
Chapter 1

A language-theoretic view of
verification

1.1 Setting the stage

The use of automata in verification goes back a long way, to Büchi [Bü60], Elgot [Elg61]
and Trakhtenbrot [Tra61] who, in the early 1960s, used the theory of automata on finite
words to give an algorithm to check whether a sentence of monadic second order logic on
such structures is valid, true in all models. They showed that this validity problem can be
reduced to checking whether the language accepted by such a finite automaton is empty.
Büchi went on to develop [Bü62] a theory of finite automata on infinite words and proved
the same result (which was considerably harder). This would come into use in verification
nearly 25 years later!

These days, the verification question is posed as follows. We are given a model of a system
(which can be hardware, software, or even mixed), typically as some kind of transition system.
More precisely, we might be provided with a run of the system, modelled as a word over a
suitable alphabet. We are given a system property, specified by a logical formula, typically in
a propositional framework such as temporal logic (rather than monadic second order logic).
Does the run satisfy this property? Or, do all runs of the system satisfy this property? These
truth checking and model checking problems can be posed as membership or inclusion
problems in automata theory, since the set of models of a temporal logic formula is a set of
words—a language.

One of the highlights of the modern approach to automata theory is a careful consider-
ation of algorithmic questions and the determination of their precise complexity. We refer
the reader to the many textbooks available on complexity theory, but we give here a primer
on complexity classes pertaining to this chapter. The reader familiar with basic complexity
notions is advised to skip to the next section.

Acknowledgements. Thanks to Simoni Shah and Paul Gastin for their detailed com-
ments, and to Nutan Limaye and A.V. Sreejith for their help.
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1.1.1 A primer on complexity classes

The complexity of a problem can be measured in terms of the number of computation steps
(this is abbreviated as time) when the input is of a particular size, say n, but also in terms
of the memory used (abbreviated space) as a function of n.

Nondeterministic algorithms. The algorithms we consider can be either deterministic,
which is usual, or nondeterministic, which is not so usual. A standard paradigm of how a
nondeterministic algorithm works is exemplified by:

Problem 1 (Directed graph accessibility, DGAP)
Instance: A directed graph G with n vertices, a source vertex s and a target vertex t
Question: Is there a path from s to t?
Complexity: NLogSpace

Here is how a nondeterministic algorithm might work: it writes out a string of vertices
v1 . . . vm of length m ≤ n. This is called a guess. Now the algorithm checks whether the first
vertex v1 is s, each pair of vertices (vi, vi+1) is an edge in the graph and if the last vertex vm
is t. If this is indeed the case, the algorithm says “Yes” (and returns the guess if required),
otherwise it says “No” (there is no path from s to t).

Surprisingly, this is indeed a nondeterministic algorithm because if there is a path from
s to t, there is one run of the algorithm which is correct, and if there is no path from s to t,
all the possible runs put together have examined all the possible paths of length ≤ n from
s and not reached t, which is sufficient to conclude the “No” answer.

The time complexity of the algorithm depends upon the way the graph is represented, but
certainly it can be done in time polynomial in n. We can say the algorithm is nondeterministic
polynomial time or in NPtime.

If we analyze the memory usage, we find that we can optimize the algorithm a little:
instead of guessing the whole path, the algorithm first guesses the pair (v1, v2) and verifies
that this is an edge with v1 = s, then it erases v1 and guesses v3 to form the pair (v2, v3),
verifies that this is an edge, and so on. (v3 might be the same as v1, but the existence of
a walk of length < n guarantees a path of length < n.) Since writing out a vertex of a
graph with n nodes and managing a counter takes O(log n) bits, this is a nondeterministic
logarithmic space or NLogSpace algorithm. Now we have a complexity upper bound of
NLogSpace for DGAP, which is better than NPtime.

Upper bounds. Complexity theorists have defined classes of algorithms like we did above,
and shown that the following inclusions hold between them. None of them is known to be
strict, but we do know of exponential separation between classes (for example, NLogSpace 6=
NPspace, Ptime 6= ExpTime).

ALogTime ⊆ LogSpace ⊆ NLogSpace ⊆ Ptime ⊆ NPtime ⊆ Pspace = NPspace
Pspace = NPspace ⊆ ExpTime ⊆ NExpTime ⊆ . . . ⊆ Elementary ⊂ Computable
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More precisely, complexity theory classifies problems rather than algorithms, since it is
possible to write very inefficient algorithms! So the class LogSpace consists of all problems
which have deterministic algorithms using space bounded by a polynomial in log n, where n
is the size of the input of the problem instance. The even more restrictive class ALogTime
is sometimes also called NC1, but there are some technicalities involved and it is best to
consult a textbook for the details. We will use this class only for the reason that it exactly
matches the complexity of evaluation of propositional logic (or Boolean sentences), a result
shown by Buss [Buss87].

Problem 2 (Boolean sentence value, BSVP)
Instance: A tree with vertices labelled from {∧,∨, 0, 1}, where the vertices labelled 0 or 1 are
sources.
Question: Does this “formula”, with the vertex labels being given their usual boolean inter-
pretation, evaluate to 1 at the root?
Complexity: ALogTime

The class NLogSpace has all problems which have nondeterministic algorithms with this
space requirement. Since a deterministic algorithm is a special case of a nondeterministic one,
the inclusion of a deterministic class in a nondeterministic class with the same requirements
follows. What about the other way? Savitch [Sav70] gave a clever divide-and-conquer
technique which shows that any NLogSpace algorithm can be converted to one which is
deterministic, but the space usage is squared.

