
Implementing concurrency

and communication

Kamal Lodaya

The Institute of Mathematical Sciences

Chennai

Lecture 3 Concurrency

Text: G.R.Andrews, Foundations of

multithreaded, parallel, and distributed

programming, Addison-Wesley, 2000

1

Threads

The simplest way to define concurrent threads in

Java is to have a class extend the built-in class

Thread. Suppose we have such a class, as follows,

in which we define a function run() as shown:

public class Window extends Thread{

private int id;

public Window(int i){ // Constructor

id = i;

}

public void run(){

for (int j = 0; j < 100; j++){

System.out.print("Window "+id+":>");

try{

sleep(1000);

} // Go to sleep for 1000 ms

catch(InterruptedException e){

CommandHandler(e);

} } } }

2

Threads

Then, we can created objects of type Window and

“start” them off in parallel. The call

w[i].start() initiates the function w[i].run()

in a separate thread.

public class TestWindows {

public static void main(String[] args){

Window w[] = new Window[5];

for (int i = 0; i < 5; i++){

w[i] = new Window(i);

w[i].start(); // Start off w[i].run()

// in concurrent thread

} }

If we write w[i].run() instead of w[i].start()

w[i].run() is like any other function in the

current thread—control is transferred to

w[i].run() and when it finishes, passes back to

the caller.

3

Threads within threads

Given Java’s single inheritance mechanism, we

cannot always extend Thread directly. An

alternative is to implement the interface

Runnable. A class that implements Runnable is

defined in the same way as one that extends

Thread—we have to define a function public

void run()... However, to invoke this in

parallel, we have to explicitly create a Thread

from the Runnable object by passing the

reference to the object to the Thread constructor.

Here is how we would rework the earlier example.

First the Runnable class:

public class Window implements Runnable{

// only this line has changed

private int id;

public Window(int i){ ... } // Constructor

public void run(){ ... }

}

4

Threads within threads

Now, the class that uses the Runnable class.

public class TestWindows {

public static void main(String[] args){

Window w[] = new Window[5];

Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){

w[i] = new Window(i);

t[i] = new Thread(w[i]);

// Make a thread t[i] from w[i]

t[i].start(); // Start off w[i].run()

// in concurrent thread

} }

Note: t[i].start(), not w[i].start()

5

Threads

To summarize: a Java thread is a lightweight

“process”: it has its own stack and execution

context, and it has direct access to all variables in

its scope. To program a thread:

• Define a new class that extends Thread or

implements Runnable.

• Define a run method in the new class which

contains the code of the thread.

• Create an instance of the new class with new.

• Start the thread using the start method.

6

Parallel programming

In most parallel iterative algorithms, each

iteration typically depends upon the results of the

previous iteration.

while (‘‘not completed’’){

Process p[] = new Process[5];

for (int i = 0; i < 5; i++){

p[i] = new Process(i);

p[i].start(); // p[i].run() will do

// the i’th job

} }

This is quite inefficient since every iteration

spawns 5 threads. It is costly to create and

destroy threads (even though they are

“lightweight”).

7

Parallel programming

A more efficient structure is:

Process p[] = new Process[5];

for (int i = 0; i < 5; i++){

p[i] = new Process(i);

p[i].start(); // p[i].run() will do

// the i’th job

}

public class Process extends Thread{

private int id;

public Process(int i){ // Constructor

id = i;

}

public void run(){

while (‘‘not completed’’){

‘‘code to do an iteration

of the i’th job;’’

‘‘barrier synchronization’’

} } }

8

Synchronization

To summarize: rather than creating and

destroying processes, it is more efficient to create

them once and for all, and to use a

synchronization protocol.

• If you are familiar with regular expressions,

and we use || to separate parallel processes,

the motto is that a program of the form

(a||b)∗ can be more efficiently transformed

into (a; barrier)∗||(b; barrier)∗.

Implementing synchronization

But how do we implement the barrier ?

Some programming languages even have such a

construct. But then how do the languages

themselves implement it ?

9

Barrier synchronization

A barrier can be a shared integer count, and

synchronization is

count++;

while (count != N){ // do nothing

}

But how is count reset? How can it be reset

before any process again tries to increment it?

Make a barrier

Suppose we distribute count into an array

arrive[]. The increment count++ is replaced by

arrive[i] = 1. Then the test will be:

await (arrive[1]+arrive[2]+...+arrive[N] == N);

This gives rise to a lot of memory contention, and

it is inefficient to keep making the test in every

process.

