Parallel Subroutine Libraries

- FFTW
- PetSc
- Scalapack, ParPack, etc.

Parallel Subroutine Libraries

• Scientific Applications can often be reduced to a combination of atomic operations. These atomic operations may be linear algebra operations, eigenvalue problems, interpolation, integration, differentiation, integral transforms, solutions of differential equations, etc.

• Libraries of subroutines for carrying out these atomic operations on sequential computers have been developed and used heavily, e.g., BLAS, LAPACK, etc.

• Parallel libraries allow scientists and engineers to solve problems without having to develop parallel algorithms for standard atomic processes.

Parallel Subroutine Libraries

• In most scientific applications, these atomic processes take up a large fraction of the CPU time required.

• Using parallel libraries is efficient on n processors if the atomic processes for which parallel libraries are to be used account for a fraction $f \gg 1 - 1/n$ of the total CPU time. (see Amdahl's law)

 \circ If the algorithm can be rewritten so that the CPU time required on one processor is larger, but the fraction f is closer to unity, use of a large number of processors will result in improved efficiency.

FFTW: Fastest Fourier Transform in the West

- Fast Fourier Transforms.
 - Algorithm.
 - Inherent Parallelisms.
 - Shared Memory Parallelization.
 - Distributed Memory Parallelization.

Fourier Transform

• The integral for Fourier transform is approximated by a sum.

$$f(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} g(k) e^{-ikx} \simeq \int_{-k_{max}}^{k_{max}} \frac{dk}{2\pi} g(k) e^{-ikx}$$
$$\simeq \frac{\Delta k}{2\pi} \sum_{k=-k_{max}}^{k_{max}} g(k) e^{-ikx} \simeq \frac{1}{NL} \sum_{-k_{max}}^{k_{max} + \Delta k} g(k) e^{-ikx}$$
$$= \frac{1}{NL} \sum_{m=-N/2+1}^{N/2} g(\Delta k \ m) e^{-i\Delta kmx}$$
$$f(nL) = \frac{1}{NL} \sum_{m=-N/2+1}^{N/2} g(\Delta k \ m) e^{-i2\pi mn/N}$$
(1)

Fast Fourier Transform

$$\begin{aligned} f'(nL) &= \frac{1}{NL} \sum_{m=-N/2+1}^{-1} g(\Delta k \ m) e^{-i2\pi m n/N} \\ &+ \frac{1}{NL} \sum_{m=0}^{N/2} g(\Delta k \ m) e^{-i2\pi m n/N} \\ &= \frac{1}{NL} \sum_{m=N/2+1}^{N-1} g(\Delta k \ m - N) e^{-i2\pi m n/N} \\ &+ \frac{1}{NL} \sum_{m=0}^{N/2} g(\Delta k \ m) e^{-i2\pi m n/N} \\ &= \frac{1}{NL} \sum_{m=0}^{N-1} G(\Delta k \ m) e^{-i2\pi m n/N} \end{aligned}$$

(2)

Fast Fourier Transform

• If $N = 2^j$, with j an integer, the summation can be optimized significantly. At the first level, the summation can be split into two smaller sums.

$$f(n) = \frac{1}{N} \sum_{m=0}^{N-1} G(m) e^{-i2\pi mn/N}$$

= $\frac{1}{N} \sum_{m=0}^{N/2-1} G(2m) e^{-i2\pi mn/(N/2)}$
 $+ \frac{1}{N} e^{-i2\pi n/N} \sum_{m=0}^{N/2-1} G(2m+1) e^{-i2\pi mn/(N/2)}$ (3)

• The sum can be divided into smaller and smaller parts, till we are left with a two element transform.

Fast Fourier Transform

• The FFT algorithm involves two steps: reshuffling of the input array, and, multiplication by phase factors as we go from two element transforms to the full N element transform.

 \circ The transform can be calculated "in place", f and G do not require two arrays.

- \circ The inverse transform can also be computed in a similar fashion.
- \circ The shuffling required is mapping each G(m) to a G(l) where l is the integer obtained by bit inversion of m.

Parallelisms

• FFTs are fast enough to allow computation of one dimensional FTs of size 10⁷ in a few seconds on modern day processor, hence the challenge of paralleliation is mainly for multi-dimensional systems.

• If data is to be used in both real space as well as k-space, a lot of communications are required.

Parallelisms: Shared Memory

• The core part of the FFT routine is the following loop. This can be parallelized using OpenMP on shared memory computers.

DO j1=0,n-1
 tmpr=wr*f(j,,j1)-wi*fi(j,j1)
 tmpi=wr*fi(j,j1)+wi*f(j,j1)
 f(j,j1)=f(i,j1)-tmpr
 fi(j,j1)=fi(i,j1)-tmpi
 f(i,j1)=fi(i,j1)+tmpr
 fi(i,j1)=fi(i,j1)+tmpi
END DO

Parallelisms: Distributed Memory

• Domain decomposition can be achieved by dividing the rectangular cube into parallel slabs.

 \circ Fourier transform can be done locally along directions orthogonal to the direction in which the cube is divided.

• Data exchange is needed for doing the Fourier transform along the direction in which the cube has been divided.

FFTW (www.fftw.org)

• Optimizes at a local level by using the cache and processor optimizations like SSE, SSE2, 3D-NOW, etc.

• Can make a "plan", the fastest way of computing FFT for a given array size on the given processor. This is very useful is FFTs are to be calculated repeatedly.

• Shared memory parallelization is available using pthreads as well as OpenMP. (Versions 2.x, 3.0.1)

• MPI based parallelization is available in older (2.x) versions.

• The Portable, Extensible Toolkit for Scientific Computing (PETSC) is available at http://www.mcs.anl.gov/petsc

• Vectors: Provides the vector operations required for setting up and solving large-scale linear and nonlinear problems. Includes easy-to-use parallel scatter and gather operations.

• Matrices: A large suite of data structures and code for the manipulation of parallel sparse matrices. Includes four different parallel matrix data structures, each appropriate for a different class of problems.

• **Pre-Conditioners:** A collection of sequential and parallel preconditioners, including (sequential) ILU(k), LU, and (both sequential and parallel) block Jacobi, overlapping additive Schwarz methods and (through BlockSolve95) ILU(0) and ICC(0).

• **Krylov Subspace Methods:** Parallel implementations of many popular Krylov subspace iterative methods. All are coded so that they are immediately usable with any preconditioners and any matrix data structures, including matrix-free methods.

• Data-structure-neutral implementations of Newton-like methods for nonlinear systems. Includes both line search and trust region techniques with a single interface. Employs by default the above data structures and linear solvers. Users can set custom monitoring routines, convergence criteria, etc.

• **Time Stepping:** Code for the time evolution of solutions of PDEs. In addition, provides pseudo-transient continuation techniques for computing steady-state solutions.

Flow of Control for PDE Solution

• PETSC has been used in a wide variety of applications.

• A CFD code has been parallelized using PETSC and is shown to scale almost linearly up to 1024 processors on T3E.

Linear Algebra Packages

• A large number of parallel libraries are available, these are at different stages of development. These are parallel extension of the LAPACK project and are available from http://www.netlib.org

- ScaLAPACK: Dense and band matrix software.
- PARPACK & ARPACK: Large sparse eigenvalue software.
- CAPSS & MFACT: Sparse direct systems software.
- **ParPre:** Preconditioners for large sparse iterative solvers.