The classes Ptime and NPtime contain deterministic and nondeterministic algorithms
whose time requirement is a polynomial in n. If an algorithm takes space s(n), after time
exponential in s(n) it will return to a configuration which it had already seen earlier. A more
formal proof based on this argument, which can be found in a textbook, shows the inclusion
of a class taking space O(s(n)) in a deterministic class taking time 2O(s(n)).

The class Pspace contains problems which have algorithms taking space polynomial in
n. Applying Savitch’s theorem, we see that NPspace turns out to be the same as Pspace.
An algorithm taking time order t(n) can only use space order t(n), since it does not have
the time to reach more space! This gives inclusion of the time classes in space classes with
the same requirements.

The classes ExpTime and NExpTime have algorithms whose time requirement is 2p(n),
for some function p(n) polynomial in n. Higher classes can also be defined similarly, using
towers of exponentials. The class Elementary includes algorithms whose space is a tower
of exponentials of any constant height. Finally, the class Computable includes all problems
which have any kind of algorithm at all.

Lower bounds. We are not yet done with DGAP, we want to find a lower bound for it.
Complexity theory really took off in the 1970s when Steve Cook discovered how to give lower
bounds to a problem.

A problem P is said to reduce to a problem Q (we write P ≤ Q) if, suppose we are given
an algorithm for Q, we can find a “preprocessing” function f which will take any instance
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I of the problem P and translate it into an instance f(I) of the problem Q, such that f(I)
has a solution if, and only if, I has a solution. Since it does not make sense for f to take
more time or space than the algorithm for Q itself, we will assume that f is itself computed
by an algorithm which takes logarithmic space. A textbook on complexity would call this a
“many-one logspace reduction”.

Here is Cook’s insight. Suppose we find a problem Q in NLogSpace such that every
problem in NLogSpace reduces to Q (we write NLogSpace ≤ Q). Indeed, DGAP is such
a problem, which is said to be NLogSpace-hard. To prove that NLogSpace is a lower
bound for some problem R, it is sufficient to show that DGAP reduces to R. In symbols,
NLogSpace ≤ DGAP and DGAP ≤ R shows NLogSpace ≤ R.

DGAP is also NLogSpace-complete: in NLogSpace as well as NLogSpace-hard,
giving both a lower and an upper bound. Cook’s theorem showed that NPtime ≤ SAT,
the problem of checking whether a propositional logic formula is satisfiable. (Since SAT is
also in NPtime, SAT is NPtime-complete.) We can say that the complexity of DGAP
is NLogSpace, since NLogSpace is both an upper and a lower bound. Similarly, the
monotone circuit value problem MCVP defined below is a problem whose complexity is
Ptime.

It is not known whether there is a deterministic LogSpace algorithm for DGAP. By a
simple analysis, you can work out that showing that there is a LogSpace algorithm for the
DGAP problem amounts to showing that LogSpace=NLogSpace. This question, like the
more famous Ptime = NPtime question, is yet unsolved.

Problem 3 (Monotone circuit value, MCVP)
Instance: A directed acyclic graph G with vertices labelled from {∧,∨, 0, 1} and a sink vertex
v, where the vertices labelled 0 or 1 are sources.
Question: Does this “circuit”, with the vertex labels being given their usual boolean interpre-
tation, evaluate to 1 at the output v?
Complexity: Ptime

The circuit may be assumed to be layered, with alternate layers being labelled ∧ and ∨,
until we reach the input layer which has 0 or 1 nodes.

Lower bounds using simulations. To give a Pspace lower bound, we again need a
“hard” problem as earlier. We show next how this is done using a “simulation” technique.

A computation of a nondeterministic algorithm can be thought of as a sequence of con-
figurations #c0#c1# . . .. We consider the case of a linear space computation. That is, given
an input w of size n to the algorithm, over an alphabet A, each configuration ci is a word of
length n+ 1 over a finite alphabet (the extra letter encodes some “state” information).

Now comes the simulation: the whole computation itself is a word over a larger alphabet
B ⊃ A (B includes symbols like # and state information). This word can be of arbitrary
length. The initial configuration consists of an initial state (of the computation) and the
input w provided to the computation. The final configuration is decided by a final state
of the computation. Moving from the configuration ci of the computation to ci+1, the next
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configuration in the sequence, is represented by changing just three consecutive letters in
the word ci in accordance with the algorithm. This surprising representation was discovered
by Alan Turing and formalized in his now-famous Turing machine. A textbook would call
our description that of a “linear bounded machine”. The problem which we now consider is
whether such a simulation can be found.

Problem 4 (Valid computation for a linear space algorithm)
Instance: A word w over a finite alphabet A ⊂ B
Question: Is there a valid linear space computation, as a word over B, of the algorithm on
input w?
Complexity: Pspace

Notice that the algorithm itself is implicit in the problem. It might be desirable to have
a fixed alphabet. This can be easily done using a two-letter alphabet since the encoding only
adds a constant factor.

1.2 Membership, emptiness and inclusion

This section is an introduction to the complexity of three fundamental problems of language
theory. We sketch a couple of lower bound proofs which are published but might not be
easily accessible. We also cast our results in a logical setting by introducing an interval
logic.

1.2.1 The membership problem

In formal language theory, when we specify a membership problem between a word and a
language, we have to present the input language, which might be infinite, in a finite way.
For example, one might provide a machine description.

Problem 5 (NFA membership)
Instance: A finite word w of length n and a nondeterministic finite automaton M of size m
Size of instance: n+m
Question: Is w accepted by M?
Complexity: NLogSpace

In this case, since a nondeterministic finite automaton is a labelled directed graph, it
is an exercise to work out that the complexity of this problem matches that of the graph
accessibility problem (DGAP) and the membership problem NFA is NLogSpace-complete.

