
Parallel Subroutine Libraries

• FFTW

• PetSc

• Scalapack, ParPack, etc.



Parallel Subroutine Libraries

• Scientific Applications can often be reduced to a combination of
atomic operations. These atomic operations may be linear algebra
operations, eigenvalue problems, interpolation, integration,
differentiation, integral transforms, solutions of differential equations,
etc.

• Libraries of subroutines for carrying out these atomic operations on
sequential computers have been developed and used heavily, e.g.,
BLAS, LAPACK, etc.

• Parallel libraries allow scientists and engineers to solve problems
without having to develop parallel algorithms for standard atomic
processes.



Parallel Subroutine Libraries

• In most scientific applications, these atomic processes take up a large
fraction of the CPU time required.

◦ Using parallel libraries is efficient onn processors if the atomic
processes for which parallel libraries are to be used account for a
fractionf � 1− 1/n of the total CPU time. (see Amdahl’s law)

◦ If the algorithm can be rewritten so that the CPU time required on one
processor is larger, but the fractionf is closer to unity, use of a large
number of processors will result in improved efficiency.



FFTW: Fastest Fourier Transform in the West

• Fast Fourier Transforms.

◦ Algorithm.

◦ Inherent Parallelisms.

◦ Shared Memory Parallelization.

◦ Distributed Memory Parallelization.



Fourier Transform

• The integral for Fourier transform is approximated by a sum.

f(x) =

∞∫
−∞

dk

2π
g(k)e−ikx '

kmax∫
−kmax

dk

2π
g(k)e−ikx

' ∆k

2π

kmax∑
k=−kmax

g(k)e−ikx ' 1

NL

kmax+∆k∑
−kmax

g(k)e−ikx

=
1

NL

N/2∑
m=−N/2+1

g(∆k m)e−i∆kmx

f(nL) =
1

NL

N/2∑
m=−N/2+1

g(∆k m)e−i2πmn/N (1)



Fast Fourier Transform

f(nL) =
1

NL

−1∑
m=−N/2+1

g(∆k m)e−i2πmn/N

+
1

NL

N/2∑
m=0

g(∆k m)e−i2πmn/N

=
1

NL

N−1∑
m=N/2+1

g(∆k(m−N))e−i2πmn/N

+
1

NL

N/2∑
m=0

g(∆k m)e−i2πmn/N

=
1

NL

N−1∑
m=0

G(∆k m)e−i2πmn/N (2)



Fast Fourier Transform

• If N = 2j, with j an integer, the summation can be optimized
significantly. At the first level, the summation can be split into two
smaller sums.

f(n) =
1

N

N−1∑
m=0

G(m)e−i2πmn/N

=
1

N

N/2−1∑
m=0

G(2m)e−i2πmn/(N/2)

+
1

N
e−i2πn/N

N/2−1∑
m=0

G(2m + 1)e−i2πmn/(N/2) (3)

• The sum can be divided into smaller and smaller parts, till we are left
with a two element transform.



Fast Fourier Transform

• The FFT algorithm involves two steps: reshuffling of the input array,
and, multiplication by phase factors as we go from two element
transforms to the fullN element transform.

◦ The transform can be calculated “in place”,f andG do not require
two arrays.

◦ The inverse transform can also be computed in a similar fashion.

◦ The shuffling required is mapping eachG(m) to aG(l) wherel is the
integer obtained by bit inversion ofm.



Parallelisms

• FFTs are fast enough to allow computation of one dimensional FTs of
size107 in a few seconds on modern day processor, hence the challenge
of paralleliation is mainly for multi-dimensional systems.

• If data is to be used in both real space as well ask-space, a lot of
communications are required.



Parallelisms: Shared Memory

• The core part of the FFT routine is the following loop. This can be
parallelized using OpenMP on shared memory computers.

DO j1=0,n-1

tmpr=wr*f(j,,j1)-wi*fi(j,j1)

tmpi=wr*fi(j,j1)+wi*f(j,j1)

f(j,j1)=f(i,j1)-tmpr

fi(j,j1)=fi(i,j1)-tmpi

f(i,j1)=f(i,j1)+tmpr

fi(i,j1)=fi(i,j1)+tmpi

END DO



Parallelisms: Distributed Memory

• Domain decomposition can be achieved by dividing the rectangular
cube into parallel slabs.

◦ Fourier transform can be done locally along directions orthogonal to
the direction in which the cube is divided.

◦ Data exchange is needed for doing the Fourier transform along the
direction in which the cube has been divided.



FFTW (www.fftw.org)

• Optimizes at a local level by using the cache and processor
optimizations like SSE, SSE2, 3D-NOW, etc.

• Can make a “plan”, the fastest way of computing FFT for a given array
size on the given processor. This is very useful is FFTs are to be
calculated repeatedly.

• Shared memory parallelization is available usingpthreads as well
as OpenMP. (Versions 2.x, 3.0.1)

• MPI based parallelization is available in older (2.x) versions.



PETSC

• The Portable, Extensible Toolkit for Scientific Computing (PETSC) is
available at http://www.mcs.anl.gov/petsc



PETSC

• Vectors: Provides the vector operations required for setting up and
solving large-scale linear and nonlinear problems. Includes easy-to-use
parallel scatter and gather operations.

• Matrices: A large suite of data structures and code for the
manipulation of parallel sparse matrices. Includes four different parallel
matrix data structures, each appropriate for a different class of problems.

• Pre-Conditioners: A collection of sequential and parallel
preconditioners, including (sequential) ILU(k), LU, and (both sequential
and parallel) block Jacobi, overlapping additive Schwarz methods and
(through BlockSolve95) ILU(0) and ICC(0).



PETSC

• Krylov Subspace Methods: Parallel implementations of many
popular Krylov subspace iterative methods. All are coded so that they
are immediately usable with any preconditioners and any matrix data
structures, including matrix-free methods.

• Data-structure-neutral implementations of Newton-like methods for
nonlinear systems. Includes both line search and trust region techniques
with a single interface. Employs by default the above data structures and
linear solvers. Users can set custom monitoring routines, convergence
criteria, etc.

• Time Stepping: Code for the time evolution of solutions of PDEs. In
addition, provides pseudo-transient continuation techniques for
computing steady-state solutions.



PETSC



PETSC



PETSC

• PETSC has been used in a wide variety of applications.

• A CFD code has been parallelized using PETSC and is shown to scale
almost linearly up to1024 processors on T3E.



Linear Algebra Packages

• A large number of parallel libraries are available, these are at different
stages of development. These are parallel extension of the LAPACK
project and are available from http://www.netlib.org

• ScaLAPACK: Dense and band matrix software.

• PARPACK & ARPACK: Large sparse eigenvalue software.

• CAPSS & MFACT: Sparse direct systems software.

• ParPre: Preconditioners for large sparse iterative solvers.