10

Centralized barrier synchronization

public class Process extends Thread{

public Process(int i) ...

public void run(){

while (‘‘not completed’’){

‘‘code to do an iteration’’

arrive[i] = 1;

await (continue[i] == 1);

continue[i] = 0;

} }

public class Coordinator extends Thread{

public Coordinator ...

public void run(){

while (true){

for (int i = 0; i < N; i++){

await (arrive[i] == 1);

arrive[i] = 0;

}

for (int i = 0; i < N; i++){

continue[i] = 1;

} } }

11

Distributed barrier synchronization

Each worker process can also be made to act as a

coordinator, for instance by arranging the

processes in the form of a ring or a tree. The code

for a process looks like:

// barrier code for leaf process p[l]

arrive[l] = 1;

await (continue[l] == 1); continue[l] = 0;

// barrier code for interior process p[i]

await (arrive[left] == 1); arrive[left] = 0;

await (arrive[right] == 1); arrive[right] = 0;

arrive[i] = 1;

await (continue[i] == 1); continue[i] = 0;

continue[left] = 1; continue[right] = 1;

// barrier code for root process p[r]

await (arrive[left] == 1); arrive[left] = 0;

await (arrive[right] == 1); arrive[right] = 0;

continue[left] = 1; continue[right] = 1;

12

Communication

To summarize: it is not concurrency that makes

parallel programming difficult.

• Lightweight implementations such as threads

can be provided relatively easily in a

programming language.

• But the processes need to coordinate with

each other. In the simplest case they need to

synchronize across threads.

• More generally, processes need to

communicate information among each other.

• Implementing synchronization and

communication is not easy.

Load balancing

How would you go about finding all primes upto

1010 using 10 threads ?

13

Load balancing

How would you go about finding all primes upto

1010 using 10 threads ?

Strategy 1: dividing up the input domain

int i = ThreadID.get(); // threads 0..9

long int blocksize = power(10,9);

for (long int j = (i * blocksize)+1;

j <= (i+1)*blocksize; j++){

if (testPrime(j))

System.out.print(j);

}

Dividing up the input domain is not a good

strategy for the primes problem. Why ?

14

Load balancing

• There are a lot more primes between 1 and

109 than between 9× 109 and 1010. The

distribution of the primes is not uniform.

• Checking if a number is prime is easier when

the number is small, for large numbers it is

harder. The work load is not uniform.

Strategy 2: dynamic load balancing

Counter counter = new Counter(1); // shared

long int i = 0;

long int limit = power(10,10);

while (i < limit) {

i = counter.Incr();

if (testPrime(i))

System.out.print(i);

}

This solves the problem of skewed distributions.

But how do we implement the counter ?

15

Load balancing

public class Counter{

private long int value;

public Counter(int i){

value = i;

}

public long int Incr(){

return value++;

} }

On many machines, the last piece of code will be

implemented as:

long int temp = value;

value = temp+1;

return temp;

The field value is part of the shared Counter

object. But each thread has its own local copy of

temp.

What can happen if two threads call Incr at

about the same time ?

16

Race conditions

Consider a system in which we have two threads

that update a shared variable n, as follows:

Thread 1 Thread 2

... ...

m = n; k = n;

m++; k++;

n = m; n = k;

... ...

Under normal circumstances, after these two

segments have executed, we would expect the

value of n to have been incremented twice, once

by each thread.

17

Race conditions

However, because of time-slicing, the order of

execution of the statements may be as follows;

Thread 1: m = n;

Thread 1: m++;

Thread 2: k = n;

// k gets the original value of n

Thread 2: k++;

Thread 1: n = m;

Thread 2: n = k;

// Same value as that set by Thread 1

In this sequence, the increments performed by the

two threads overlap and the final value of n is

only one more than its initial value. This kind of

inconsistent update, whose effect depends on the

exact order in which concurrent threads execute,

is known as a race condition.

18

Race conditions

A more amusing example has a shared array

double accounts[100] that holds the current

balance for 100 bank accounts and two functions:

// transfer "amount" from source to target

boolean transfer

(double amount, int source, int target){

if (accounts[source] < amount)

{return false;}

accounts[source] -= amount;

accounts[target] += amount;

return true;

}

// compute the total balance of the bank

double audit(){

double bank = 0.00;

for (int i = 0; i < 100; i++)

{bank += accounts[i];}

return bank;

}

19

Race conditions

Now, suppose we execute these functions in

concurrent threads, as follows:

Thread 1 Thread 2

... ...

transfer(500.00,7,8); print (audit());

... ...

Suppose that Thread 2 gets access to

accounts[7] and accounts[8] after Thread 1

has debited accounts[7] but before it has

credited accounts[8]. The audit will then report

that a sum of 500.00 has been “lost” from the

accounts in the bank, because it uses the updated

value of accounts[7] but the old value of

accounts[8].

20

Race conditions

Thread 1 Thread 2

... ...

transfer(500.00,7,8); print (audit());

... ...

The situation is even more complicated than this.

Even if Thread 1 executes both the debit and the

credit without interruption, it is possible that

Thread 2 reads accounts[7] before the transfer

and accounts[8] after the transfer, thereby

recording an excess of 500.00 in the total bank

balance.