1.2.2 Different kinds of regular expressions

Specifying the input language by a syntactic entity like a regular expression, rather than a
graphical one such as an automaton, must have been a natural afterthought of the develop-
ment of program verification in the late 1960s and early 1970s.
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First attempts at formulating the problem of verifying a program were made by Naur
[Naur66] and Floyd [Flo67], and Hoare developed the first programming logic [Hoa69] where
the program was presented as a syntactic expression. Soon after, Stockmeyer and Meyer ob-
served that the membership problem for a language given by a regular expression (including
complement operations) is in Ptime [SM73]. This is a textbook exercise (for example, in
Hopcroft and Ullman) using a dynamic programming algorithm.

Here are the definitions for these extended regular expressions (ERE), along with regular
expressions (RE) and starfree expressions (SF)—the last-named are regular expressions with
complement, but without the Kleene star operator.

e ::= a | e1 · e2 | e1 + e2 | e∗1 | e1
r ::= ∅ | a | r1 · r2 | r1 + r2 | r∗1
s ::= ε | a | s1 · s2 | s1 + s2 | s1

As usual, e1 · e2 is written e1e2 where no confusion arises. L(e) is the language defined by
the expression e: thus all words are in L(∅). We will use the notation e1 ∩ e2 for the derived
operator e1 + e2.

Next we enumerate, following Schützenberger [Sch65], all ways in which words in the
language of a starfree expression, of length at least two, can be broken up into a prefix and
a suffix, again described using a pair of starfree expressions.

Br(ε) = Br(a) = ∅
Br(s1s2) = {(s1, s2)} ∪{(s11, s12s2) | (s11, s12) ∈ Br(s1)}

∪{(s1s21, s22) | (s21, s22) ∈ Br(s2)}
Br(s1 + s2) = Br(s1) ∪Br(s2)
Suppose Br(s) = {(e1, f1), . . . , (ek, fk)}. Then:

Br(s) =
⋃

I⊆{1,...,k}
{(

⋂
i∈I
ei,

⋂
j /∈I
fj)}

By induction on expressions s, for any word w of length at least two, it can be shown
that w ∈ L(s) if and only if there is an (e, f) in Br(s) such that w ∈ L(e · f).

The tricky case is complementation. Suppose Br(s) = {(e1, f1), . . . , (ek, fk)}. Let w =
uv ∈ L(s), that is, uv /∈ L(s). Using the induction hypothesis on s, for 1 ≤ i ≤ k, either
u /∈ L(ei) or v /∈ L(fi). Let I = {i | u /∈ L(ei)}. Then u ∈ L(

⋂
i∈I
ei) and v ∈ L(

⋂
j /∈I
fj).

Conversely suppose some I, u ∈ L(
⋂
i∈I
ei) and v ∈ L(

⋂
j /∈I
fj). For contradiction suppose

uv /∈ L(s), that is, uv ∈ L(s). By the induction hypothesis there is some 1 ≤ l ≤ k such
that u ∈ L(el) and v ∈ L(fl) which contradicts our supposition.

1.2.3 The membership problem for regular expressions

Having introduced the different kinds of regular expressions, we now proceed to consider
their membership problems.

Problem 6 (ERE, RE, SF membership)
Instance: A finite word w and a regular expression e in the class ERE/RE/SF
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Question: Is w in the language defined by e?
Complexity: NLogSpace for RE, Ptime for ERE and SF

The membership problem RE is NLogSpace-complete. This was shown by Jiang and
Ravikumar [JR91]. It is in NLogSpace since the usual inductive Kleene construction of
a finite automaton from a regular expression can be thought of as a logspace reduction
from RE to FA. That NLogSpace is a lower bound (even without using Kleene star and
complement) is established by a reduction from DGAP.

Consider the graph accessibility problem (DGAP) where the input graph G has self-loops
for all nodes. This subcase is also NLogSpace-complete. Encode the vertices of the graph
in unary as a, a2, . . . , an. Let the complement ai of the node ai be defined as an−i.

Define words w1 . . . wn by taking edges (u, v) as substrings u · b · v. A path from s to t
is described by the expression e = start · (middle)n−2 · end, with start = s · b · (Σ(s,u)∈Gu),
middle = Σ(u,v)∈G(u · b · v) and end = (Σ(v,t)∈Gv) · b · t.

Now a word w = s · (ban)n−2 · t is in the language defined by e iff G has a path from
s to t. The expression e and word w can be constructed from the description of DGAP in
LogSpace, so we have that NLogSpace is a lower bound for RE membership.

Petersen showed that the complexity of ERE and SF membership is Ptime [Pet00], by
a reduction from MCVP. Assume that the gates in the circuit are enumerated so that the
inputs to each gate occur earlier in the enumeration. The reduction inductively constructs
starfree expressions sk whose language Lk is such that for every j ≤ k, the word a2j is in Lk
if and only if the output of gate j is 1. Let Allk be an expression whose language contains
all the a2j for j ≤ k.

For the base case, s0 = ∅. The induction step for gate k being labelled ∨ and having
inputs from the gates i, j is

sk = Allk ∩ (((sk−1(a
2(k−i)−1 + a2(k−j)−1 + ε)) ∩ (Allk + a2k−1))(a+ ε))

The idea is that all words in Lk−1 have even length, and so a2k−1 can be formed only by
concatenating a2(k−i)−1 or a2(k−j)−1 with some word in Lk−1. Solving the linear equations
thus formed will be possible only if a2i or a2j are in Lk−1. The remaining part of sk adds a2k

to Lk if and only if the previous part generated a2k−1.
A similar expression (using negations) takes care of the ∧ case. The reduction can be

carried out in LogSpace by reading the circuit description from right to left, generating
the parentheses in the expression, and then filling in the rest of the expression from left to
right. Storing the numbers and expanding them out as a’s in unary notation can be done in
logarithmic space.

