
Axioms for locality as product

Kamal Lodaya and R. Ramanujam

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Abstract. We consider systems of finite state agents that are sequential
in themselves and interact with each other by synchronously performing
common actions together. We study reasoning about such systems along
two lines. We consider an enrichment of Kleene’s regular expressions
with a parallel composition operator and offer a sound axiomatization
of equality on expressions. We also study a simple linear time product
temporal logic which is the standard one at a local level, and boolean
combinations of located formulas at the global level. We offer a complete
axiomatization of the valid formulas of this logic.

1 Introduction

When we study the dynamics of systems with concurrently evolving components
that interact among themselves, a natural question arises: at what level of sys-
tem description do we explicitly model concurrent dynamics ? This is an old
conundrum that has kept philosophers busy. One solution is to record concur-
rency at the atomic level, so that the basic system events are already comprised
of several simultaneously occurring ones, and we study the temporal evolution of
such snapshots. In this view, if three events occur simultaneously at an instant,
and two in the next, there is no particular ‘actor’ that provides any continuity
from one instant to the next. This model is close to the way physical sciences
study phenomena and adopted by Petri nets [Pet].

An alternative viewpoint is to see concurrent action at a much higher level of
description: complex processes that evolve concurrently and independently, but
interact occasionally. In this view, the component processes are sequential (and
hence exhibit no concurrency), and the entire system is merely a fixed parallel
composition of these processes. Games in extensive form, especially those of
partial information, are examples of such systems: the continuity provided by
each player over time, articulated by the notion of strategy, is crucial for game
evolution [OR]. In the theory of computation, this notion of actor or agent can
be identified with a location: the concurrent components notionally describe a
distributed system. This was a view pioneered by Edsger Dikstra [Dijk] and
developed into a rich theory of Process algebra by Hoare [Hoa], Milner [Mil1]
and others [BPS]. This is the viewpoint we discuss in this article.

In particular, we consider systems of finite state agents that are sequential in
themselves and interact with each other by synchronously performing common
actions together. These common actions can be thought of as telephone calls:
the caller waits for the other to pick up, they exchange information, end the

call and proceed further on their own asynchronous way. This is as opposed to
communication by mail where the sender does not wait for the recipient but
proceeds asynchronously.

The semantics of such systems can be envisioned as follows: each agent, being
sequential non-deterministic, can be seen as a tree and the parallel composition of
such trees as generating a set of trees obtained by nondeterministic interleaving
of the agent trees, subject to synchronizations. Process algebraists have studied
this operator extensively.

Considered as automata, the parallel composition operator above corresponds
to synchronized product, and on languages, the corresponding operator is that of
synchronized shuffle. It is easily seen that these operations preserve regularity, in
the sense that the product machines are again finite state and that synchronized
shuffle of regular languages is regular.

Over such systems, we focus on one particular aspect: that of axiomatizations.
A celebrated theorem of Kleene offers a syntax of rational expressions that pre-
cisely define regular languages, and a complete axiom system of equality over
these expressions was provided by Salomaa [Sal]. In this context it is natural to
look for equations over rational expressions that involve an operator for paral-
lel composition as well. We earlier presented a complete axiomatization using a
reduction of paralellism to interleaving [Lod] (as is common in process algebra),
here we present a sound axiom system which does not adopt this reduction.

Equational reasoning of this kind can be considered global reasoning, in the
sense that it is carried out by someone who observes the behaviour of the entire
system as it evolves. An alternative is local reasoning, where we reason about
each agent separately (as far as possible) and combine the properties in some
systematic way to infer properties of the composite system. Such compositional
reasoning is naturally formalized as inference rules in logics. This is the other
approach taken in this paper: we study specifications of agent properties in propo-
sitional temporal logic of linear time PTL [MP] and their global combinations.
Once again we present a axiom system, and prove its completeness.

There is an important technical motivation for such local presentations. In
general, if we have m agents, each of which is a k-state machine, the global state
space has km states. Such a blow-up, exponential in the number of agents, is
referred to as the state explosion problem. On the other hand, if we can reason
about each component by itself, we have only km states to navigate. Referred to
as partial order based methods, these approaches tend to utilize the idea that the
entire set of interleavings may be large, but working with representative inter-
leavings may suffice for many interesting properties. Several tools were developed
in the 1990’s based on such intuition [GW,Val,Pel]. In recent times, with the ad-
vent of multi-core architectures and relaxed memory models, such methods are
acquiring renewed importance.

What is interesting about these axiomatizations ? When we consider top
level parallelism we speak of parallel composition of sequential nondeterministic
behaviours, and the central difficulty is that of determinizing the components
separately, since local choices made by agents influences global choices at system

level. This difficulty manifests in both the equational axiomatization and the
inference rules for the temporal logic studied here.

A natural but challenging question relates to how far such techniques can
be generalized when the number of interacting agents is not a fixed finite num-
ber, but unbounded, and hence potentially infinite. [RS] offers some tentative
suggestions for such reasoning.

2 Languages and automata

Fix a finite set Σ as an alphabet. We will call its elements actions. A finite
sequence of actions w : {1, . . . , n} → Σ, such as aabab, is called a word over the
alphabet. A set of words is called a language.

The syntax of rational expressions over Σ is given by:
e ::= 0 | 1 | a, a ∈ Σ | e1e2 | e1 + e2 | e∗1
The set of all words over Σ is Σ∗ and the empty set is 0. The null word

is written 1, we also use the same notation for the language {1}. In general,
given expressions e1, e2 for languages L1, L2, the concatenation of their words
is denoted e1e2. The iteration e∗ stands for the language formed by repeatedly
concatenating words from e to form another word. For instance, given the lan-
guage {aa, ab, b}, also written aa+ ab+ b, the word aabab is in {aa, ab, b}∗, but
the word ba is not. The null word 1 is always in any e∗ (by taking words from e
zero times).

?

a

b

N

c

a

N

a

?

b

?

c

W,F X Y

Z

-a -a

Y
b

Y
b

^

b

�

a

k
a, b

Fig. 1. The transition systems a(b+ c), ab+ ac and Buff
2

Definition 1. A labelled transition system over the alphabet Σ is a directed
graph (Q,→), with states Q and transitions →⊆ Q × Σ × Q. We will only
be interested in transition systems which are rooted with a state r ∈ Q from
which all vertices are reachable. A finite automaton is a finite rooted transition
system with a distinguished set of final states, let us say, marked by the variable
F .