All of these examples can be formulated as

instances of the familiar problem of mutual

exclusion to critical regions of program code.

21

Monitor synchronization

The idea of a “secretary” to manage

synchronization was suggested by Edsger

Dijkstra. Per Brinch Hansen and Tony Hoare

proposed monitors to support mutual exclusion.

Java uses synchronized methods.

A wait() suspends the currently executing

thread. A notifyAll() wakes up suspended

threads. The notifying process continues in the

monitor until it completes its normal execution.

A woken-up thread now gets a chance to run.

public class bank_account{

double accounts[100];

public synchronized boolean transfer

(double amount, int source, int target){

while (accounts[source] < amount)

{wait();}

accounts[source] -= amount;

accounts[target] += amount;

notifyAll(); return true;

}

22

public synchronized double audit(){

double bank = 0.0;

for (int i = 0; i < 100; i++)

{bank += accounts[i];}

return bank;

}

// a non-synchronized method

public double current_balance(int i){

return accounts[i];

} }

Java’s wait-notify mechanism is called signal

and continue.

23

Readers and writers

We program a basic class which allows several

reader processes to concurrently read a database

or one writer process to exclusively write on it.

// concurrent read or exclusive write

class ReadersWriters {

protected int data = 0; // the "database"

private int nr = 0;

private synchronized void startRead() {

nr++;

}

private synchronized void endRead() {

nr--;

if (nr == 0)

notifyAll(); // wake up writers

}

public void read(){

startRead();

System.out.println("read: "+data);

endRead();

}

24

public synchronized void write() {

while (nr > 0)

// delay if readers are active

try{wait();}

catch (InterruptedException ex) {

return;

}

data++;

System.out.println("wrote: "+data);

notifyAll(); // wake up writer

} }

Reader and Writer processes can be written by

extending the class Thread. For example:

class Reader extends Thread {

int n; ReadersWriters RW; // ref to object

public Reader(int n, ReadersWriters RW) {

this.n = n; this.RW = RW;

}

public void run() {

for (int i=0; i < n; i++) {RW.read();}

} }

25

Synchronized objects

Actually, Java has a more flexible mechanism to

provide mutual exclusion: Every object can be

synchronized with a separate “internal queue”, so

an arbitrary block of code can be synchronized for

any object.

public class XYZ{

Object o = new Object();

public int f(){

...

synchronized(o){ ...

o.wait(); // in queue attached to "o"

...

} }

public double g(){

...

synchronized(o){ ...

o.notifyAll(); // wake up "o" queue

...

} }

26

A class of locks

Even more flexibly, Java provides the Lock class.

import java.util.concurrent.locks;

public interface Lock{

public void lock(); //for entry to CS

public void unlock(); //on exit from CS

}

These methods are to be used as shown below,

ensuring that locks are always released in time.

mutex.lock();

try{ ... // body of critical section

}finally{mutex.unlock();}

In addition, a thread should be well formed, that

is, each critical section should be associated with

a unique Lock object. Threads which are not well

formed can behave unpredictably.

27

Using the class

Our earlier shared counter example can be

written using any of the synchronization

techniques. We illustrate the use of locks.

public class Counter{

private long int value;

private Lock mutex;

public Counter(int i){

value = i;

}

public long int Incr(){

mutex.lock();

try{long int temp = value;

value = temp+1;

}finally{mutex.unlock();}

return temp;

} }

28

Java synchronization

To summarize: race conditions can be created

when threads run in parallel using shared

memory.

• Java provides synchronized methods,

objects and locks to program exclusive access

to shared memory.

• Each synchronized method, object or lock has

an internal queue. The predefined wait

method suspends the currently executing

thread (and puts it on the object’s queue),

similarly the lock method will suspend if the

lock is already acquired by another thread.

• notifyAll or unlock releases the lock and

wakes up suspended threads.

But how are these locks (and hence synchronized

methods and objects) implemented ?

29

Implementing concurrency

and communication

Kamal Lodaya

The Institute of Mathematical Sciences

Chennai

Lecture 4 Locks

Text: M.P.Herlihy and N.Shavit, The art

of multiprocessor programming, Morgan

Kaufmann, 2008

30

Implementing locks for two threads: Strategy 1

public interface Lock{

public void lock(); public void unlock();

}

class SeqLock implements Lock{

private volatile flag[]=new boolean[2];

public void lock(){

int i = ThreadID.get(); int j = 1-i;

flag[i] = true;

while (flag[j]) {} // wait

}

public void unlock(){

flag[ThreadID.get()] = false;

}}

A(flag[A] := true) → A(¬flag[B]) → CSA

B(flag[B] := true) → B(¬flag[A]) → CSB

A(¬flag[B]) → B(flag[B] := false).