1.2.4 The nonemptiness and inclusion problems

The other problems typically considered in formal language theory are emptiness and inclu-
sion.

Problem 7 (RE nonemptiness)
Instance: An expression e ∈ RE
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Question: Is the language defined by e nonempty?
Complexity: ALogTime

Problem 8 (NFA nonemptiness)
Instance: A finite automaton M
Question: Is the language defined by M nonempty?
Complexity: NLogSpace

Nonemptiness checking of finite automata is another textbook construction, and the
problem again matches DGAP. With reference to emptiness, regular expressions can be
mapped rather directly to boolean formulae by translating a letter (or the empty word) to 1
and the empty set to 0, with concatenation serving as ∧, union as ∨ and star as a constant
function returning 1. Now we have that a regular expression is nonempty if and only if the
translated formula has value 1.

Problem 9 (RE/NFA inclusion)
Instance: An expression e1 ∈ RE or a finite automaton M1, another expression e2 ∈ RE or
a finite automaton M2

Question: Is L1, the language defined by e1 or M1, included in L2, the language defined by e2
or M2?
Complexity: Pspace

We use a reduction to emptiness. Since L1 ⊆ L2 is equivalent to L1 ∩ L2 = ∅ we use
the Rabin-Scott subset construction to complement an automaton, causing an exponential
blow-up in size, and solve the problem in Pspace, and because of the Kleene reduction it
does not matter whether the input is a regular expression in RE or an automaton.

Meyer and Stockmeyer observed [MS72] that those words which are not valid computa-
tions of a linear space nondeterministic algorithm can be described by a regular expression
which says that either the initial configuration is wrong, or the final configuration is wrong,
or a move from some ci to ci+1 is wrong. This last bit can be done since the distance in
the word between the three letters which change from ci to ci+1 is exactly n. Hence an
O(n) regular expression r can be written to describe these three cases. The expression con-
structed satisfies Lang(r) = B∗ (which is the same as B∗ ⊆ Lang(r)) if and only if the
computation is not valid. This is a reduction from the validity problem of linear space com-
putations to the inequivalence and non-inclusion problems of regular expressions, making
them Pspace-complete.

Things change dramatically when the language L2 is presented as a regular expression
with complement (ERE or SF).

Problem 10 (ERE/SF nonemptiness)
Instance: An expression e ∈ ERE
Question: Is the language defined by e nonempty?
Complexity: above Elementary, even if e ∈ SF
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Problem 11 (ERE/SF inclusion)
Instance: An expression e1 ∈ ERE or a finite automaton M1, another expression e2 ∈ ERE
Question: Is L1, the language defined by e1 or M1, included in L2, the language defined by
e2?
Complexity: above Elementary, even if e2 ∈ SF

By the Kleene construction we know the problem can be solved by constructing a finite
automaton for L2 whose size is a tower of exponentials of height n determined by the nesting
depth of negations in the expression for L2, but the Elementary class is a lower bound for
this problem, and no algorithm with space bounded by a tower of exponentials of constant
height suffices! A sketch of the proof ideas is given in the book of Aho, Hopcroft and Ullman
[AHU74]. The details are in the PhD thesis of Stockmeyer [Sto74], and a proof for the related
satisfiability problem of monadic second order logic is in [Mey75].

1.2.5 Interval temporal logic

Since a syntax such as the starfree expressions has union as well as complementation, it
can be reformulated as a logic. We describe below a variant of the propositional interval
temporal logic (ITL) defined by Moszkowski and Manna [MM83], where the propositions are
related to the letters of the alphabet. B stands for a set of letters from the alphabet A,
and the special proposition pt denotes a point, a single letter. The “;” operator is called
chop (sometimes also called fusion) and is defined slightly differently from concatenation in
starfree expressions. A closely related syntax is called starfree chop expressions (SFCE) in
Chapter ?? by Ajesh Babu and Pandya.

φ ::= ddBee, B ⊆ A | pt | ¬ φ | φ ∨ ψ | φ;ψ

Temporal logics are interpreted on state sequences π = s1s2 . . ., where each state si is a set
of atomic propositions. In the present case, since we want to mimic the starfree expressions,
we let π : N → A be a nonempty word over the alphabet A.

For an interval logic, when a word satisfies a formula is inductively defined using intervals
[b, e] where b ≤ e are natural numbers. Alternatively they could be thought of as substrings
π(b) . . . π(e) of a word.

π, [b, e] |= ddBee iff for all m : b ≤ m ≤ e : π(m) ∈ B
π, [b, e] |= pt iff b = e

π, [b, e] |= φ;ψ iff ∃m : b ≤ m ≤ e : π, [b,m] |= φ and π, [m, e] |= ψ

We now restrict ourselves to finite word models and say that π |= φ if π, [1, |π|] |= φ
holds. Lang(φ), the language defined by φ, is the set of words {π | π |= φ}. Now we consider
the truth checking or membership problem for this logic.

Problem 12 (ITL truth checking)
Instance: A finite word u over alphabet A and an ITL formula φ
Question: Does u |= φ? Alternately, is u in Lang(φ)?
Complexity: Ptime
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Because of their similarity, the dynamic programming algorithm for the membership
problem of starfree expressions can be used for the membership problem of a word against
an ITL formula. Now we use the results of Petersen [Pet00] to show that the complexity of
this problem is Ptime. Similarly ITL satisfiability corresponds to the nonemptiness problem
of starfree expressions and we can use the results of [Sto74].

Problem 13 (SAT(ITL), ITL satisfiability)
Instance: An ITL formula φ
Question: Does φ have a word model? Alternately, is Lang(φ) nonempty?
Complexity: above Elementary

1.3 The membership problem for linear temporal logic

The propositional temporal logic of linear time LTL was introduced in the verification setting
by Pnueli [Pnu77]. Let us backtrack a bit to establish how this came about.

