
Introduction to MPI & Parallel Programming

• Parallelisms and Decomposition.

◦ Data Decomposition.

◦ Domain Decomposition.

◦ Master–Slave model.

◦ Pipelining.

◦ Functional Decomposition.

Introduction to MPI & Parallel Programming

• MPI as a tool for parallel programming.

◦ Initializing MPI.

◦ Point to Point communications.

◦ Global Communications.

◦ Communicators and Topology.

◦ Derived data types and Data packing.

◦ Parallel I/O (?)

Parallelisms and Decomposition: Data Decomposition

• Large data sets can be divided into smaller parts and analysis of these
can be carried out on compute nodes.

◦ If the analysis of subsets of data can be carried out independent of the
rest of data, the problem can be classified as an embarrassingly parallel
problem.

◦ If the data size is not very large but extensive calculations are required
to process it, all the data can be made available at all the nodes.

Parallelisms and Decomposition: Domain Decomposition

• Domain decomposition refers to the special case where data is
description of quantities in an n-dimensional space, e.g.,

◦ Partial differential equations on a grid.

◦ Cellular automata.

Parallelisms and Decomposition: Master-Slave Model

• A number ofalmost independent tasks are distributed to compute
nodes. One node, designated as the master node distributes tasks to
other (slave) nodes and collects the result. Typically the number of tasks
is much larger than the number of slave nodes.

◦ Good forembarrassingly parallelproblems, e.g., Monte-Carlo
methods, analysis of a number of similar data sets or models, etc.

◦ Not very efficient for generic problems.

◦ Easier to make the system fault tolerant, e.g., PVM.

Parallelisms and Decomposition: Pipelining

• A series of operations to be carried out on the given data can be
parallelized by assigning these operations to different compute nodes.
Data is passed from one node to the next till all the operations have been
carried out.

◦ Not very efficient unless the network is very fast.

◦ There is significant overhead if the data set is not large.

◦ This is used in most modern day processors to increase the effective
computing power.

Parallelisms and Decomposition: Functional Decomposition

• If the required computation involves two sets of operations to be
carried out, and these can be carried out concurrently, then these
operations can be assigned to different sets of compute nodes. The final
answer is obtained by combining the result of the two calculations.

◦ This type of parallelism is not encountered very often as most
algorithms/computations involve a sequence of operations.

Passing Messages for Parallel Programming

• MPI is based on the premise that all the models of parallel
decomposition of problems can be implemented by passing messages
between different processes.

◦ Processes do not share memory/address space.

◦ Each process is identified by a unique label orid.

◦ There is a well defined set of processes.

◦ Data can be shared by sending it as a message.

◦ Processes can synchronize computation by passing messages.

◦ Message passing is programmed and controlled by the user.

MPI: The role of process id

◦ Processes have numerical id ranging from0 to n− 1, wheren is the
total number of processes that are invoked.

◦ The process id is used as the address for sending messages.

◦ The process id is used to make different compute nodes carry out
different tasks using the same code.

◦ Subsets of processes can be defined.

Datatypes in MPI

• In order to facilitate transfer of data between compute nodes with
different operating systems,MPI uses its own set of data types.

◦ These correspond to native data types.

◦ This allows conversion between systems with little-endian and
big-endian systems.

• MPI also defines a set of variables for its own operations. These and
the MPI data types are defined together inmpi.h , mpif.h and
mpi.mod for C, FORTRAN 77 and FORTRAN 90/95, respectively.

Initializing MPI

• Program should be compiled with the module/include files and the
appropriate MPI libraries must be linked.

• The user supplies the list of compute nodes where the MPI program is
to run. Password free access to these nodes is required.

• The number of processes to be launched are also specified at run time.
This number can be smaller than, equal to, or larger than the number of
compute nodes specified.

Sample Program

program test1

implicit none

include ’mpif.h’

integer id,nprocs,ierr

call MPI INIT(ierr)

call MPI COMMSIZE(MPI COMMWORLD,nprocs,ierr)

call MPI COMMRANK(MPI COMMWORLD,id,ierr)

write(*,*)’Vanakkam from process ’,id,’of’,nprocs,’processes.’

call MPI FINALIZE(ierr)

end

MPI: Introduction

• Standard output, input and error of all processes is connected to the
corresponding channels for the process with rank0.