We usually write q
a
→ q′ to mean (q, a, q′) ∈ →, and interpret it to mean that

the system can perform an action a at a state q and the resulting state is q′. A
run of TS is a sequence q0

a1−→q1
a2−→ . . . — a possible “execution” of the system.

Labelled transition systems provide a natural model for the study of system
behaviour. In Section 4 onwards we will only consider maximal infinite runs of
a transition system.

A run of an automaton operating on a word begins in the root state. On
each action, it takes the corresponding transition from the current state into a
(possibly) new state. At the end of the word, if the automaton is in a final state,
the run accepts the word. The language accepted by the automaton is all words
for which there is a run from the root state to a final state. Two finite automata
accepting the same language are said to be equivalent. The examples in Figure
1 show that they may be non-isomorphic as transition systems.

Suppose variables are used to denote states of a transition system. A state
can be described in terms of the transitions going out to the other states. For
example, the transition system Buff 2, which describes a language where the
number of a’s seen at any point in an accepting run can exceed the number of
b’s by at most 2, is given by the equations

W = aX + bZ + F, X = aY + bW, Y = aZ + bX, Z = aZ + bZ
For an expression e such as aX + bZ, its initial actions Init(e) = {a, b},

and X and Z are the a- and b-derivative of e respectively. The notation goes
back to Brzozowski [Brz]. We say e has the no empty word property (NEWP) if
the empty word is not in its language. This can be syntactically checked using
derivatives.

2.1 Axiomatization

The Aanderaa-Salomaa axiomatization [And,Sal] for language equivalence of ra-
tional expressions is given below.

Axiomatization RAX for equivalence of rational expressions

(Assoc) (e+ f) + g = e+ (f + g)
(Comm) e+ f = f + e
(Ident) e+ 0 = e
(Idemp) e+ e = e
(Assoc) (ef)g = e(fg)
(Ident) e1 = 1e = e
(Absorp) 0 = 0e = e0
(Distr) (e+ f)g = eg + fg
(Distr) e(f + g) = ef + eg
(Guard) e∗ = (1 + e)∗

(Fixpt) e∗ = 1 + ee∗

(Fixpt) e∗ = 1 + e∗e
(GuardInd) Let e have the NEWP. Then:

x = ex+ f

x = e∗f
;

x = xe+ f

x = fe∗

Theorem 1 (Salomaa). The proof rules above are sound and complete for
language equivalence of rational expressions.

Proof. We only sketch the completeness. An inductive construction produces for
any rational expression e a finite automaton accepting the language defined by e
(for example, see [Koz]). Suppose e and f denote equivalent systems TS(e) and
TS(f). By applying the axioms, each rational expression is reduced to a guarded

sum of prefix form
∑

aiei and
∑

bifi respectively. Using left-distributivity, we

need at most one derivative for each letter of the alphabet. Now equivalence
between the roots guarantees equivalence between their successors, and equality
among the derivatives of e and f guarantees derivability of e = f . So the task
is reduced to proving completeness for nodes which are a distance 1 away from
the roots. This can be repeated since all nodes of the transition systems are a
finite distance away from the roots. ⊓⊔

2.2 Solutions in rational expressions

Consider again the equations
W = aX + bZ, X = aY + bW, Y = aZ + bX, Z = aZ + bZ.

Using right-distributivity and introducing star, we get Z = (a+b)∗. Substituting
for Z and then for Y , we get

W = aX + b(a+ b)∗, X = bW + a(a(a+ b)∗ + bX).
Now we crucially need to apply left-distributivity. Following that up with another
introduction of star, we have

X = abX + bW + aa(a+ b)∗ = (ab)∗(bW + aa(a+ b)∗).
Applying the same medicine again,

W = a(ab)∗bW + a(ab)∗aa(a+ b)∗ + b(a+ b)∗ and
W = (a(ab)∗b)∗(a(ab)∗aa(a+ b)∗ + b(a+ b)∗).
This way of finding solutions is reminiscent of performing Gaussian elimina-

tion in linear arithmetic equations and was first used for regular languages by
McNaughton and Yamada [MY].

Theorem 2 (Kleene). The regular languages, those defined by rational expres-
sions, are exactly those accepted by finite automata.

Proof. We already referred to the forward direction in Theorem 1. Conversely,
given a finite automaton TS, we apply the McNaughton-Yamada technique out-
lined above to end up with a solution which gives a rational expression for the
root state. ⊓⊔

3 Product words and product systems

Fix a nonempty finite set of locations Loc = {1, . . . , n}. We now view the system

alphabet Σ
def
= Σ1 ∪ ... ∪ Σn as a distributed alphabet Σ̃ = (Σ1, . . . , Σn),

where each Σi is a finite nonempty set of actions of agent i. When an action a

is in Σi ∩Σj , i 6= j, we think of it as a synchronization action between i and j.
(There can be k-way synchronizations also.) On the other hand, a local action
is one in Σi \ (Σ \Σi), for some i.

We also make use of the associated implicit function loc : Σ → ℘(Loc) \ {∅}

which maps each action to the locations it is executed in, loc(a)
def
= {a | a ∈ Σi}.

For a set of actions A, loc(A)
def
=

⋃
{loc(a) | a ∈ A}.

Given a distributed alphabet (Σ, loc), a product word is an element (w1, . . . , wn)
of (Σ∗)Loc such that for some w ∈ Σ∗, every wi is the restriction of w to ac-
tions in Σi. Thus (w1, . . . , wn)a is defined to be (w′

1, . . . , w
′
n), where w′

i = wia
if i ∈ loc(e) and w′

i = wi otherwise. If loc(a) = {i1, . . . , ik}, we will call the
expression 1|| . . . ||a|| . . . ||a|| . . . ||1, where a appears in positions i1, . . . , ik and 1
in the remaining positions, the distributed representation of a.

atm bank

req

show draw show draw

okay no

print wait

ticket

okay no

cash error

� U U R

?

� ?

? ?

?

? R

? ?

6

- �

Fig. 2. A product system, the transition labels are boxed

We are interested in interactions between systems. A natural way to represent
interactions among n agents is by having n transition systems, each working on
its own alphabet of actions, except that the system undergoes “joint” transitions
when common actions are encountered. Figure 2 models an ATM and a bank
as a product system. A client at an ATM can ask for the balance to be shown
and get a ticket printed. Alternately, the client asks to withdraw money and
gets cash, or gets an error message, depending on whether the bank okays the
transaction or not.