We saw that Hoare introduced a programming logic [Hoa69]. Hoare’s notation α{Program}β
specified the property that all runs of Program, when started in a state satisfying the pre-
assertion α, would end in a state satisfying the post-assertion β, provided the run terminated.

These “invariant” assertions were complemented by Burstall’s “intermittent” assertions
for proving termination itself [Bur74], and Manna and Pnueli realized that the program could
be kept implicit, its run described as a sequence of states, and an assertion α could be made
in a logic of sequences, namely, linear temporal logic (LTL) in which both kinds of assertions
could be described.

Over the same period, several people working on extending Hoare logic to concurrent
programs (Owicki and Gries [OG76]; Apt, Francez and de Roever [AFdR80]; Misra and
Chandy [MC81]; Soundararajan [Sou83]) realized that the completeness proofs for their logics
demanded an encoding of “histories” or sequences inside the assertion language. Meanwhile,
Pnueli demonstrated [Pnu77] that interesting properties of concurrent protocols (such as
mutual exclusion) could be stated and proved in temporal logic. His book with Manna
[MP92] is a repository of such properties. Hence model checking came to be based on
temporal logic.

1.3.1 LTL

We consider a basic temporal logic LTL. The operator X below is read as “next”, and the
operator U as “until”. We refer to the book of Huth and Ryan [HR00] for motivating
examples.

α ::= p ∈ Prop | ¬α | α ∨ β | Xα | αUβ
The formula Fα is defined as trueUα and Gα as ¬F¬α.
LTL is interpreted on an infinite state sequence π = s1s2 . . ., where each state si is

labelled by a function π : N → ℘(Prop) with a set of atomic propositions. Alternatively
π could be read as an infinite word over the alphabet A = ℘(Prop). One can also consider
nonempty finite words as models of LTL, but we will not need them in this chapter.
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When a word satisfies a formula is defined traditionally. Instead of using the interval
[k,∞) we just use the index k.

π, k |= p iff p ∈ π(k)
π, k |= Xα iff π, k + 1 |= α
π, k |= Fα iff for some m ≥ k : π,m |= α
π, k |= α U β iff for some m ≥ k : π,m |= β

and for all l : k ≤ l < m : π, l |= α
This time we say π |= α holds when π, 1 |= α holds, that is, the whole infinite word is a

model of the formula. This is the same thing as whether an infinite word is a member of a
language of infinite words, the latter given by a logical formula.

We next indicate how LTL could be translated into starfree expressions. To be more
precise, we should use starfree expressions which describe languages of infinite words, but
here we only sketch the ideas using the usual starfree expressions over finite words.

sf(p) = (Σp∈aa) · ∅
sf(Xα) = (Σa∈Aa) · sf(α)
The translation of until requires more work. From the semantics of the operator, we

know that a word w[1,∞) satisfies the formula αUβ if it has a suffix w[m,∞) which satisfies
β and the “intermediate” suffixes w[l,∞) for 1 ≤ l < m satisfy α.

So consider that w[1,∞) satisfies α. Inductively, the starfree expression sf(α) will de-
scribe such words. But we have to restrict this set of words to those where α holds for some
suffixes after which β holds. To describe this, Pnueli and Zuck [PZ93] found a technique of
forcing prefixes which satisfy α until a suffix which satisfies β is reached. The translation
of an until formula uses Schützenberger’s breakups which we saw earlier. The expression

e ∩ (∅ · e) denote all words described by e all whose suffixes are again in L(e).

sf(αUβ) = ΣB⊆Br(sf(α))Σ(e,f)∈B(e ∩ (∅ · e))(f ∩ sf(β))

This translation is not terribly efficient, hopefully a better one is yet to be found.

1.3.2 Truth checking a path as membership

We now consider the truth checking question for this logic, which has also been given the
name of path checking [MS03]. Since we are dealing with infinite words, we restrict ourselves
to ultimately periodic words uvω which can be described by giving the pair of finite words u
and v as input.

Problem 14 (LTL truth checking)
Instance: Two finite words u and v over the alphabet A and an LTL formula φ
Question: Does uvω |= φ hold?
Complexity: lower bound ALogTime, upper bound AC1(LogDCFL)

Since ALogTime lower bounds the evaluation of propositional logic formulas, it also
serves as a lower bound for LTL. A polynomial time dynamic programming algorithm taking
time O(|w||φ|) for the problem is easy to see and is sketched below. An exciting recent

11



theoretical development was a more efficient parallel algorithm (for LTL truth checking over
finite words) found by Kuhtz and Finkbeiner [KF09]. The complexity class mentioned above
for the upper bound is defined using circuit families which use oracle gates: for an input of
length n they construct a circuit of depth order log n which uses LogDCFL oracle gates.
The class LogDCFL consists of problems which reduce in logarithmic space to membership
in a deterministic context-free language. It is known that LogSpace ⊆ LogDCFL ⊆
AC1(LogDCFL) ⊆ Ptime. Hopefully this can be extended to general LTL truth checking
over infinite words as well.

The Ptime algorithm proceeds by successively, at all states, extending the labelling
π : N → A to a new labelling π̂ : N → B, where B = ℘(Sub(φ)) and Sub(φ) is the set of
subformulas of φ. The number of subformulas of φ is linear in the size of φ. The algorithm
starts with the smallest subformulas and works outwards towards φ.

The inductive construction can be described as follows. If the formula being tackled is

p: nothing needs to be done since the state s is already labelled if p ∈ π(s).

α ∧ β: label s with α ∧ β if s is already labelled with α and β.

