MPI: Barrier

e A barrier can be used to synchronize all processes in a communicator.
Each process wait till all processes reach this point before proceeding
further.

MPI_Barrier(communicator)



MPI: Scatter

e Given an array, divide it into equal contiguous parts and send to nodes
one part each. This is equivalentisends. Th&th process gets the

first part,1st processor the second part, and so on. Number of data
elements to given to each node is specifiedand count

MPI|_Scatter(send buffer, send count, send type,
recv buffer, recv count, recv type, root,
communicator)



MPI: ScatterV

e This IS a vector variant d¥IPl_Scatter . Here the user decides on
how the send buffer is to be divided.

MPI_Scatterv(send buffer, send count (array),
array of displacements, send type, recv buffer,
recv count, recv type, root, communicator)

o Displacements andsend count arrays specify which and how
large a data chunk is being sent to a given process.

o Multiple reading of any location isend buffer is not allowed.

o Different sized chunks can be sent and different chunks need not be
contiguous, e.g., we can start with a matrix and scatter only the upper
(or lower) triangular part.



MPI: Gather

e Given a small array of same size with each of the processes,
MPI_Gather collects these in order of increasing process rank and
combines it on the root node. This is equivalenttaeceives. Number
of data elements to be collected from each node is specifigend
count .

MPI|_Gather(send buffer, send count, send type,
recv buffer, recv count, recv type, root,
communicator)



MPI: GatherV

e This is a vector variant dIPI_Gather . Here the user decides on the
size of send count from each process.

MPI_Gatherv(send buffer, send count, send type,
recv buffer, recv counts (array), displacements
(array), recv type, root, communicator)



MPI: All Gather

e Gather to all. This routine gives the result of the gather operation on
all nodes.

MPI_AllGather(send buffer, send count, send
type, recv buffer, recv count, recv type,
communicator)

e There is also a vector variant of all gather.

MPI_AllGatherv(send buffer, send count, send
type, recv buffer, recv counts (array),
displacements (array), recv type, communicator)



MPI: AlltoAll

e Scatter from all to all. Each process has some data, this is scattered to
all processes.

MPI_AlltoAll(send buffer, send count, send type,
recv buffer, recv count, recv type,
communicator)

e There is also a vector variant of all to all.

MPI_AlltoAllV(send buffer, send counts (array),
send displacements (array), send type, recv
buffer, recv counts (array), receive
displacements (array), recv type, communicator)



MPI: AlltoAllW

e The most general variant of all to all allows the user to send different
data types as well.

MPI_AlltoAllW(send buffer, send counts (array),
send displacements (array), send types (array),
recv buffer, recv counts (array), receive
displacements (array), recv types (array),
communicator)



Problems

e UseMPI_ScatterV to send first two columns of ahx 4 matrix to
four processes.

e UseMPI_ScatterV to send a row of an upper triangular matrix to
each process.

e Use MPLGather to collect rows of af x 8 matrix scattered on
Processors.

e Check that using/PI_AlltoAll on a square matrix, where every
process has one row of the matrix, leads to each process getting a
column of the matrix.



MPI: All Reduce

e This version of reduce is a combination of reduce and broadcast, the
final result is available on all the processes.

MPI_AlIReduce(send buffer, recv buffer, count,
data type, operation, communicator)

o Check the time taken by all reduce, and a combination of reduce and
broadcast. Which is faster?



MPI: Reduce Scatter

e This Is a combination of reduce and scatter.

MPI|_Reduce _Scatter(send buffer, recv buffer, recv
counts (array), data type, operation,
communicator)

o The buffer is divided into disjoint sets with sizes given by the array
recv counts

o It is possible to define new operations for tieeluce family of
functions/subroutines. A user defined function can be used instead of
operations in MPI.



MPI. User Defined Data Types

e Create an array out of an existing array.
e Create a structure of different data types.
e Duplicate a derived data type.

e Make an array of a derived data type.



MPI: Create Vector

e Starting with an array, create a new array that contains equal sized
chunks block size specified by programmer) separated by a given
stride. Theblock size andstride can be different.

MPI_Type _Vector(count, block length, stride, old
type, new type)

o A new data type must be committed before it can be used.

MPI_Type _Commit(data type)



MPI: Derived Data Types

e To use the derived data type, we simply use it in place of the old data
type in communication routines.

MPI_Send(buffer, . . , data type, . . )

e |t is necessary to free the derived data types once we are through usin
these.

MPI_Type _Free(data type)



MPI: Indexed Type

MPI_Type _Indexed(count, block lengths (array),
displacements (array), old type, new type)

e Displacements are measured from the first element of the array.
o Use this command to create a derived data type to represent:

1. Upper triangular matrix.
2. Lower triangular matrix.

3. A sparse matrix{ x 8) with 11 non-zero elements.



MPI: Structures as derived data types

MPI_Type _Create _Struct(count, block lengths
(array), displacements (array), old data types
(array), new data type)

e Structures in C or FORTRAN can be sent as derived data types.



MPI: Data Packing

e Similar in concept to structures, these come in handy for sending
several small variables as one packet. Very useful on low latency
networks.

MPI_Pack(in buffer, in count, data type, out
buffer, out size, position, communicator)

e This function/subroutine call should be visible to all processes that
may use pack/unpack data.

MPI_Unpack(in buffer, in size, position, out
buffer, out count, data type, communicator)



MPI. Groups & Communicators

e The set of processes that belong to a communicator forms a group.
There is a one to one correspondence between groups and
communicators. The following function/subroutine returns the group
corresponding to the communicator.

MPI_Commgroup(communicator, group)

e There are many functions available for manipulating groups and group
members. Functions equivalent@@mnsize (Group _size ) and
Comnrank (Group _rank ) are available.



MPI: Groups

e Union of groups, intersection of groups, comparison of groups, etc.
are available. A group can be created as a subset of an existing group.

MPI_Group _incl(group, n, ranks (array), new
group)

o n processes with ranks given by the arrapks are members of the
new group.

e |t IS Important to free a group after its use is over.



MPI. Communicators and Groups

e Communicators can be duplicated, split, etc. More importantly, a
communicator can be constructed from a group.

MPI_Comcreate(communicator, group, new
communicator)

o This creates a new communicator from a group, the group is a
subgroup of the group corresponding to the original communicator.



MPI. Process Topologies

e Processes can be arranged in a virtual, Cartesian topology. The
Cartesian grid of processes can be periodic, or aperiodic.

MPI_Cart _create(old communicator, ndims, dims,
periods, reorder, cartesian communicator)

e One can get the “coordinates” of a procelgd’(_Carts _coords ),
or that of a neighboring processddR|_Cart _shift ). There are
many other, advanced functions.



MPI: File Handling

e A file can be opened simultaneously on all the processes. This
functionality is not available on all implementations yet.

MPI_File _open(communicator, file name, access
mode, info, file handle)

MPI_File _read(file handle, buffer, count, data
type, status)

MPI_File _write(file handle, buffer, count, data
type, status)

MPI_File _close(file handle)

e Several other functions are also available.