Definition 2. Let Σ̃ = (Σ1, . . . , Σn) be a distributed alphabet. A parallel pro-

gram over Σ̃ is a tuple T = (TS1, . . . , TSn), where TSi = (Qi,→i)is a labelled

transition system over Σi, for i ∈ Loc. When the individual transition sys-
tems are finite automata, we get a finite product automaton with final states

F̃
def
= F1 × · · · × Fn.

The global run is extended by an action a if and only if for every agent i
participating in that action, a is enabled at the current local state of i. The
obvious way to define global runs is to take products of transition systems.

Definition 3. Let T be a parallel program over Σ̃. The product system for T
is the Σ-labelled transition system TS = (Q,⇒), where

– Q̃
def
= Q1 × · · · ×Qn, and

– ⇒⊆ Q×Σ ×Q is the global transition function defined as follows:
(q1, . . . , qn)

a
⇒ (q′1, . . . , q

′
n) iff ∀i ∈ loc(a), qi

a
→i q

′
i, and ∀j /∈ loc(a), qj = q′j.

We will use q1, q2, . . . to denote local states and s1, s2, . . . to denote global
states. s[i] will refer to the ith component of the global state s. For the purposes

of presentation we will assume a fixed distributed alphabet Σ̃ = (Σ1, . . . , Σn)

and the entire discussion will be relative to Σ̃.

A product automaton operates on a product word (w1, . . . , wn) distributedly.
Suppose it has inductively processed a prefix of this word reaching the global
state s = (s[1], . . . , s[n]), and (u1, . . . , un) is the remaining suffix. Suppose that
for all i ∈ loc(a), all the ui are of the form au′

i and for the remaining i, let
u′
i = ui. Then the corresponding transition is taken and the automaton moves

to the new state tuple s′ = (s′[1], . . . , s′[n]), where for j /∈ loc(a), s′[j] = s[j].
The distributed representation of a is concatenated to the prefix and (u′

1, . . . , u
′
n)

is the remaining suffix. At the end of the word, if the automaton is in a final
state in each component agent, the product word is accepted.

Suppose δ = s0
a1=⇒s1

a2=⇒ . . .; by δ(k), we mean the global state sk, whereas
we use δk to denote the suffix of δ starting at sk. We can meaningfully define a
map ⌈, which, given a global run δ, and i ∈ Loc, retains only the ith components
of global states and erases all actions not in Σi. Clearly, δ⌈i is a run of TSi.

Further, suppose
.
= is a binary relation on runs of T , defined by: δ

.
= δ′ if

and only if δ = δ1s
a
⇒s1

b
⇒s2δ2 and δ′ = δ1s

b
⇒s3

a
⇒s2δ2, for some a, b such that

loc(a) ∩ loc(b) = ∅. Thus, δ and δ′ are permutations of independent actions a

and b. Let ≈
def
= (

.
=)∗. The following assertion is easy to prove:

Proposition 1. δ ≈ δ′ iff for every i ∈ Loc, δ⌈i = δ′⌈i.

Thus, we can think of δ as a representative of the equivalence class of δ
under ≈ (denoted [δ]), a non-sequential run of T . This representation of product
words is known in the literature as Mazurkiewicz traces [Maz]. Each trace over

the distributed alphabet Σ̃ can be thought of as the set of linearizations of
the product word (the possible w’s whose restrictions are wi in the explanation
above).

3.1 Parallel products of rational expressions

To model product systems over a fixed Σ̃, we now introduce one outermost
level for parallel product of rational expressions. This is much simpler than
a language like Hoare’s CSP [Hoa] which can have nested occurrences of the
parallel operator.

ri ::= 0 | 1 | a, a ∈ Σi | r
i
1r

i
2 | ri1 + ri2 | (ri1)

∗

e ::= r1|| . . . ||rn

We generalize the Brzozowski derivative of a rational expression [Brz] to a
distributed alphabet.

Definition 4. DerΣ̃a (e1|| . . . ||en)
def
= f1|| . . . ||fn, where for 1 ≤ i ≤ n, if i in

loc(a) then fi = DerΣi

a (ei), otherwise fi = ei.

This is an “expansion law” [Mil1], a global analysis seen as a product of
actions on local components. Note that 1 appears in the derivative precisely
when the local component can terminate, so termination of a product system is
modelled by the expression 1|| . . . ||1.

In reasoning about a parallel product we may have to identify the initial
actions which will never make progress. Here is a sufficient condition.

Definition 5. Let Σ̃ = (Σ1, . . . , Σn) and consider e = e1+f1|| . . . ||en+fn. Sup-
pose that for every i we have that Init(ei+fi) ⊆ Σj for some j 6= i and Init(fi)
and Init(fj) are disjoint. We say that the actions in Init(f1), . . . , Init(fn) (also
the expressions f1, . . . , fn) are useless in the sum e.

We now give a sound axiomatization for parallel products of rational expres-
sions and an example of its use. The rules are parameterized by the arity of the
parallel product, that is, the number of agents (n below) and depend on the

distributed alphabet Σ̃.
Axioms for equivalence of products PAX=RAX+

(Absorp) 0 = 0||e = e||0
(Use) e1 + f1|| . . . ||en + fn = e1|| . . . ||en, if f1, . . . , fn are useless in the sum.

(Deriv)
DerΣ̃a (e1|| . . . ||en) = DerΣ̃a (f1|| . . . ||fn), for all a ∈ Σ

e1|| . . . ||en = f1|| . . . ||fn
(ProdInd) Let f1, . . . , fn have the NEWP. Then:

x1|| . . . ||xn = (e1x1 + f1)|| . . . ||(enxn + fn)

x1|| . . . ||xn = e∗1f1|| . . . ||e
∗
nfn

The (Absorp) axiom models the fact that a deadlock in some part of the
system means that the entire system is deadlocked. The (Use) axiom eliminates
a useless chain of waiting. (By adding dummy sums like · · · + ai0 we may be
able to eliminate useless chains of waiting through a subset of the n agents.)
The (Deriv) rule was explained above. The (ProdInd) rule is a straightforward
generalization of the (GuardInd) rule of RAX to the case of product systems.

3.2 Seeking solutions

To attempt a proof of completeness, we can apply the RAX axioms of Section
2.1 and reduce each product to guarded sum forms (from these the derivatives
can be computed):

(
∑

i1

ai1,1ei1,1)|| . . . ||(
∑

in

ain,nein,n) and (
∑

j1

bj1,1fj1,1)|| . . . ||(
∑

jn

bjn,nfjn,n).

We can further assume from the (Use) axiom that none of the initial actions
is useless.