◦ Should not use standard input in MPI programs.

◦ Should use error trapping for production runs.

◦ Standard output is also a bad idea in general.

◦ You must useMPI FINALIZE for graceful exit.

MPI: Using id to divide work

if (id .eq. 0) then

write(*,*)’namaste from process’,id

else if (id .eq. 1) then

write(*,*)’Vanakkam from process’,id

else

write(*,*)’Hello World from process’,id

end if

MPI: Sending and Receiving Messages

• Many commands are available for point to point communications. The
basic commands are:

MPI SEND(buffer,count,datatype,destination,tag,communicator)

MPI RECV(buffer,count,datatype,source,tag,communicator,status)

◦ Tag can be used to differentiate between communications between the
same pair of processes.

◦ Status gives information like the number of elements received.

◦ MPI ANYSOURCEandMPI ANYTAGcan be used to accept
communications from any source, or with any tag. Status give
information about the actual source and tag for the message.

MPI: Deadlocks

• Send and Recv are blocking communications, i.e., control does not
pass to the next statement unless the message being sent has been
received.

◦ Unless one is careful, this can easily lead to deadlocks.

if (id .eq. 0) then

call MPI SEND(buffer,count,datatype,1,. . . .)

call MPI RECV(buffer,count,datatype,1,. . . .)

else if (id .eq. 1) then

call MPI SEND(buffer,count,datatype,0,. . . .)

call MPI RECV(buffer,count,datatype,0,. . . .)

end if

MPI: Pitfalls

• Consider a situation in which a chain of processes are expected to
exchange messages.

◦ Each process send a message to the next higher process (in terms of
id), except the last process.

◦ Send for the process withid = n− 2 will finish first.

◦ It can then receive message fromid = n− 3, and so on.

◦ If n is large, this process will take a long time to finish.

MPI: Problems for tutorial session

• Compare methods for exchanging messages with neighbors, for the
situation described above.

• Send and Receive are supposed to be blocking communications. Test
whether this is independent of the message size.

MPI: Point to Point communications

• Asynchronous equivalents of send and receive are available. These are
useful for avoiding deadlocks and wait time.

◦ From personal experience, the combination ofMPI ISEND and
MPI RECVis the best. Here the sender sends the message and gets on
with other work. Receive can be located at an appropriate point so that
waiting is not required.

◦ These require a buffer to store communicated data.

• MPI ANYSOURCEis very useful for implementing the master-slave
model.

MPI: Series Summation

Each process computes a partial sum.

Partial sum is sent to the parent node (0).

Parent node adds the partial sums to get the result.

• Compute the value ofπ by summing a series representation.

MPI: Performance Evaluation

• If Tn is the time taken by a program onn processors andTseq is the
time taken by the equivalent sequential program, we can define speedup
as

Sn ≡
Tseq

Tn

(1)

• Efficiency of parallelization is defined as:

En ≡ Sn × n (2)

• If a fractionε of the program cannot be parallelized then the maximum
speedup attainable is1/ε (Amdahl’s Law).

Sn =
Tseq

Tn

=
1

ε + (1− ε) /n
(3)

MPI: Global Communications

• Communications involve all the processes in a given communicator.

◦ MPI calls for global communications must be visible on all processes,
unlike calls for point to point communications.

◦ One to many, many to one, and all to all communications are available.

◦ In the process of these communications, data can be sent as a whole,
split, or even combined.

MPI: Broadcast & Reduce

• MPI BCAST(buffer, count, data type, root,

communicator)

• MPI REDUCE(send buffer, recv buffer, count,

data type, operation, root, communicator)

◦ MPI SUM

◦ MPI PROD

◦ MPI MIN

◦ MPI MAX

Problems

• Rewrite the series summation program usingMPI REDUCE.

• Write a program to do Monte-Carlo integration of the curve
y =

√
1− x2, 0 ≤ x ≤ 1 in parallel. Supply the value of random seed to

processes usingMPI BCASTand recover the final solution using
MPI REDUCE. Use this to find the value ofπ. Take care to avoid using
the same random numbers on multiple processes.

MPI: Broadcast & Reduce

• Forn processors, these takeceiling(log 2(n)) times the time
taken for a singleMPI SENDwith the same amount of data.

◦ Thus global communications should be used as much as possible when
working with a large number of processors.