¬α: label s with ¬α if s is not already labelled with α.

Xα: label s with Xα if its successor is already labelled with α.

αUβ: do a backward pass through the word, labelling states already labelled with β with
αUβ, and propagating this formula backwards so long as a state is labelled with α and
its successor is labelled with αUβ.

1.4 The model checking problem for computation tree

logic

The motivation for the logic CTL defined below came from the notion of “safety” and
“liveness” properties, due to Lamport [Lam80]. Two groups working independently, Emerson
and Clarke in the US [EC82], and Queille and Sifakis in France [QS82], came up with
algorithms for checking temporal logic properties of a system, described as a tree. (We
used their algorithm in the previous section, restricted to a word.) CTL is due to Emerson
and Clarke and, like Queille and Sifakis’s logic, it was based on UB, another of Manna
and Pnueli’s temporal logics, developed with Ben-Ari [BMP83]. The advantage of these
historically first approaches is that the model checking algorithm continues to be linear time
O(|M ||φ|).

α ::= p ∈ Prop | ¬α | α ∨ β | EXα | EGα | E[αUβ]
Similar to before, we define EFα = E[trueUα] (these are called weak liveness properties)

and its dual AG¬α = ¬EFα (safety properties, which say that no “bad” α happens in any
run). EG¬α is called a weak safety property and the dual liveness property AFα = ¬EG¬α says
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that some “good” α happens in every run. We also define A[αUβ] = ¬(EG¬β ∨ E[¬βU¬α ∧
¬β]).

Again we refer to Huth and Ryan’s book [HR00] for motivating examples. The idea is
that a system is modelled as a tree τ = (T, t0,→, L) of all its runs, together with a state
labelling function. (T,→) is the tree, t0 the root and L : T → A is the labelling function
which specifies which atomic propositions hold at the tree nodes. This semantics is what
gives the name computation tree logic. The definition of satisfaction formalizes the intuition.

τ, t |= p iff p ∈ L(t)
τ, t |= EXα iff for some t′ such that t→ t′, we have τ, t′ |= α
τ, t |= EGα iff for some path π = t1 → t2 → t3 → . . . where t = t1, π, 1 |= Gα
τ, t |= E[αUβ] iff for some path π = t1 → t2 → t3 → . . . where t = t1, π, 1 |= αUβ
From its definition, you can work out that A[αUβ] checks the until property along all

paths from the root. It should be clear that Lamport’s criteria of describing safety and
liveness properties of a system are met by this logic.

But there is a question: how is a tree with infinite paths to be presented as input to
an algorithm? The solution is to again restrict ourselves to regular infinite trees, which
have finitely many subtrees upto isomorphism. Such trees can be described by a transition
system M = (S, s1,→, L) (also called a Kripke structure), where S is a finite set of states
with a labelling function L : S → A and s1 the root state from which infinite paths (“runs”)
of the system start off. The transition system M with start state s1 unfolds into a tree model
Unf(M) with root(M) as its root.

Problem 15 (MC(CTL), CTL model checking)
Instance: A transition system M over the alphabet A and a CTL formula φ
Question: Does Unf(M), root(M) |= φ hold?
Complexity: Ptime

Observe that this is an alternate way of framing the question of checking whether a given
infinite tree (represented as a finite structure) is a member of a language of infinite trees
(described again by a finite logical formula). So this could be called the truth checking, or
membership, problem for CTL. But by now the name model checking is firmly established
for this problem when the model is given as a transition system, and we use the popular
terminology.

To solve the problem we look at extending the algorithm for truth checking a word, and
this can be done with minor changes. As before, the states of M are labelled by the alphabet
B of sets of subformulas of a formula φ. Tarjan’s algorithm is used to find strongly connected
components (SCCs) for EG subformulas, thus maintaining linear time.

If the formula being tackled is

EXα: label s with EXα if it has a successor which is already labelled with α

E[αUβ]: label states already labelled with β with E[αUβ], and propagate this formula using
a backwards breadth-first search, that is, so long as a state is labelled with α and has
a successor state labelled with E[αUβ]
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EGα: to deal with this case efficiently, restrict the graph to states satisfying α (consider
other states and their transitions to be deleted), find the maximal SCCs, and use
backwards breadth-first search to find states which can reach an SCC, all of these
states are labelled with EGα

While CTL model checking is in O(|S||φ|) time, one can also verify that it has a Ptime
lower bound, by a reduction from the monotone (layered) circuit value problem MCVP.
For example, if the layers begin with “and”s and end with “or”s, the CTL formula (which
does not even use until) AXEX . . .AXEXtrue holds iff the circuit evaluates to true. Thus
membership in a tree language, or model checking a transition system against a formula, is
a Ptime-complete problem.

Inclusion of tree languages is a much harder problem, and we refer to Chapter ?? by
Christof Löding for details. The satisfiability question of CTL (which can also be seen as
nonemptiness of the tree language) is correspondingly hard, as was shown by Fischer and
Ladner [FL79].

Problem 16 (SAT(CTL), CTL satisfiability)
Instance: A CTL formula φ
Question: Is there a tree model for φ?
Complexity: ExpTime

The equivalences below can be used to handle boolean equivalences over paths, but we
cannot reduce nested path formulas.

E[¬Xα] ≡ EX¬α, E[¬(αUβ)] ≡ EG¬β ∨ E[¬βU¬α ∧ ¬β]
E[(α1Uβ1) ∧ (α2Uβ2)] ≡ E[(α1 ∧ α2)U(β1 ∧ E[α2Uβ2])] ∨ E[(α1 ∧ α2)U(β2 ∧ E[α1Uβ1])]
The “formula” E[GFp], which intuitively says that there is a path along which p is infinitely

often true, does not have any CTL equivalent at all.