If one can proceed ahead using an action, we suppose that equality at the level
of successors is derivable and use the derivative rule to conclude that e = f . Since
overall there are finitely many possible derivatives for the expressions, either this
strategy must succeed or we must come back to a situation seen earlier and the
product induction rule can be used.

Here is a worked-out example. Using RAX, we get:
X||Y = (a+ ba)∗||(ab)∗ = 1+ a(1+ (a+ ba)(a+ ba)∗)+ ba(a+ ba)∗||1+ ab(ab)∗.

Distributing and eliminating useless actions we have that:
X||Y = 1 + aba(a + ba)∗||1 + ab(ab)∗ = 1 + abaX||1 + abY = (aba)∗||(ab)∗ by
product induction.

To prove X||Y = (aba)∗||(ab)∗ = 1+aba(aba)∗||1+ab(ab)∗ using derivatives,
we will need to eventually show that:
W ||Z = aba(aba)∗||ab(ab)∗ = ae||bf for some e, f . Eliminating useless actions,
W ||Z = 0. Hence X||Y = 1||1.

However, the weakness of the axiomatization is that it lacks a full analysis
of all the cases which arise. In the next section we will see a temporal logic that
uses another induction to solve this problem.

One can add a further axiom, Milner’s expansion law, which reduces parallel
product to interleaving (for example, a||b = ab+ ba) and then directly uses the
completeness of RAX. This route to establish completeness is explored in [Lod].

4 Temporal logic

Let T = (TS1, . . . , TSn) be a parallel program, and let Li denote the runs of
TSi, for i ∈ Loc, the local runs of agent i. The frames for our logic will be global
runs, which represent arbitrary interleavings of actions of different agents. In
accordance with verification literature on temporal logic (for example, [MP]) we
will henceforth be concerned with infinite runs. Let RT denote the set of all
maximal runs of the product system for T . We restrict our attention to only
those programs which have at least one infinite run.

Definition 6. A frame is a pair F = (T , δ), where δ is an infinite run in RT .

We now present the logical language which we will call PrPTL. Let AP =
{p0, p1, . . .} be a countable set of atomic propositions with p ranging over AP .
We use α, β, γ etc. (with or without subscripts) to denote local formulas. The
syntax of i-local formulas is given by:

Φi ::= p | ¬α | α ∨ β | 〈a〉iα | αUiβ
where, a ∈ Σi. This is basically PTL, where the next state modality has been

indexed by actions.
We let φ1, φ2, . . . range over global formulas, whose syntax is given by:
Φ ::= α@i, α ∈ Φi | ¬φ | φ1 ∨ φ2

A model is a pair M = (F, V), where F = (T , δ) is a frame, and V : Q →
℘(AP) is the valuation function over Q, the set of all local states of the system.
Thus, atomic propositions are evaluated at local states.

The formula φ being satisfied in a model M at a temporal instant is defined
below. We first define the notion for i-local formulas over local runs in Li. Let

Mi
def
= ((T , δ⌈i), Vi), where Vi is the restriction of V to Qi. Let ρ = δ⌈i ∈ Li.

– Mi, 0 |= p iff p ∈ Vi(ρ(0)).
– Mi, k |= ¬α iff Mi, k 6|= α.
– Mi, k |= α ∨ β iff Mi, k |= α or Mi, k |= β.

– Mi, k |= 〈a〉iα iff ρ(k + 1) exists, ρ(k)
a
→i ρ(k + 1) and Mi, k + 1 |= α.

– Mi, k |= αUiβ iff ∃m ≥ k such that Mi,m |= β, and for all l : k ≤ l <
m,Mi, l |= α.

The derived connectives of propositional calculus such as ∧, =⇒ and ≡ are
defined in terms of ¬ and ∨ in the usual way. Let True abbreviate the Φi-formula
p0 ∨ ¬p0 and let False stand for ¬Truei.

The derived modalities 3, 2, © and [a]i are given by:

3α
def
= TrueUiα; ©iα

def
=

∨

a∈Σi

〈a〉iα.

2α
def
= ¬3¬α; [a]iα

def
= ¬〈a〉i¬α;

⊙
iα

def
= ¬©i¬α.

We now define the semantics of global formulas.

– M |= α@i iff Mi, 0 |= α.
– M |= ¬φ iff M 6|= φ.
– M |= φ1 ∨ φ2 iff M |= φ1 or M |= φ2.

We will use the notation â to abbreviate the global formula
∧

i∈loc(a)

(〈a〉iTrue)@i.

We can use â to denote enabling of action a. Note that for any model M , if
M |= â, and δ(0) = s, then there exists a global state s′ such that s

a
⇒s′.

The formula φ is satisfiable if M |= φ for some model M = ((T , δ), V). φ
is valid (denoted |= φ) if φ is satisfied in every model M . On the other hand,
for a formula α ∈ Φi, we say that α is i-valid, if for every model M , we have
Mi, 0 |= α.

The following proposition is trivial to prove, and is the basis for expecting
procedures for verification of properties in PrPTL:

Proposition 2. Let M = ((T , δ), V) be a model and let δ ≈ δ′. Let M ′ =
((T , δ′), V). Then for every PrPTL formula φ, M |= φ iff M ′ |= φ.

5 The axiom system

We now present an axiomatization of the valid formulas. We have one axiom
system for each agent in the system, and in addition a global axiom system to
reason about synchronization. In some sense, this helps us isolate how much
global reasoning is required.

Axiomatization LAXi for agent i
(A0i) All the substitutional instances of the tautologies of PC
(A1i) [a]i(α =⇒ β) =⇒ ([a]iα =⇒ [a]iβ)
(A2i) 〈a〉iTrue =⇒ [b]iFalse, a 6= b
(A3i) 〈a〉iα =⇒ [a]iα
(A4i) αUiβ =⇒ (β ∨ (α ∧

⊙
iαUiβ))

(MPi)
α, α =⇒ β

β

(TGi)
α

[a]iα

The axioms are quite standard. (A2i) expresses the fact that in any run, the
next move made by agent i is unique.

We use the notation ⊢i α to mean that the formula α ∈ Φi is a theorem of
system LAXi. We will call α i-consistent when ¬α is not a theorem of LAXi.

Proposition 3. Every theorem of LAXi is i-valid.

Some remarks are in order, before we proceed to present the global axiom
system. We haven’t included any axioms (or rules) in the local axiom systems
for eventuality. This is so because information about local reachability is quite
useless in PrPTL. Even an apparently local specification as 〈a〉iα is in reality a
global eventuality specification when there are other agents j 6= i, j ∈ loc(a).

