
orem 6.32], which combines winning strategies from simpler games. The mea-
suring move does not yield any difficulty since it always reduces the board to
2-configurations for which a winning strategy exists by supposition.

Theorem 3 (3-variable property). Every χMGF formula is equivalent to an
χMGF 3 formula over time domains.

Putting together the 3-variable property with the expressive completeness result
of the previous section, we get a proper generalization of Kamp’s theorem. Ven-
ema has shown that χFO [Σ] does not have the 3-variable property [Ven90], so
the result cannot be extended to full first order logic with measurements.

Corollary 1. The logic χGIML[Σ] is expressively complete for χMGF [Σ].

Hirshfeld and Rabinovich conjectured that there is no finite expressively com-
plete temporal logic for a logic L2 which subsumes Weak -MGF [�] by having a
more generous set of comparisons [HR99]. We observe that since our logic uses
countably many constants c, it is not finite according to their definition.

5 Decidability

One of the main motivations for considering the sublogic GIML of IML is the
hope of getting reasonable decidability properties. In this section we restrict our
attention to only the measurement of length, that is, the signature Σ = {�}.
Theorem 4. Over sampled as well as continuous time infinite models, the logic
Punct-MGF [�] is undecidable and the logics Weak-MGF [�] and Weak-GIML[�]
are decidable.

Proof. It is shown in the previous section that Punct-GIML[�] and Weak -GIML[�]
are expressively equivalent to Punct-MGF [�] and Weak -MGF [�] and can be
translated to these logics. The undecidability of Punct -MGF [�] for sampled
and continuous time infinite models follows from that of FGIML[�] (Proposi-
tion 2).Weak -GIML[�] is decidable since Weak -MGF [�] is subsumed by the logic
L2, which was shown decidable over continuous time infinite models [HR99].

The exact decidability border between Punct-GIML[�] and Weak -GIML[�] is not
clear. As a preliminary result, we show that for sampled time prefix models (i.e.
timed words), the logic Punct-FgIML[�], the nesting-free subset of FGIML[�], is
decidable by reduction to alternating timed automata.
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5.1 Alternating Timed Automata

Let C be a finite set of clock variables (more briefly, clocks). A clock valuation
v is a function C → �. The clock valuation v + t is defined by adding t to each
clock value, and the valuation v[r := 0], for r ⊆ C, is defined by resetting all the
clocks in r to zero. The initial valuation v0 has all clocks set to zero.

A clock constraint is a boolean combination of conditions x ∼ c where x is a
clock. Let Cons(C) be the constraints over clocks in C.

Definition 1 (Lasota and Walukiewicz, Ouaknine and Worrell). An al-
ternating timed automaton over the alphabet A and clocks C is a tuple
M = (Q, δ, I, F ), where Q is a finite set of states, I, F ⊆ Q are the initial
and final states respectively, and δ : Q×A×Cons(C)→ B+(Q×℘(C)) a finite
partial transition function, satisfying the partition condition: for every q ∈ Q and
a ∈ A, the set of constraints {[σ] | δ(q, a, σ) is defined} partitions the set of
clock valuations C → �. (B+(X) is positive boolean formulas over X.)

A timed word over A is a sequence over A × �. The second (time) component
gives the time elapsed between reading the previous letter and the current one.

The acceptance game GM,w between two players Pathfinder and Automaton
is defined as follows. Automaton’s objective is to accept w = (a1, t1) . . . (an, tn),
Pathfinder’s is to reject. A play starts at the configuration (q0, v0) and proceeds
for n = |w| rounds. Suppose the configuration reached at the end of the i’th round
is (qi, vi). Let σ be the unique constraint satisfied by the valuation vi + ti+1 and
δ(qi, ai+1, σ) is the formula b. Now there are three cases: if b is a conjunction,
Pathfinder chooses one of the conjuncts; if b is a disjunction, Automaton chooses
one of the disjuncts; and if b = q, the round ends with qi+1 = q and vi+1 =
(vi + ti+1)[x := 0, x ∈ ρ(qi+1)]. Automaton wins the game if qn is a final state,
otherwise Pathfinder wins.

The automaton M accepts the timed word w if and only if Automaton has a
winning strategy in the game GM,w.

The languages accepted by ATA are closed under boolean operations. The
papers [LW05, OW05] showed that the emptiness problem for ATA with one
clock is decidable. It follows from [AD94] that the problem is undecidable for
ATA with two clocks. It is known [LW05] that ATA, even with one clock, are
incomparable in expressive power to the usual nondeterministic timed automata
of Alur and Dill [AD94].

In order to accept timed languages defined by formulas, automata have to
work over models of these formulas. Typically an alphabet 2Pvar is used.

5.2 Decidability of the Nesting-Free Logic Punct-FgIML[�]

Recall that Punct-FgIML[�] is the subset of Punct -GIML[�] with only forward
guarded modalities G→ D and where no guarded modality occurs in D. More-
over, we will confine ourselves to sampled time prefix models (finite timed words).
The usual Alur-Dill timed automata [AD94], as well as the ATA introduced in
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the previous section, are recognisers for such timed words. They have decid-
able emptiness checking. We give an automata-theoretic decision procedure for
Punct-FgIML[�] by reduction to emptiness of ATA. This logic can already ex-
press properties not recognised by any timed automaton.

Example 4. Consider behaviour over a single propositional variable. The follow-
ing property says that there are no pairs of positions exactly one time unit apart:
¬(true�(� = 1→ true) �true).

