
Derived Data Types in MPI
Dilip Angom

angom@prl.ernet.in

Theoretical Physics and Complex Systems

Physical Research Laboratory

HPC Workshop Jan 2005 - Chennai – p.1/28

Point-Point Communications

Point to point communication functions.

int MPI_Send(
void* buffer /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int destination /* in */,
int tag /* in */,
MPI_Comm Communicator /* in */)

int MPI_Recv(
void* buffer /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm Communicator /* in */,
MPI_Status* status /* in */)

HPC Workshop Jan 2005 - Chennai – p.2/28

One-All Communications

One-all collective communication functions.

int MPI_Bcast(
void* message /* in/out */,
int count /* in */,
MPI_Datatype datatype /* in */,
int root /* in */,
MPI_Comm Comm /* in */)

int MPI_Scatter(
void* send_data /* in */,
int send_count /* in */,
MPI_Datatype send_type /* in */,
void* recv_data /* out */,
int recv_count /* in */,
MPI_Datatype recv_type /* in */,
int root /* in */,
MPI_Comm Comm /* in */)

HPC Workshop Jan 2005 - Chennai – p.3/28

All-One Communication Functions
All-one collective communication functions.

int MPI_Reduce(
void* operand /* in */,
void* result /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
MPI_Op operator /* in */,
int source /* in */,
int root /* in */,
MPI_Comm Communicator /* in */)

int MPI_Gather(
void* send_data /* in */,
int send_count /* in */,
MPI_Datatype send_type /* in */,
void* recv_data /* out */,
int recv_count /* in */,
MPI_Datatype recv_type /* in */,
int root /* in */,
MPI_Comm Comm /* in */)

HPC Workshop Jan 2005 - Chennai – p.4/28

All-All Communication Functions

All-all collective communication functions.

int MPI_Allgather(

void* send_data /* in */,
int send_count /* in */,
MPI_Datatype send_type /* in */,
void* recv_data /* out */,
int recv_count /* in */,
MPI_Datatype recv_type /* in */,
int root /* in */,
MPI_Comm Comm /* in */)

HPC Workshop Jan 2005 - Chennai – p.5/28

What next?

Grouping Data

HPC Workshop Jan 2005 - Chennai – p.6/28

What next?

Grouping Data

HPC Workshop Jan 2005 - Chennai – p.6/28

MPI Datatypes

MPI datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

HPC Workshop Jan 2005 - Chennai – p.7/28

MPI Derived Datatypes

Other than the predefined MPI datatypes, it is possible to
define new datatypes by grouping. This class of data is the
derived datatype.

Derived datatypes in MPI can be used in

� Grouping data of different datatypes for communication.

� Grouping non contiguous data for communication.

MPI has the following functions to group data

MPI_Type_contiguous MPI_Type_struct

MPI_Type_vector MPI_Pack

MPI_Type_indexed MPI_Unpack

HPC Workshop Jan 2005 - Chennai – p.8/28

Why Group Data

In general, each element of a system of interest has attributes of
different datatypes. It is desirable to group these attributes to
streamline manipulation and access.

1. Classical many-body system
Each particle has the following attributes
Mass () MPI_DOUBLE (1)
Position () MPI_DOUBLE (3)
Momentum () MPI_DOUBLE (3)
ID tag MPI_INT (1)

2. Atomic systems
Each electronic states has the following attributes
Energy () MPI_DOUBLE (1)
Principal quantum no. () MPI_INT (1)
Orbital ang mom quantum no.() MPI_INT (2)
Spin ang mom quantum no.() MPI_INT (2)

Data grouping allows transfer of different datatypes in one MPI
communication function call. Otherwise, one call per one
datatype is required.

Data grouping allows transfer of non contiguous data in one
MPI communication function call.

Each MPI function call is expensive as it involves several steps
to initiate and ensure data communication is completed
successfully. Data grouping can reduce the number of
communication calls.

HPC Workshop Jan 2005 - Chennai – p.9/28

Why Group Data

In general, each element of a system of interest has attributes of
different datatypes. It is desirable to group these attributes to
streamline manipulation and access.