This suggests that we need some reasoning about eventuality at the global
level. In temporal logic, this is typically achieved by an induction axiom or rule.
Unfortunately since we have only boolean formulas at the global level, we cannot
expect an axiom. The standard form of temporal induction for reachability looks
like this:
Global Invariant =⇒ α ∧

⊙
(Global Invariant)

Global Invariant =⇒ 2α
Since no global next state modality is available, we can only hope for something
like this in PrPTL:∧

k

Local Invariant@k =⇒ α@i ∧
⊙

j Local Invariant@j

∧

k

Local Invariant@k =⇒ (2iα)@i

We can in fact write sound rules in this form, but they are too weak to express
global reachability. Note that the global invariant is to specify “being one of
several reachable global states”. Now consider two global states characterized
by formulas α and β respectively. We can assume that they are of the form∧

i∈Loc

αi@i and
∧

i∈Loc

βi@i. Now notice that the formula
∧

i∈Loc

(αi ∨ βi)@i is only

implied by α ∨ β, but does not imply it. Thus, combination of local invariants
can in general specify global states which are not reachable, and we need to
somehow specify the following:

b̂ ∧
∧

k

Pre-move@k =⇒ ([b]j Post-move)@j, for j ∈ loc(b),

∧

k 6∈loc(b)

Pre-move@k ∧
∧

j∈loc(b)

Post-move@j =⇒ Global Invariant

and relate the global invariant to the local properties. Unfortunately, this turns
out to necessitate an infinitary scheme.

Global axiomatization GAX
(A0) (¬α)@i ≡ ¬α@i
(A1) (α ∨ β)@i ≡ (α@i ∨ β@i)

(A2)
∨

a∈Σ

â

(MP)
α, α =⇒ β

β

(GG)
⊢i α

α@i

(GM)

∧

i∈loc(a)

αi@i =⇒
∨

j 6∈loc(a)

αj@j

∧

i∈loc(a)

(〈a〉iαi)@i =⇒
∨

j 6∈loc(a)

αj@j

Let m > 0 and α1, . . . , αm be formulas such that for all l ∈ {1, . . . ,m}, αl is

of the form
∧

k∈Loc

αl(k)@k. Let γ
def
=

m∨

l=1

αl.

(Sym) γ =⇒ ¬â∧

l∈{1,...,m}

(αl =⇒ (
∧

b 6∈Σi

(̂b =⇒
∧

j∈loc(b)

([b]jβ(l, b, j))@j)))

∧

l∈{1,...,m}

∧

b 6∈Σi

((
∧

k 6∈loc(b)

αl(k)@k ∧
∧

j∈loc(b)

β(l, b, j)@j) =⇒ γ)

γ =⇒ ([a]iFalse)@i, for i ∈ loc(a)

(Unm) γ =⇒ ¬γ2@i∧

l∈{1,...,m}

(αl =⇒ (
∧

b∈Σ

(̂b =⇒
∧

j∈loc(b)

([b]jβ(l, b, j))@j)))

∧

l∈{1,...,m}

∧

b∈Σ

((
∧

k 6∈loc(b)

αl(k)@k ∧
∧

j∈loc(b)

β(l, b, j)@j) =⇒ γ)

γ =⇒ ¬(γ1Uiγ2)@i

The axiom (A2) ensures that some move is always enabled during the run.
The rule (GG) allows us to globally infer theorems about agent i from those

which have been proved in LAXi. (For instance, this rule, alongwith (A0) and
(A1) allows us to infer “@-versions” of tautologies.) The rule (GM) specifies that
when a global move labelled a is made, the local states of agents not involved in
a remain unchanged. The (Sy) and (Un) rules describe eventual synchronization
and the semantics of until formulas respectively.

⊢ φ is the notation used to denote theoremhood in GAX. φ is said to be
consistent when ¬φ is not a theorem of GAX.

Proposition 4. ⊢ φ implies |= φ.

Proof. The axioms are obviously valid formulas. To show that the inference rules
preserve validity, consider the rule (GM). Suppose that the premise is valid, but
not the conculsion. Then there exists a model M = ((T , δ), V) and M |= â, for
every i ∈ loc(a),Mi, 0 |= 〈a〉iαi, and for every j 6∈ loc(a),Mj , 0 |= ¬αj . We thus

have δ(0) = s
a
⇒s′ = δ(1), and for every j 6∈ loc(a), s[j] = s′[j]. It is easy to

check that for every i ∈ loc(a),Mi, 1 |= αi, and for every j 6∈ loc(a),Mj , 1 |=
¬αj . Now consider the model M ′ = ((T , δ′), V), where δ′ = δ1. Clearly, M

′ |=∧

i∈loc(a)

αi@i ∧
∧

j 6∈loc(a)

¬αj@j, contradicting validity of the premise.

Similarly, suppose that the premises of (Sy) are valid but that the nega-
tion of its conclusion is satisfiable. Then we have a model M = ((T , δ), V)
and M |= αk@k for every k ∈ Loc. Further, Mi, 0 |= 〈a〉iTrue, for some
i ∈ loc(a), a ∈ Σ. then clearly there exist b1, . . . , bm such that {b1, . . . , bm}∩Σi =

∅, δ(0)
b1⇒δ(1) . . .

bm⇒δ(m)
a
⇒δ(m+ 1). Now consider the models M l = ((T , δl), V),

l ∈ {1, . . . ,m}. Obviously, since a is enabled at δ(m), we find that Mm |= â.
Since the first premise says that γ =⇒ ¬â is valid, it suffices to prove that
Mm |= γ to obtain a contradiction.

In fact, we argue that M l |= γ for every l ∈ {1, . . . ,m}. Firstly, since M |= γ

by assumption, for some l,M |= αl. Since δ(0)
b1⇒δ(1), we can show that M |= b̂1,

where b1 6∈ Σi. By validity of the second premise, for every j ∈ loc(b),M |=
([b]jβ(l, b, j))@j. therefore, we can show that for every k 6∈ loc(b),M1 |= αl(k)@k
and for every j ∈ loc(b),M1 |= β(l, b, j)@j. Thus, by validity of the third premise,
we find that M1 |= γ. We can repeat this argument to show that M l |= γ, for
l > 1 as well, and we are done.

The proof that the (Un) rule preserves validity is similar. ⊓⊔

Thus, we have soundness. We now proceed to show that GAX is indeed a
complete axiomatization as well.