Theorem 5. For each D ∈ Punct-FgIML[�] over Pvar, we can construct ATA
A(D) over alphabet 2Pvar with a single clock x such that θ |= D iff θ ∈ L(A(D)).

Corollary 2. Punct-FgIML[�] is decidable for sampled time prefix models.

Proof (of Theorem 5). We give the construction of A(D) inductively as follows.
Some specific features of our automata are first outlined: These automata have
a unique starting state which is never accepting. Our automata never accept
the empty word. The automata may also have two distinguished states �,⊥
where � is accepting and ⊥ is rejecting. We assume that δ(�, P, true) = � and
δ(⊥, P, true) for all P . The symbol x denotes that the unique clock x is reset
and x that it is not reset.

(i) In the base case we have D ∈ ITL without any measurements. Then, we
can straightforwardly construct a DFA A(D) recognising the models of D. Note
that the models of D satisfiable at an interval [b, e] with b = e are accepted by
A(D) with a transition from an initial state to a final state.

(ii) Next, we construct one-clock ATA for GQ = G→ D. By the nesting-
free property, D is a pure ITL formula without measurements. Let A(D) =
(Q, δ, q0, F ) be the DFA for D. Then A(GQ) = (Q ∪ {�, q′0}, δ′, q′0, {�}). The
transition relation δ′ is defined as follows.

– Let δ(q0, P ) = q. If G[0/�] evaluates to true and q ∈ F , then δ′(q′0, P, true) =
(�, x). Otherwise, δ′(q′0, P, true) = (q, x).

– Let δ(q, P ) = q′. If q′ /∈ F , then δ′(q, P, true) = (q′, x). Otherwise, q′ ∈ F
and we have δ′(q, P,G[x/�]) = (�, x) and δ′(q, P,¬G[x/�]) = (q′, x).

Claim: A(GQ) accepts all nonempty words θ such that θ, [0, 0] |= GQ�true.
To prove the claim, by the property mentioned in (i), the models of length

0 are obtained by the immediate transitions to the final state. For the other
models, the automaton moves off from the initial state (the clock condition for
these initial transitions is true) and reaches the final state after checking the
guard. Since by our convention δ(�, P, true) = �, the automaton will continue
accepting an extension of a GQ behaviour.
A(GQ) is a deterministic one-clock timed automaton (without alternation).

Let ¬A(GQ) denote the complement of A(GQ) where all ∧,∨ are exchanged
and �,⊥ are exchanged and the final states are Q. (That is, the final states are
complemented, but since the empty word is not to be accepted, we remove the
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initial state q′0 from the final states.) It is clear that ¬A(GQ) is a one-clock ATA
recognising the complement of the language accepted by A(GQ).

(iii) Next, let D be a formula having syntactic occurrences GQ1, . . . , GQk of
guarded modalities. Using from above the ATAs A(GQi) and ¬A(GQi), for each
i, we construct the one-clock ATA A(D).

Let GW = {p1, . . . , pk} be fresh witness propositions. Replace each occurrence
of a guarded modality GQi by witness formula �pi	0 in D to get the ITL formula
DW (without measurements) such that D = DW [GQi/�pi	0, i = 1..k].

Let A(DW ) = (Q, δ, q0, F ) be the deterministic finite automaton accepting
finite nonempty words over the extended alphabet 2Pvar∪GW which are models of
DW . Let A(GQi) = (Qi, δi, si, Fi) and ¬A(GQi) = (Q′i, δ

′
i, s
′
i, F
′
i ). We construct

the one-clock ATA A(D) = (Q′′, δ′′, q′′0 , F
′′) as follows. The states Q′′ are a

disjoint union of the states Q of A(DW ) together with the states Qi and Q′i of
A(GQi) and ¬A(GQi). The initial state is q′′0 = q0. Final states are also unions
of the final states of the component automata A(DW ), A(GQi) and ¬A(GQi).

For each P ⊆ Pvar we have in A(D):

δ′′(q, P, true) =
∨

P⊆S⊆P∪GW

⎛

⎝(δ(q, S), x) ∧
∧

pi∈S

δi(si, P, true) ∧
∧

pi /∈S

δ′i(s
′
i, P, true)

⎞

⎠

By induction on the number of occurrences of guarded modalities k, we now
show that A(D) recognises the θ satisfying D.

For the base case, if there are no guarded modalities and no witnesses, then
A(D) = A(DW ) does accept models of DW = D.

For the induction step, considerD = DW [GQ/�p	0] for an additional guarded
modality GQ and witness proposition p.

Suppose θ is a model of D. Then there is a corresponding model θp of DW
over the alphabet 2Pvar∪{p} which is accepted by A(DW ), determining a subset
S at every point along the word. The transition function δ(q, S) determines
δ′′(q, S ∩ Pvar), which ensures that the corresponding constraint is checked by
A(GQ) or ¬A(GQ) and the substituted model θ is accepted by A(D).

Conversely, suppose θ is a word accepted by A(D). At each point of the word,
we can ask whether the point formula GQ holds or not. Substituting GQ by
p, this defines a set of models of DW over the alphabet 2Pvar∪{p}. Each such
model θp is accepted by A(DW ), and the ∧-branches in the transition function
δ′′ ensure, using the automata A(GQ) and ¬A(GQ), that the corresponding
timing constraint holds so that θp with the valuation of p removed, i.e. θ, is a
model of DW [GQ/�p	0] = D.
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