1. Classical many-body system
Each particle has the following attributes
Mass (�) MPI_DOUBLE (1)
Position (

���) MPI_DOUBLE (3)
Momentum (

���) MPI_DOUBLE (3)
ID tag MPI_INT (1)

2. Atomic systems
Each electronic states has the following attributes
Energy (�) MPI_DOUBLE (1)
Principal quantum no. (�) MPI_INT (1)
Orbital ang mom quantum no.(

�

) MPI_INT (2)
Spin ang mom quantum no.() MPI_INT (2)

Data grouping allows transfer of different datatypes in one MPI
communication function call. Otherwise, one call per one
datatype is required.

Data grouping allows transfer of non contiguous data in one
MPI communication function call.

Each MPI function call is expensive as it involves several steps
to initiate and ensure data communication is completed
successfully. Data grouping can reduce the number of
communication calls.

HPC Workshop Jan 2005 - Chennai – p.9/28

Why Group Data

In general, each element of a system of interest has attributes of
different datatypes. It is desirable to group these attributes to
streamline manipulation and access.

1. Classical many-body system
Each particle has the following attributes
Mass () MPI_DOUBLE (1)
Position () MPI_DOUBLE (3)
Momentum () MPI_DOUBLE (3)
ID tag MPI_INT (1)

2. Atomic systems
Each electronic states has the following attributes
Energy () MPI_DOUBLE (1)
Principal quantum no. () MPI_INT (1)
Orbital ang mom quantum no.() MPI_INT (2)
Spin ang mom quantum no.() MPI_INT (2)

Data grouping allows transfer of different datatypes in one MPI
communication function call. Otherwise, one call per one
datatype is required.

Data grouping allows transfer of non contiguous data in one
MPI communication function call.

Each MPI function call is expensive as it involves several steps
to initiate and ensure data communication is completed
successfully. Data grouping can reduce the number of
communication calls.

HPC Workshop Jan 2005 - Chennai – p.9/28

Building Derived Datatype

Suppose the following three data elements are defined in the
main program.

float a, b;
int n;

Schematically, the locations of these data in the memory can be
represented as (each cell represents one memory location)

21 25

ba

4

n
31

10

To send
, �

and � in a single message, the following
information is required

1. Number of elements.

2. List of the datatypes.

3. Relative memory locations.

4. Message beginning address.
HPC Workshop Jan 2005 - Chennai – p.10/28

Building Derived Datatype (contd)

The MPI function MPI_Address returns the address of a
pointer. This can be used to find out the memory address of the
message beginning and the relative locations of the data
elements.

MPI derived datatype having � elements is a sequence of pairs

{(

�� ,

�), (

��� ,

��), (

��� ,

��), . . . (
����� � ,

�� � �)}

where

��� is the MPI datatype and
�� is the displacement in bytes.

The derived datatype to send
, �
and � in a single message is

{(MPI_FLOAT, 0), (MPI_FLOAT, 4), (MPI_INT, 10)}

The final step of constructing a derived datatype is to commit it
using the MPI function MPI_Type_commit. This is the
mechanism to make internal changes that may improve
communication performance.

HPC Workshop Jan 2005 - Chennai – p.11/28

MPI_Type_struct

The data elements
, �

and � discussed earlier can be grouped
using MPI_Type_struct in the following steps

1. Length of each element (int block_lengths[3])
block_lengths[0]=1;

block_lengths[1]=1;

block_lengths[2]=1;

2. Type of each element (MPI_Datatype typelist[3])
typelist[0]=MPI_FLOAT;

typelist[1]=MPI_FLOAT;

typelist[2]=MPI_INT;

3. Address of first element (MPI_Aint start_add)
MPI_Adress(&a, &start_add);

HPC Workshop Jan 2005 - Chennai – p.12/28

MPI_Type_struct (contd)

4. Relative locations (MPI_Aint relloc[3])
relloc[0] = 0;

MPI_Adress(&b, &address);

relloc[1] = address - start_add;

MPI_Adress(&n, &address);

relloc[2] = address - start_add;

5. Build the derived datatype (MPI_Datatype*
mesg_mpi_strct)

MPI_Type_struct(3, block_lengths,

relloc, typelist, mesg_mpi_strt);

6. Commit it
MPI_Type_commit(mesg_mpi_strct);

HPC Workshop Jan 2005 - Chennai – p.13/28

A Few Observations

The calling sequence of MPI_Type_struct is

int MPI_Type_struct (

int count,
int block_lengths[],
MPI_Aint relloc[],
MPI_Datatype typelist[],
MPI_Datatype* mesg_mpi)

Count is the number of elements in the derived type. In the
example we considered it is three, two MPI_FLOAT (
 and

�

)
and one MPI_INT (�).