So either CSA → CSB or CSB → CSA. But

{A(flag[A] := true), B(flag[B] := true)} →

{A(?flag[B]), B(?flag[A])} → deadlock !

31

Implementing locks for two threads: Strategy 2

public interface Lock{

public void lock(); public void unlock();

}

class ConcLock implements Lock{

private volatile int victim;

public void lock(){

int i = ThreadID.get();

victim = i; // let the other go first

while (victim == i) {} // wait

}

public void unlock() {} // do nothing

}

A(victim := A) → A(victim,B) → CSA

B(victim := B) → B(victim,A) → CSB

A(victim := A) → B(victim := B) → A(victim,B).

So either CSA → CSB or CSB → CSA. But if

one thread completes before the other starts, we

have deadlock !

32

Implementing locks for two threads

class Peterson implements Lock{

private volatile flag[]=new boolean[2];

private volatile int victim;

public void lock(){

int i = ThreadID.get(); int j = 1-i;

flag[i] = true; // I am interested

victim = i; // but you go first

while (flag[j] && victim == i) {} // wait

}

public void unlock(){

flag[ThreadID.get()] = false;

}}

A(flag[A] := true) → A(victim := A) →

A(?flag[B]) → A(?victim) → CSA and

B(flag[B] := true) → B(victim := B) →

B(?flag[A]) → B(?victim) → CSB .

Suppose that B(victim := B) → A(victim := A).

This implies A(victim := A) → A(¬flag[B]). So

B(flag[B] := true) → A(¬flag[B]), impossible!

33

Implementing locks for two threads

public void lock(){

int i = ThreadID.get(); int j = 1-i;

flag[i] = true; // I am interested

victim = i; // but you go first

while (flag[j] && victim == i) {} // wait

}

public void unlock(){

flag[ThreadID.get()] = false;

}

The previous two arguments showed that mutual

exclusion is maintained. Suppose now that A

starves, waiting for ¬flag[B] or victim == B.

What is B doing? As soon as it reenters its

critical section, it sets victim := B. So B must

also be waiting. But victim cannot be both A

and B, a contradiction!

Starvation freedom implies deadlock freedom. So

Peterson’s algorithm implements mutual

exclusion without any deadlock or starvation.

34

Implementing locks for n threads

Generalizing Peterson’s algorithm, we have an

n-element integer array level[], with level[A]

indicating the highest level that thread A is trying

to enter. Each thread must pass through n− 1

levels of “exclusion” to enter its critical section,

by “filtering out” at level l a distinct thread

victim[l], leaving one winner.

By induction we argue that this algorithm

correctly provides mutual exclusion without

deadlock or starvation.

But this is very inefficient !

Cannot we do something better ?

35

Implementing locks for n threads

class Bakery implements Lock{

boolean[] flag; Label[] token;

public Bakery (int n) {

flag = new boolean[n]; token = new Label[n];

for (int i = 0; i < n; i++){

flag[i] = false; token[i] = 0;

}}

public void lock(){

i = ThreadID.get(); flag[i] = true;

token[i] = max(token[0],...,token[n-1])+1;

// always increasing

k = 0; while (k < n){

if (flag[k] && (token[k],k)<(token[i],i))

// lexicographic symmetry breaking

k = 0; //stay in loop, FCFS

else k++;

} }

public void unlock(){

flag[ThreadID.get()] = false;

}}

36

Implementing locks using reads/writes

Leslie Lamport’s bakery algorithm provides

mutual exclusion, has no deadlocks, and satisfies

a first-come-first-served property. Hence it is

starvation-free as well. There are cleverer versions

(one invented by Sibsankar Haldar and Paul

Vitányi) which reuse tokens so that they do not

grow unboundedly.

But it is not used in practice because it reads and

writes as many memory locations (n) as there are

concurrent threads, and that number is

unbounded.

It was shown by Jim Burns and Nancy Lynch

that any deadlock-free mutual exclusion

algorithm which does not use any stronger

method of synchronization than read and write

operations must suffer the same disadvantage.

37

Welcome to the real world!

We implement, let us say, Peterson’s algorithm

for two threads and run it on a modern

multiprocessor many times: let us say each

critical section is entered exactly half a million

times. So the value of the shared counter after all

this should be exactly one million.

When you run this, you discover that it is slightly

off the one million mark!

The error is small, but why is there an error at

all?

38

Multiprocessor architecture

When programming our multiprocessor, we

assume that our reads and writes to memory are

atomic. Unfortunately modern multiprocessor

architectures do not guarantee this. For example,

a write operation might put the value in a cache,

and only later is the value transferred from a

cache to memory.

Parallelizing compilers also sometimes change the

order in which operations are done, and this

might have a different effect from what you

intended when interleaved with another thread.