6 Completeness and decidability

In this section, we show that every consistent formula φ is satisfiable in a finite
model whose size is bounded by 2c|φ|. This at once shows that the logic is also
decidable in nondeterministic exponential time.

We will find the following notation useful: when X is a finite set of formulas,
by X̂ we mean the conjunction of all formulas in X (this is itself a formula).

Given Γ , a finite set, whose members are themselves finite sets of formulas, by

Γ̃ , we mean the formula
∨

X∈Γ

X̂.

We first define the notion of subformula closure of a formula.

Definition 7. Let α be a formula in Φi.

1. CL′
i(α) is the least set of formulas containing α and satisfying the conditions

(a) ¬β ∈ CL′
i(α) implies β ∈ CL′

i(α).
(b) β ∨ γ ∈ CL′

i(α) implies {β, γ} ⊆ CL′
i(α).

(c) 〈a〉iβ ∈ CL′
i(α) implies {[a]iβ, β} ⊆ CL′

i(α).
(d) 〈a〉iTrue ∈ CL′

i(α), for every a ∈ Σi.
(e) αUiβ ∈ CL′

i(α) implies {α, β,
⊙

i(αUiβ)} ⊆ CL′
i(α).

2. CLi(α)
def
= CL′

i(α) ∪ {¬β | β ∈ CL′
i(α)}.

For any α, CLi(α) is finite and linear in the size of α. Similarly, we can define
the subformula closure of global formulas.

Definition 8. Let φ be a formula in Φ.

1. CL′(φ) is the least set of formulas containing φ and satisfying the conditions
(a) α@i ∈ CL′(φ) implies {β@i|β ∈ CLi(α)} ⊆ CL′(φ).
(b) ¬φ1 ∈ CL′(φ) implies φ1 ∈ CL′(φ).
(c) φ1 ∨ φ2 ∈ CL′(φ) implies {φ1, φ2} ⊆ CL′(φ).

2. CL(φ)
def
= CL′(φ) ∪ {¬φ′ | φ′ ∈ CL′(φ)}.

Once again, for any φ, CL(φ) is finite and linear in the size of φ. For convenience,

we will abuse notation to also define CLi(φ)
def
= {β|β@i ∈ CL(φ)}, the set of

i-subformulas of the global formula φ.
Fix a formula φ, and let X ⊆ CLi(φ). We say that X is an i-atom of φ iff it

satisfies the following conditions:

– for every β ∈ CLi(φ),¬β ∈ X iff β /∈ X,
– for every β ∨ γ ∈ CLi(φ), β ∨ γ ∈ X iff β ∈ X or γ ∈ X,
– for every a ∈ Σi, if 〈a〉iTrue ∈ X, then for every b ∈ Σi, b 6= a, 〈b〉iTrue 6∈ X,
– for every a ∈ Σi, if 〈a〉iα ∈ X, then [a]iα ∈ X, and
– for every αUiβ ∈ CLi(φ),

αUiβ ∈ X iff (β ∈ X) or (α ∈ X and
⊙

iαUiβ ∈ X).

On the other hand, for a formula φ, we say that A ⊆ CL(φ) is a atom for φ
iff for every i, {α|α@i ∈ A} is an i-atom for φ. It can be easily checked that for
every formula α@i ∈ CL(φ), either that formula or its negation will be found in
an atom (but not both). Further a formula of the form α@i∨ β@i (in CL(φ)) is
in an atom if and only if either of the disjuncts is in it. For an atom A, let A[i]
denote the associated i-atom, i.e. {α|α@i ∈ A}.

Let ATi(φ) denote the set of all i-atoms for φ. Define →i⊆ ATi × Σi × ATi

as follows: X
a
→i Y iff ([a]iα ∈ X implies α ∈ Y).

The global atom graph for a formula φ is defined as G(φ)
def
= (AT (φ),⇒′),

where AT (φ) is the set of all atoms for φ and ⇒′ is defined by:

A
a
⇒

′
B iff ∀i ∈ loc(a), A[i]

a
→i B[i] and ∀j 6∈ loc(a), A[j] = B[j].

Suppose that (W,⇒) is a subgraph of (AT (φ),⇒′) in the sense thatW ⊆ AT and
⇒′⊆⇒. Then we say that (W,⇒) is φ-good if it satisfies the following conditions:

– there exists A ∈ W such that φ ∈ A, and
– for every A ∈ W ,

• A has a successor, i.e. B such that A
a

=⇒B for some a.
• for every a ∈ Σ, if 〈a〉iTrue ∈ A for every i ∈ loc(a), then there exists

B such that A
a

=⇒B.
• for every a ∈ Σ, if 〈a〉iTrue ∈ A for some i ∈ loc(a), then there exist

B0, B1, . . . , Bk, k ≥ 0 and b1, . . . , bk such that {b1, . . . , bk}∩Σi = ∅, A =

B0
b1=⇒ . . .

bk=⇒Bk
a

=⇒C for some C.
• if αUiβ ∈ A for some i ∈ Loc, then either β@i ∈ A or there exists B

reachable from A such that β@i ∈ B.

As it turns out, checking satisfiability of a formula φ amounts to checking
the existence of such a φ-good subgraph in the syntactic graph G(φ). We will
first show that every consistent formula does guarantee the existence of such a
subgraph.

Lemma 1. If φ0 is a consistent formula, then G(φ0) has a φ0-good subgraph.

Proof. Define W to be the set of maximal consistent subsets of CL(φ0). (From
now on, we fix φ0 and use CL to mean CL(φ0).) It is easy to check that each
element of W is indeed an atom, using the local axiom systems, and (A0), (A1)

and rule (GG). Thus W ⊆ AT . Simply define ⇒
def
= ⇒′ ∩(W ×W). We claim

that (W,⇒) is φ0-good.
Firstly, since φ0 is consistent, there exists a maximal consistent set A0 ∈

W such that φ0 ∈ A0. Now we have to prove that every element of W has
an a-successor, and further that whenever {(〈a〉iTrue)@i|i ∈ loc(a)} ⊆ A, for
A ∈ W , then A has an a-successor. Once we prove the second condition of
these two, the first one follows, thanks to axiom (A2). Now, fix A ∈ W and
a ∈ Σ such that {(〈a〉iTrue)@i|i ∈ loc(a)} ⊆ A. It can be easily checked that

⊢ Â =⇒
∧

i∈Loc

Â[i]@i. Further, let Xi
def
= {α|[a]iα ∈ A[i]}, for i ∈ loc(a). Since

〈a〉iTrue ∈ A[i], we can show that ⊢i Â[i] =⇒ 〈a〉iX̂i. Thus, we find that

⊢ Â =⇒
∧

i∈loc(a)

(〈a〉iX̂i)@i ∧
∧

j 6∈loc(a)

Â[j]. But since Â is a consistent formula,

so is the formula implied by it. then, by rule (GM), we find that
∧

i∈loc(a)

X̂i@i ∧

∧

j 6∈loc(a)

Â[j] is consistent too. That is, the set X
def
=

⋃

i∈loc(a)

Xi ∪
⋃

j 6∈loc(a)

A[j]

is consistent. Hence, there exists a maximal consistent set B ∈ W such that
X ⊆ B. It can be easily checked that A

a
⇒B as required.