1.5 Model checking temporal logics

Once algorithms for CTL model checking were developed, those for checking LTL properties
were not far behind. Instead of interpreting a transition system M = (S, s1,→, L) by its tree
unfolding, one could consider Lang(M), the set of words which are runs from its initial state,
and ask whether all these are models of an LTL formula. We return to our LTL notation,
and extend it momentarily:

α ::= p ∈ Prop | ¬α | α ∨ β | Xα | αUβ
M, s |= A[α] iff for all paths π = s1 → s2 → . . . where s = s1, we have π, 1 |= α
Manna and Pnueli took the decision to interpret every LTL formula using such a ∀path-

semantics, hence we do not explicitly write the A[ ]-operator and continue to use the old
LTL syntax.

Problem 17 (MC∀(LTL), LTL model checking)
Instance: A transition system M and an LTL formula φ
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Question: Does Unf(M), root(M) |= A[φ] hold?
Question: Alternately, does π, 1 |= φ hold for every π ∈ Lang(M)?
Complexity: Pspace

The basic strategy for the LTL model checking problem is different from that for CTL:
it changes from checking membership of a tree (presented finitely) in a language of trees
(described by a formula) to checking inclusion of a set of words Lang(M) (implicitly pre-
sented by the transition system M , assuming all states are accepting) in another set of words
(described by a formula).

Historically, a key rôle here was played by dynamic logic (PDL), invented by Pratt [Pra76]
as a generalization of traditional modal logic with program-indexed modalities. PDL was
proved decidable by a filtration argument of Fischer and Ladner [FL79]. A tour de force
completeness-cum-decidability proof of PDL by Kozen and Parikh [KP81] and the tight
“tableau” construction of Pratt [Pra80] laid the seeds of the “formula automaton” construc-
tion of Vardi and Wolper [VW94], which is today the standard way of implementing LTL
model checking algorithms. We only sketch this theory, more details can be found in Chapter
?? by Stéphane Demri and Paul Gastin.

We first describe how to construct a formula automaton, also called a tableau, for a formula
φ, which is exponential in the size of φ, with the property that the language accepted by
this automaton is precisely the set of models of φ.

Since a formula automaton is a finite automaton (over infinite words) and the given
transition system is also a finite automaton, we can perform a “product” construction to
recognize the intersection of the accepted paths. Since we are concerned with infinite paths,
the product is of automata over infinite words (here we witness the return of the automata
of Büchi [Bü62]) rather than the usual one of automata over finite words. Chapter ?? by
Madhavan Mukund describes this construction.

The model checking algorithm consists of taking the product of the automaton for the
complement formula ¬φ with M , and checking the product for nonemptiness. If there is a
path in the product of this kind, we exhibit this as a counterexample to M satisfying φ;
if there isn’t, we declare that M is a model for φ. In effect, we have checked whether the
language ofM is included in the “language” of φ by checking the emptiness of L(M)∩L(¬φ) =
L(M) ∩ L(φ).

The states of the formula automaton are all subsets a of Sub(φ) which could be potential
states of the transition system, in the following sense:

Consistent: For every subformula ψ, both ψ and ¬ψ are not in a.

Downward saturated: If α ∨ β is in a, one of α or β is in a.

Maximal: For every subformula ψ, either ψ or ¬ψ is in a.

Let â be the conjunction of formulas in a. The transitions are defined so that â ∧ Xb̂
is consistent when there is a transition from a to b. Since there are exponentially many
subsets of Sub(φ), which is itself linear in the size of φ, it is possible to give an exponential
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|M |.2O(|φ|) time model checking algorithm. Using the fact that nonemptiness of the language
of a finite state Büchi automaton can be checked in nondeterministic logarithmic space, we
get an NPspace algorithm, which we know is the same as Pspace, so that is an upper
bound for the complexity of model checking LTL.

Before considering the lower bound, we introduce another problem:

Problem 18 (SAT(LTL), LTL satisfiability)
Instance: An LTL formula φ
Question: Is there a word model for φ?
Complexity: Pspace

Pspace is a lower bound for both model checking and satisfiability, as was shown by
Sistla and Clarke [SC85]. We refer to their paper, or the survey by Schnoebelen [Sch03], for
proofs. Here is an idea of how a reduction from the valid linear space computation problem
to either model checking or satisfiability can be done.

A letter of the word representing a configuration ci can take as many possible values as the
size of the alphabet B, which is represented by transitions branching to that many states
where a proposition coding that letter is true, and then coming together again, forming
a diamond-shaped structure. The whole word ci of length n can be coded as that many
“diamonds” in sequence. After the last “diamond” we have a transition cycling back to the
beginning. The LTL formula now describes the initial configuration, and specifies using 2n
nested X operators, how a configuration ci can change to the next one ci+1, and asserts using
an F operator the existence of a final configuration. A model of this formula (notice that
it does not even use the until operaor) describes a valid computation and conversely, every
valid computation is described by a model of this formula.

Sistla and Clarke showed that if an LTL formula is satisfiable, it is satisfiable in a word
uvω where u and v are at most exponential in the size of the formula [SC85]. Guessing this
model and model checking φ along it would give an NExpTime algorithm. But as in the
case of our algorithm for DGAP, instead of guessing the whole model, it can be guessed and
verified on the fly. This gives an NPspace algorithm, and by Savitch’s theorem the problem
is in Pspace.

1.5.1 CTL*

Recall that the formula E[GFp] says there is a path along which p is infinitely often true. This
does not have an equivalent in the LTL ∀-semantics either. This motivated the development
of the logic CTL*.