39

Test-and-set

The java.util.concurrent package provides an

AtomicBoolean class which stores a Boolean

value (similarly AtomicInteger). This has a

set(b) method which stores the bit b and a

getAndSet(b) method which replaces the current

value with b, and returns the old value. These

operations are guaranteeed to be atomic.

import java.util.concurrent;

public class TASLock implements Lock{

AtomicBoolean locked = new AtomicBoolean(false);

public void lock(){

while (locked.getAndSet(true)) {}

}

public void unlock(){

locked.set(false);

}}

Using this implementation you will not get the

kind of errors we saw above. But as the number

of threads using this class increases, performance

drops sharply.

40

Test-and-test-and-set

import java.util.concurrent;

public class TTASLock implements Lock{

AtomicBoolean locked = new AtomicBoolean(false);

public void lock(){

while (true){

while (locked.get()) {};

if (! locked.getAndSet(true))

return;

} }

public void unlock(){

locked.set(false);

}}

This implementation, which is called

test-and-test-and-set, was developed by Clyde

Kruskal, Larry Rudolph and Marc Snir in 1988.

It is functionally the same as the previous one. It

still slows down as the number of threads using

the class increases but it performs better than the

previous one.

But why is there a slowdown ?

41

Multiprocessor caches

The slowdown in both implementations is due to

cache performance.

• During the processing cycle, the processor

asks for the value at a memory location.

• If the required memory address is in cache (a

cache hit), it is loaded immediately.

• Otherwise there is a cache miss. The

processor broadcasts the required address on

the bus.

• If another processor has that address in its

cache, it broadcasts its value on the bus and

that is picked up.

• Otherwise memory (which is the slowest)

responds with the value.

Do we have to know all these details ?

The present state-of-the-art is that all these

details matter for performance and expert parallel

programmers have to be aware of them.

42

Spinning threads

public class TASLock implements Lock{

AtomicBoolean locked = new AtomicBoolean(false);

public void lock(){

while (locked.getAndSet(true)) {}

}

public void unlock(){

locked.set(false);

}}

• Every getAndSet() call has to be broadcast

on the bus. All processors use the bus to

communicate with memory, so these calls

delay all threads, not just those waiting for

the lock.

• Worse, the getAndSet() forces other

processors to discard their own cached copies

of the lock.

• So next time they get a cache miss and fetch

the new, but unchanged value.

43

Spinning threads

public class TTASLock implements Lock{

AtomicBoolean locked = new AtomicBoolean(false);

public void lock(){

while (true){

while (locked.get()) {};

if (! locked.getAndSet(true))

return;

} }

public void unlock(){

locked.set(false);

}}

If thread A holds the lock, then the first time

thread B reads the lock it takes a cache miss. But

now as long as A holds the lock, B reads, hitting

the cache.

When the lock is released, all waiting threads

take a cache miss. Then one of them succeeds . . .

44

Local spinning

public void lock(){

while (true){

while (locked.get()) {};

if (! locked.getAndSet(true))

return;

} }

As we saw on the previous slide, local spinning

makes test-and-test-and-set more efficient than

test-and-set.

Can we build on this idea ?

Once the get says that the bit is locked, should

we immediately spin again ?

Anant Agarwal and Mathews Cherian had a

better idea in 1989.

45

Exponential backoff

public class Backoff{

final int minDelay, maxDelay;

int limit;

final Random random;

public Backoff(int min, int max){

minDelay = min; maxDelay = max;

limit = minDelay;

random = new Random();

}

public void backoff()

throws InterruptedException{

int delay = random.nextInt(limit);

limit = Math.min(maxDelay, 2*limit);

Thread.sleep(delay);

} }

In distributed computing, probabilistic algorithms

often perform better than deterministic ones. The

Ethernet protocol uses exponential backoff. The

duration of backoff is random, and is doubled on

failure upto a fixed maximum.

46

The backoff lock

public class BackoffLock implements Lock{

private AtomicBoolean locked

= new AtomicBoolean(false);

private static final int MinD = ...;

private static final int MaxD = ...;

public void lock(){

Backoff back = new Backoff(MinD,MaxD);

while (true){

while (locked.get()){};

if (! locked.getAndSet(true)){

return;

}else{

back.backoff();

} } }

public void unlock(){

locked.set(false);

}}

47

Queue locks

There are two main problems with backoff locks:

• Threads delay longer than necessary, so the

critical section is underutilized.

• All threads spin on the same shared location.

So every successful lock access causes

cache-coherence traffic. This is less than the

test-and-set lock, but still a matter of

inefficiency.

Having threads form a queue avoids both of these

problems. Each thread now spins on a different

location. There is no need to guess how long to

wait, each thread is notified by its predecessor in

the queue. Also the queue provides

first-come-first-served fairness (as in Lamport’s

Bakery algorithm) and hence starvation-freedom.