We now show that the eventual synchronization condition is also satisfied in
the graph (W,⇒). Fix A ∈ W such that (〈a〉iTrue)@i ∈ A for some i ∈ loc(a).
Let Γ be the least subset of W which satisfies the following conditions:

– A ∈ Γ , and

– whenever B ∈ Γ and B
b
⇒C for any b 6∈ Σi, C ∈ Γ .

Note that every element in Γ is reachable from A via a path in (W,⇒) which
goes through actions outside Σi. Clearly, if there exists B ∈ Γ such that B has
an a-successor at all, then we are through.

Now suppose that there is no such B in Γ . We show that this assumption
leads to a contradiction. It can be checked that ⊢ B̂ =⇒ ¬â for every B ∈ Γ .
Therefore, ⊢ Γ̃ =⇒ ¬â.

Let B ∈ Γ . For every b 6∈ Σi, and for every j ∈ loc(b), define

∆(B, b, j)
def
= {C[j]|B

b
⇒C}, if ⊢ B̂ =⇒ b̂, and

{B[j]}, otherwise.

Claim (1). ⊢
∧

B∈Γ

(B̂ =⇒ (
∧

b 6∈Σi

(̂b =⇒
∧

j∈loc(b)

([b]j ˜∆(B, b, j))@j))).

Claim (2). ⊢
∧

B∈Γ

∧

b 6∈Σi

(
∧

k 6∈loc(b)

(B̂[k])@k ∧
∧

j∈loc(b)

(˜∆(B, b, j))@j) =⇒ Γ̃).

Suppose the claims are true. Then we have derived every premise in rule (Sy)

in our axiom system. Hence, by its conclusion, Γ̃ =⇒ ([a]iFalse)@i. But then

Â =⇒ Γ̃ (since A ∈ Γ) and hence Â =⇒ ([a]iFalse)@i, clearly contradicting
the fact that (〈a〉iTrue)@i ∈ A.

The only condition left to be proved (for (W,⇒) to be φ0-good) is the “until”
condition. The proof of this proceeds in a fashion quite similar to the one for
eventual synchronization, and hence is omitted here. ⊓⊔

Proof (of Claim (1)). Suppose that the formula in the Claim is not a theorem of
the system. Then its negation is consistent, and we show that this leads to a con-
tradiction. Skipping a few obvious steps, we can see that for some B ∈ Γ, b 6∈ Σi

and some j ∈ loc(b), B̂∧ b̂∧ (〈b〉j¬
˜∆(B, b, j))@j is consistent. By the consistency

of B̂ ∧ b̂, we can expect B to have a b-successor. In addition, by a reasoning
similar to what we employed earlier, we can find a b-successor, say C, such that

(Ĉ[j])@j ∧ (¬ ˜∆(B, b, j))@j is consistent. But, by construction of ∆(B, b, j), ev-

ery such C[j] ∈ ∆(B, b, j). Then we get ⊢ (Ĉ[j])@j =⇒ (˜∆(B, b, j))@j, clearly
a contradiction. ⊓⊔

Proof (of Claim (2)). This claim obviously follows from the fact that if B ∈

Γ, b 6∈ Σi and B
b
⇒C, then by construction, C ∈ Γ and the fact that for k 6∈

loc(b), B[k] = C[k] by definition of ⇒, whereas for j ∈ loc(b), C[j] ∈ ∆(B, b, j),
again by construction. When B has no such b-successor, we get the required
thesis by observing that B̂ =⇒ Γ . ⊓⊔

Lemma 2. If G(φ0) has a φ0-good subgraph, then φ0 is satisfiable.

Proof. Suppose that (W,⇒) is a φ0-good subgraph of G(φ0). Let A0 ∈ W such
that φ0 ∈ A0. We claim that there is a maximal run δ of (W,⇒) of the form

A0
a1⇒A1

a2⇒ . . . which satisfies the following conditions: (let k ≥ 0)

– If (〈a〉iTrue)@i ∈ Ak then there exists m ≥ 0 such that Ak+m
a
⇒Ak+m+1

and for every l such that 0 ≤ l < m,Ak+l
bl⇒Ak+l+1 implies that bl 6∈ Σi.

– If (αUiβ)@i ∈ Ak, then there exists m ≥ 0 such that β@i ∈ Ak+m.

The details of construction of δ are straightforward, though not trivial: we con-
sider each of the n agents in a round-robin fashion, and keep fulfilling eventuality
(until) requirements. Note that when an until-requirement is met for an agent,
next-action requirements are also fulfilled upto the last action.

Now consider the parallel program T = (TS1, . . . , TSn) with TSi = (ATi,→i

), for i ∈ Loc. Let TS
def
= (Q,⇒′) be the product system for T . It can be checked

that {(A[1], . . . , A[n])|A ∈ W} ⊆ Q and that (A[1], . . . , A[n])
a
⇒

′
(B[1], . . . , B[n])

iff A
a
⇒B in the given φ0-good subgraph. Thus δ induces a maximal run δ′ of the

product system as well.
Now consider the frame F = (T , δ′), and the model M = (F, V), where

V (X)
def
= X ∩AP , for X ∈ ATi, for some i. Let ρ = δ′⌈i and let Mi

def
= (ρ, Vi),

where Vi is the restriction of V to ATi.

Claim (3). For every α ∈ CLi(φ0), k ≥ 0,Mi, k |= α iff α ∈ ρ(k).

Assuming the claim, we can go on to show that for all φ1 ∈ CL(φ0),M |=
φ1 iff φ1 ∈ A0. This is proved by an easy induction argument. But then, since
φ0 ∈ A0, it follows that M |= φ0, and we have demonstrated the satisfiability of
φ0. ⊓⊔

Proof (of Claim (3)). The proof proceeds by induction on the structure of α.
The base case, when α ∈ AP is trivial and follows by the definition of V above.