α ::= p ∈ Prop | ¬α | α ∨ β | Xα | αUβ
φ ::= A[α] | ¬φ | φ ∨ ψ
Now we can define E[α] = ¬A[¬α], yielding the semantics:
M, s |= E[α] iff for some path π = s1 → s2 → s3 → . . . where s = s1, we have π, 1 |= α
The Pspace model checking complexity of LTL can be lifted to CTL* as well. Chapter

?? by Demri and Gastin has the details.
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1.5.2 Model checking ITL

It is possible to describe paths much more succinctly. We return to the interval logic defined
in Section 1.2.5 and recall its syntax and semantics.

φ ::= ddBee, B ⊆ A | pt | ¬φ | φ ∨ ψ | φ;ψ
π, [b, e] |= ddBee iff for all m : b ≤ m ≤ e : π(m) ∈ B
π, [b, e] |= pt iff b = e
π, [b, e] |= φ;ψ iff ∃m : b ≤ m ≤ e : π, [b,m] |= φ and π, [m, e] |= ψ

Problem 19 (MC∀(ITL), ITL model checking)
Instance: A transition system M and an ITL formula φ
Question: Does π, 1 |= φ hold for every π ∈ Lang(M)?
Complexity: above Elementary

ITL formulas are succinct compared to LTL formulas, although the class of languages
covered is the same. Theoretically, this power derives from the negation ¬(φ;ψ) of a chop
formula. As can be seen from the semantics, this ranges over all possible ways of breaking
up an interval into subintervals. In fact, this combination means that we can obtain lower
bounds from the inclusion problem for starfree expressions, and we have that MC∀(ITL),
model checking an ITL formula against (all runs of) a transition system, has an Elementary
lower bound. It is difficult to find natural properties which require several nestings of such
operators and model checkers for ITL [Pan01] work reasonably well in practice.

1.5.3 Unambiguous interval logic

Recently, motivated by the good performance of an ITL model checker [KP05], with Pandya
and Shah we considered a logic UITL [LPS08] where the chops are “marked” in a determin-
istic manner. In the syntax below, a stands for a letter and B for a set of letters from the
alphabet.

φ ::= ddBee | pt | ¬φ | φ ∨ ψ | φFaψ | φLaψ | ⊕ φ | 	 φ
The operators Fa and La can be read “first a” and “last a”. They chop an interval

into two subintervals at a point determined by either the first or the last occurrence of the
specified letter a in the interval (provided it exists). The last two operators provide successor
and predecessor modalities at the interval level.

π, [b, e] |= φFaψ iff for some m : b ≤ m ≤ e. π(m) = a and
(for all l : b ≤ l < m. π(l) 6= a) and
π, [b,m] |= φ and π, [m, e] |= ψ

π, [b, e] |= φLaψ iff for some m : b ≤ m ≤ e. π(m) = a and
(for all l : m < l ≤ j. π(l) 6= a) and
π, [b,m] |= φ and π, [m, e] |= ψ

π, [b, e] |= ⊕φ iff b < e and w, [b+ 1, e] |= φ
π, [b, e] |= 	φ iff b < e and w, [b, e− 1] |= φ
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This logic is much less expressive than full ITL, and matches a fragment of LTL. Inter-
estingly, the complexity of model checking comes down: checking a UITL formula φ against
a word w is in O(|w||φ|2) and also in the complexity class LogDCFL (which we saw earlier,
recall that LogDCFL ⊆ Ptime), while checking whether all runs of a transition system
satisfy the formula is in NPtime. We refer to the paper [LPS08] for some of the details.

Problem 20 (UITL truth checking)
Instance: A word w and a UITL formula φ
Question: Does w |= φ hold?
Complexity: lower bound ALogTime, upper bound LogDCFL

Problem 21 (MC∀(UITL), UITL model checking)
Instance: A transition system M and a UITL formula φ
Question: Does π, 1 |= φ hold for every π ∈ Lang(M)?
Complexity: NPtime

Problem 22 (SAT(UITL), UITL satisfiability)
Instance: A UITL formula φ
Question: Does φ have a word model?
Complexity: NPtime

1.6 Reading ahead

In this chapter we considered the simple case where the system model is finite. The more dif-
ficult case when the model is infinite is considered in the articles by Javier Esparza (Chapter
??) and by Wolfgang Thomas (Chapter ??) in this volume.

The alphabet we consider for labelling the transitions is just a finite set. A more dis-
tributed structure on the alphabet is considered by Madhavan Mukund in Chapter ??,
whereas the representation of abstract data values is in Chapter ?? by M. Amaldev and
R. Ramanujam.

As should be clear by now, verification theory using automata is developing in many
directions. Our article is conceptually closer to the early theory of the 1980s and we have
used the chapter in the Handbook of Theoretical Computer Science by Emerson [Eme90]. The
material on model checking is covered in detail in the books by Huth and Ryan [HR00] and
by Clarke, Grumberg and Peled [CGP99]. The book by Stirling [Sti01] uses an alternative
treatment using a rich formalism called the modal µ-calculus, and reduces model checking to
problems of finding the winner in a suitable game. The complexity results for most of these
logics and more detailed fragments are surveyed in the long article by Schnoebelen [Sch03],
and the journal article by Demri and Schnoebelen [DS02].

18



Bibliography

[AHU74] Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman. The design
and analysis of computer algorithms , Addison-Wesley, 1974.

[AFdR80] Krzysztof R. Apt, Nissim Francez and Willem-Paul de Roever. A
proof system for communicating sequential processes, ACM Trans. Prog. Lang.
Syst. 2:3, 359–385, Jul 1980.

[BMP83] Mordechai Ben-Ari, Zohar Manna and Amir Pnueli. The temporal logic
of branching time, Acta Inf. 20, 207–226, 1983.
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