48

Anderson’s 1990 lock

public class ALock implements Lock{

ThreadLocal<Integer> myIndex

= new ThreadLocal<Integer>(){

protected Integer initialValue(){

return 0;

} }

AtomicInteger tail;

boolean[] flag; // shared

int size;

public ALock(int capacity){

size = capacity;

tail = new AtomicInteger(0);

flag = new boolean[capacity];

flag[0] = true;

}

The disadvantage of Tom Anderson’s algorithm is

that it requires a known bound on the maximum

number of concurrent threads, since that is the

capacity of the array it allocates per lock.

49

Anderson’s 1990 lock

public void lock(){

int slot = tail.getAndIncrement()%size;

myIndex.set(slot);

while (! flag[slot]) {};

}

public void unlock(){

int slot = myIndex.get();

flag[slot] = false;

flag[(slot+1)%size] = true;

}}

To acquire the lock, a thread gets a “slot” by

incrementing the array’s “tail”. If flag[j] is

true, the thread with slot j has permission to

acquire the lock, which it does by spinning until

the flag at its slot becomes true. To release the

lock, a thread sets its slot to false and the next

slot to true.

50

The Craig;Landin&Hagersten’93 lock

The CLH lock uses a more usual pointer

implementation of a queue, except that now it has

to use a predefined AtomicReference type. A

sophisticated implementation (not shown) recycles

queue nodes. On cache-coherent architectures the

CLH algorithm has the best performance.

public class CLHLock implements Lock{

AtomicReference<Q> tail

= new AtomicReference<Q>(new Q());

ThreadLocal<Q> myPred; ThreadLocal<Q> myNode;

public CLHLock(){

tail = new AtomicReference<Q>(new Q());

myNode = new ThreadLocal<Q>(){

protected Q initialValue(){

return new Q();

} }

myPred = new ThreadLocal<Q>(){

protected Q initialValue(){

return null;

} } }

51

The Craig;Landin&Hagersten’93 lock

public void lock(){

Q qnode = myNode.get();

qnode.locked = true;

Q pred = tail.getAndSet(qnode);

myPred.set(pred);

while (pred.locked) {}

}

public void unlock(){

Q qnode = myNode.get();

qnode.locked = false;

myNode.set(myPred.get());

}}

Each thread’s status is in a Q object. If its locked

field is true, either the thread has acquired the

lock, or is waiting for the lock. If the locked field

is false, the thread has released the lock.

Each thread refers to its predecessor through a

thread-local pred variable. The tail field is

public and has the node most recently added to

the queue.

52

The Mellor-Crummey&Scott’91 lock

public class MCSLock implements Lock{

AtomicReference<Q> tail;

ThreadLocal<Q> myNode;

public MCSLock(){

tail = new AtomicReference<Q>(null);

myNode = new ThreadLocal<Q>(){

protected Q initialValue(){

return new Q();

} } }

public void lock(){

Q qnode = myNode.get();

Q pred = tail.getAndSet(qnode); // I want it

if (pred != null){ // point predecessor to me

qnode.locked = true;

pred.next = qnode;

// spin until predecessor gives up lock

while (qnode.locked) {}

}}

To acquire the lock, a thread appends its own

node at the tail of the list.

53

The Mellor-Crummey&Scott’91 lock

public void unlock(){

Q qnode = myNode.get();

if (qnode.next == null){ // no one waiting

if (tail.compareAndSet(qnode,null))

return;

// spin until predecessor fills next field

while (qnode.next == null){}

}

qnode.next.locked = false;

qnode.next = null;

}}

While unlocking, there may be a slow thread

trying to acquire the lock. If the compareAndSet

succeeds, no one else is trying to acquire the lock.

The Java Virtual Machine (JVM) uses

enhancements of these lock algorithms of John

Mellor-Crummey and Michael Scott. They work

reasonably efficiently on a variety of architectures.

54

Implementing concurrency

and communication

Kamal Lodaya

The Institute of Mathematical Sciences

Chennai

Lecture 5 Message passing

Text: G.R.Andrews, Foundations of

multithreaded, parallel, and distributed

programming, Addison-Wesley, 2000

55

Message passing

Asynchronous message passing is like

communicating with a letter (or email): sending

and receiving are two separate events. If you want

to receive a message, you might have to wait until

the message comes. But you can send a message

without waiting.

Synchronous message passing is like

communicating with a phone (or a webpage).

There is no separate “sending” and “receiving”, it

is one transaction like a method call. Even if you

only want to send a message, you have to wait

until the recipient is ready to receive it.

Programmers like asynchronous message passing,

but then someone else has to implement the

buffers where messages are kept until they are

delivered.

Spammers also like asynchronous message

passing. If they had to wait until you were ready

to receive their message, they would lose a lot of

time.

56

The dining philosophers (Dijkstra 1968)

Five philosophers share a circular table, which has

five forks, placed between each philosopher. Each

philosopher spends life alternately thinking and

eating. In the centre of the table is a large plate

of tangled spaghetti, and a philosopher needs two

forks to extract the spaghetti and eat it.