The induction step proceeds by cases: when α is of the form ¬β or of the
form β1 ∨ β2, the proof is by routine applications of the induction hypothesis.
Now suppose that α of the form 〈a〉iβ ∈ ρ(k). By construction of δ above (and

hence of δ′), ρ(k+1) exists, and ρ(k)
a
→iρ(k+1). Further, since ρ(k) is an i-atom,

we find that [a]iα ∈ ρ(k) as well, and by definition of ⇒ above, α ∈ ρ(k+1). By
induction hypothesis, Mi, k + 1 |= α and hence Mi, k |= 〈a〉iα, as required.

On the other hand, whenMi, k |= 〈a〉iα, we are given that ρ(k+1) exists, that

ρ(k)
a
→i ρ(k+1) and that Mi, k+1 |= α. By induction hypothesis, α ∈ ρ(k+1),

and by definition of ⇒, 〈a〉iα ∈ ρ(k).
Now suppose α of the form βUiγ ∈ ρ(k). If γ ∈ ρ(k), we have (by induction

hypothesis Mi, k |= γ and hence Mi, k |= βUiγ. Otherwise, by construction

of δ above, we find that there exists m > k such that γ ∈ ρ(m) and for all
l : k ≤ l < m, γ 6∈ ρ(l). Now consider ρ(k): since {βUiγ,¬γ} ⊆ ρ(k), being an
i-atom, {β,

⊙
i(βUiγ)} ⊆ ρ(k). Hence βUiγ ∈ ρ(k + 1) as well. By the same

reasoning β ∈ ρ(k+1). Thus, we can show that for every l : k ≤ l < m, β ∈ ρ(l).
The result follows by the induction hypothesis. The converse is proved similarly.

This completes the induction and the claim is proved. ⊓⊔

The above two lemmas together lead us at once to the main results of the
paper:

Theorem 3. |= φ implies ⊢ φ; that is, GAX provides a complete axiomatiza-
tion of the valid formulas of PrPTL.

Theorem 4. The satisfiability of a PrPTL formula φ can be decided by an al-
gorithm taking NTIME(2O(|φ|)).

We expect that the time complexity can be shown to be deterministic (singly)
exponential time, using a more careful argument than the one presented above.

We can also consider the model checking problem for PrPTL: given a parallel
program T = (TS1, . . . , TSn), a PrPTL formula φ, and a valuation V : Q → 2X

(where X is the set of atomic propositions mentioned in φ), the problem is to
determine whether every model based on T and V satisfies φ. By a standard
argument, we can consider the product of the syntactic graph of φ above with
the product system and check for connected components generating φ-good sub-
graphs. Here, we mention only the result:

Theorem 5. Model checking a PrPTL formula φ against a parallel program
with m global states is decidable in NTIME(m.2O(|φ|)).

References

[And] Anderaa, S., On the algebra of regular expressions, in Appl. Math. (course
notes), Harvard, Jan 1965, 1–18.

[BPS] Bergstra, J., Ponse, A. and Smolka, S.A., eds., Handbook of process algebra
Elsevier, 2001, 333–389.

[Brz] Brzozowski, J., Derivatives of regular expressions, JACM 11,4, 1964, 481–494.
[Dijk] Dijkstra, E.W., A discipline of programming Prentice-Hall, 1976.
[GV] van Glabeek, R.J. and Vaandrager, F.W., Petri net models for algebraic theo-

ries of concurrency, Proc. PARLE 2, Eindhoven (J.W. de Bakker, A.J. Nijman
and P.C. Treleaven, eds.), LNCS 259, 1987, 224–242.

[GW] Godefroid, P. and Wolper, P., A partial approach to model checking, Inf.

Comput. 110, 1994, 305–326.
[Hoa] Hoare, C.A.R., Communicating sequential processes, Prentice-Hall, 1985.
[Kle] Kleene, S.C., Representation of events in nerve nets and finite automata, in

Automata studies (C.E. Shannon and J. McCarthy, eds.). Princeton, 1956,
3–41.

[Koz] Kozen, D., Automata and computability, Springer, 1997.

[LPRT] Lodaya, K., Parikh, R., Ramanujam, R. and Thiagarajan, P.S., A logical study
of distributed transition systems, Inf. Comput. 119,1, 1995, 91–115.

[Lod] Lodaya, K., Product automata and process algebra, Proc 4th SEFM, Pune
(P.K. Pandya and D.v.Hung, eds.), IEEE, 2006, 128–136.

[MP] Manna, Z. and Pnueli, A., The temporal logic of reactive and concurrent sys-
tems (Specification), Springer, 1991.

[Maz] Mazurkiewicz, A., Concurrent program schemes and their interpretations, Re-
port DAIMI PB-78, Aarhus University, 1977.

[MY] McNaughton, R. and Yamada, H., Regular expressions and state graphs for
automata, IEEE Trans. Electr. Comp. 9, 1960, 39–47.

[Mil1] Milner, R., A calculus of communicating systems, LNCS 92, 1980.
[Mil2] Milner, R., A complete inference system for a class of regular behaviours, JCSS

28,3, 1984, 439–466.
[OR] Osborne, M.J. and Rubinstein, A., A course in game theory MIT Press, 1994.
[Pel] Peled, D., All from one and one from all: on model checking using represen-

tatives, Proc CAV, LNCS 697, 1993, 409–423.
[Pet] Petri, C.-A., Fundamentals of a theory of asynchronous information flow, Proc.

IFIP, Munich (C.M. Popplewell, ed.), North-Holland, 1962, 386–390.
[PW] Pinter, S., and Wolper, P., A temporal logic for reasoning about partially

ordered computations, Proc 3rd ACM PODC , 1984, 28–37.
[Pnu] Pnueli, A., The temporal logic of programs, Proc IEEE FOCS , 1977, 46–57.
[RS] Ramanujam, R. and Sheerazuddin, S., A counting temporal logic for services

with unboundedly many clients, Journal of Applied Logics, 2011, to appear.
[Sal] Salomaa, A., Two complete axiom systems for the algebra of regular events,

JACM 13,1, 1966, 158–169.
[Thi] Thiagarajan, P.S., A trace based extension of propositional linear time tem-

poral logic, Proc IEEE LICS , 1994, 438–447.
[Val] Valmari, A., A stubborn attack on state explosion, LNCS 531, 1990, 156–165.