This is a classic resource-sharing problem. In our

implementation of this problem, each fork is a

thread and each philosopher is also a thread.

public class Fork extends Thread {

private int id;

public Fork(int i) {id = i;}

public void PickUp() {} // no action

public void PutDown() {} // no action

public void run() {

while (true) {

receive PickUp(); // pseudocode

receive PutDown(); // pseudocode

} } }

57

public class Phil extends Thread {

private int id, first, second;

public Phil(int i) { // Constructor

id = i;

first = i; second = i+1;

if (i == 4) { // asymmetric

first = 0; second = 4;

}

public void run() {

while (true) { // more pseudocode

think;

send f[first].PickUp();

send f[second].PickUp();

eat;

send f[first].PutDown();

send f[second].PutDown();

} } }

58

The main program

The main program does bookkeeping.

• Creates an array f[] of fork threads

• Creates an array p[] of philosopher threads

• Starts all the threads off

public class Dining {

public static void main (String[] args) {

public Fork f[] = new Fork[5];

public Phil p[] = new Phil[5];

for (int i = 0; i < 5; i++) {

f[i] = new Fork(i); f[i].start();

p[i] = new Phil(i); p[i].start();

} } }

Is the message passing asynchronous or

synchronous? How is it to be implemented in

Java?

59

Asynchronous message passing between threads

Asynchronous message passing between threads is

provided by the Java class Selectable.

class Port extends Selectable {

public synchronized void send(Object v) {...}

public synchronized Object receive()

throws InterruptedException {...}

Threads can now use these methods.

class Producer implements Runnable {

private Port port;

Producer(Port p) {port = p;}

public void run() {

try{

int n = 0;

while (true) {

port.send (new Integer(n));

n = n+1;

} }catch (InterruptedException e){}

} } }

60

class Consumer implements Runnable {

private Port port;

Consumer(Port p) {port = p;}

public void run() {

try{

Integer v=null;

while (true) {

v = (Integer) port.receive();

System.out.println(v.toString());

} }catch (InterruptedException e){}

} } }

61

Synchronous message passing between threads

Synchronous message passing between threads is

also provided by the Java class Selectable.

class Channel extends Selectable {

public synchronized void send(Object v) {...}

throws InterruptedException {...}

public synchronized Object receive()

throws InterruptedException {...}

class Sender implements Runnable {

private Channel chan;

Sender(Channel c) {chan = c;}

public void run() {

try{

int n = 0;

while (true) {

chan.send (new Integer(n));

n = n+1;

} }catch (InterruptedException e){}

} } }

62

class Receiver implements Runnable {

private Channel chan;

Receiver(Channel c) {chan = c;}

public void run() {

try {

Integer v=null;

while (true) {

v = (Integer) chan.receive();

System.out.println(v.toString());

} }catch (InterruptedException e){}

} } }

There is hardly any difference between

synchronous and asynchronous message passing!

Can it be all that easy?

63

Message passing between machines

The Java class Selectable implements message

passing only between two threads on the same

machine. Actually they are implemented using

the monitor synchronization we saw earlier.

What we want is to have message passing

between two processes on different machines

which communicate through a network.

Programming internet and web applications is

much harder. . . !

For asynchronous message passing, the java.net

package contains a number of classes that support

stream-based communication (for example, using

TCP/IP).

A connection is a link (with sockets at either end)

between two hosts that is established before

communication occurs. A stream is an ordered

sequence of messages sent over a connection.

Messages are not lost, so long as the connection

itself does not fail.

64

Sockets

We program a web server maintaining files of

clients.

import java.io.*; import java.net.*;

public class FileServer {

public static void main(String[] args){

try{ ServerSocket s = new ServerSocket(9999);

while (true){ //awaiting connection on port

Socket c = s.accept(); //client connects

// create streams to talk to client

BufferedReader from = new BufferedReader(

new InputStreamReader(c.getInputStream()));

PrintWriter to = new PrintWriter(

c.getOutputStream());

// get filename from client

String filename = from.readLine();

File clientfile = new File(filename);

if (!clientfile.exists()){ //no file

to.println("cannot open "+filename);

to.close(); from.close(); c.close();

//close streams and socket

65

}else{ //send file

BufferedReader input = new BufferedReader(

new FileReader(clientfile));

String line;

//read and print each line

while ((line=input.readLine())!= null)

{to.println(line);}

to.close(); from.close(); c.close();

//close streams and socket

} }

}catch (Exception e){

System.err.println(e);

}}}

66

Sockets

Here is the program on the client side.

import java.io.*; import java.net.*;

public class Client {

public static void main(String[] args){

try{ String hostdomain = args[0];

String filename = args[1];

// open socket on agreed port

Socket h = new Socket(hostdomain,9999);

// open i/o streams on socket

BufferedReader from = new BufferedReader(

new InputStreamReader(h.getInputStream()));

PrintWriter to = new PrintWriter(

h.getOutputStream());

// send filename

to.println(filename); to.flush();

// read and print lines

String line;

while ((line=from.readLine())!= null){

System.out.println(line);

} }

67

// until server closes connection

// or the client catches an exception

catch (Exception e){

System.err.println(e);

}}}

Each program is compiled on its host machine.

The server is started by executing

java FileReader

The client is started on its host by executing

java Client hostname filename

where filename is the file the client wants to

read. More clients can be started. The server

continues running until it is killed or catches an

exception.

What happens if the client is started before the

server?

What happens if two clients try to connect to the

server at about the same time?

68

Asynchronous message passing summary

To program the server:

• Create a new ServerSocket on a port.

• Wait for the Socket with which the client

connects.

• Create input and output streams for using

the socket.

• Use the streams just like any other stream.

To program the client:

• Open a Socket connection to a port on a

host.

• Create input and output streams for using

the socket.

• Use them just like any other stream.

69

Remote method invocation

The java.rmi and java.rmi.server packages

contain classes which support synchronous

message passing. In addition to the server and

client, such applications must also have an

interface. The interface class must extend

java.rmi.Remote, and each method in it must

throw RemoteException.

import java.rmi.*; import java.rmi.server.*;

public interface Database extends Remote {

public int read()

throws RemoteException;

public void write(int value)

throws RemoteException;

}

70

Remote server

The implementing server class must extend

java.rmi.server.UnicastRemoteObject and

implement the interface methods.

Each server object has to be “registered” with a

registry service, which is a program maintaining a

list of registered servers on a host. Before running

the server on the host virtual machine using java,

the registry must be run as a background job on

the host (eg, using rmiregistry 9999 &).

class DatabaseServer

extends UnicastRemoteObject

implements Database {

protected int data = 0; // the ‘‘database’’!

public DatabaseServer() throws RemoteException

{super;} // Constructor because of throws

public int read() throws RemoteException

{return data;}

public void write(int value)

throws RemoteException

{data = value;}

71

public static void main(String[] args){

try{

DatabaseServer s = new DatabaseServer();

String name = // register name

"rmi://srv.imsc.res.in:9999/path";

Naming.bind(name,s);

System.out.println(name+" is running");

}catch (Exception e){

System.err.println(e);

}}}

After compiling the server with javac, the special

RMI compiler rmic has to be run. This enables a

skeleton stub to be created for each method on

the server side and a proxy stub for each method

called on the client side. The Java virtual

machine will run a synchronization protocol

between the proxy and the skeleton.

72

Remote client

The client program needs to set up a security

manager and use the registry service to look up

the server. This example client program only does

some trial reads and writes.

import java.rmi.*; import java.rmi.server.*;

class Client {

public static void main(String[] args){

try{ // set security, then find database

System.setSecurityManager(

new RMISecurityManager());

String s="rmi://srv.imsc.res.in:9999/path";

Database db = (Database)Naming.lookup(s);

int n = Integer.parseInt(args[0]);

for (int i=0; i < n; i++) {

int value = db.read();

db.write(value+1);

} }catch (Exception e){

System.err.println(e);

}}}

73

Synchronous message passing summary

First create an interface class which extends

java.rmi.Remote, with each method throwing

RemoteException.

The server class must extend

java.rmi.server.UnicastRemoteObject and

implement the interface methods.

It has to be compiled with javac and then with

rmic DatabaseServer to create stubs.

On the server side:

• Run a registry as a background job.

• Now run java DatabaseServer.

On the client side:

• Set up an RMI security manager.

• Run the client using java Client n.

• Client looks up server and makes connection.

• Now the server’s (remote) methods can be

called just like any other (local) method.

74

Synchronous from asynchronous

Synchronous message passing can be implemented

using asynchronous messages by using three

arrays of channels: sourceReady, destReady and

transmit. The first two are “control” channels,

the third one is used to communicate the data.

Synchronous send by source process S:

gather message into buffer b;

send sourceReady[R](S); //R, I am ready

receive destReady[S](); //await R ready

send transmit[R](b); //send the message

flush buffer b;

Synchronous receive by target process R:

int source; byte buffer[BUFSIZE];

receive sourceReady[R](source); //await sender

send destReady[source](); //I am ready

receive transmit[R](buffer); //get the message

unpack buffer;

75

Asynchronous from synchronous

Asynchronous message passing can be

implemented using synchronous messages by using

an intermediate process which maintains buffers.

This is what we do when we use a mail server.

Usually we want messages to be received in the

order they were sent, so the buffers are

implemented as queues.

Should the buffers be on the sender’s side or on

the receiver’s side?

76