Block lengths are the number of the entries in each element and
relloc refer to the relative location of each element from the
beginning of the message.

HPC Workshop Jan 2005 - Chennai – p.14/28

A Few Observations (contd)

Datatype of relative location relloc is MPI_Aint and not
int.

1. Addresses in C are integer longer than int.

2. Displacements, which are differences of two addresses can
be longer than int. Datatype MPI_Aint takes care of this
possibility.

3. FORTRAN has integer which is four bytes long, hence
it is not necessary to use MPI_Aint.

Datatype of the entries in the typelist and mesg_mpi are
the same, so MPI_Type_struct can be called recursively to
construct complex datatypes.

Among all the MPI derived datatype constructors, the
MPI_Type_struct is the most general. It allows grouping of
different datatypes.

HPC Workshop Jan 2005 - Chennai – p.15/28

Grouping Data of Same Datatype

MPI has three functions to construct derived datatype consisting
of elements of same datatype.

MPI_Type_vector
MPI_Type_contiguous
MPI_Type_indexed

MPI_Type_vector group data which are equally separated
entries in an array.

MPI_Type_contiguous group data located in contiguous
memory locations, for example sequence of entries in an array.

MPI_Type_indexed group data of same type located at
specified locations, for example the diagonal elements of a
square matrix.

HPC Workshop Jan 2005 - Chennai – p.16/28

MPI_Type_vector

The calling sequence of MPI_Type_vector is

int MPI_Type_vector (

int count,
int block_length,
int stride,
MPI_Datatype type,
MPI_Datatype* mesg_mpi)

Arguments of the function are scalars unlike in
MPI_Type_struct, where other than count and
mesg_mpi were arrays. This is a consequence of grouping data
of same datatype.

stride is the separation of each elements as entries in an array.

HPC Workshop Jan 2005 - Chennai – p.17/28

MPI_Type_vector an Example

Consider the

��� �

matrix, schematically represented as

3 7 21 1

8 6 2 0

12 9 1 3

8 4 2

Columns

R

O

W

12

In C matrices are stored in row major format (it is column major
in FORTRAN), the elements of a column are not contiguous.

In the present example, the first column elements (3, 8, 12,
8) have the nearest neighbors separated by four memory
locations (in FORTRAN the equivalent would be elements of
rows).

HPC Workshop Jan 2005 - Chennai – p.18/28

MPI_Type_vector an Example (contd)

A derived datatype can be constructed to access the columns of
the matrix using MPI_Type_vector.

The calling sequence is

MPI_Type_vector (
/* int */ 4, /* count */
/* int */ 1, /* block length */
/* int */ 3, /* stride */
/* MPI_Datatype*/ MPI_INT,
/* MPI_Datatype*/ &column_mpi);

Commit it to use for future communications

MPI_Type_commit(&column_mpi);

What would be calling sequence of MPI_Type_vector to
group two columns?

HPC Workshop Jan 2005 - Chennai – p.19/28

MPI_Type_vector an Example (contd)

The calling sequence to group two columns is

MPI_Type_vector (
/* int */ 4, /* count */
/* int */ 2, /* block length */
/* int */ 2, /* stride */
/* MPI_Datatype*/ MPI_INT,
/* MPI_Datatype*/ &column_mpi);

and

MPI_Type_vector (
/* int */ 4, /* count */
/* int */ 4, /* block length */
/* int */ 0, /* stride */
/* MPI_Datatype*/ MPI_INT,
/* MPI_Datatype*/ &column_mpi);

would group the whole matrix.

Commit it for use in future communications.
HPC Workshop Jan 2005 - Chennai – p.20/28

Sending and Receiving Grouped Data

We have constructed two derived datatypes so far

1. mesg_mpi_strct
constructed using MPI_Type_struct and consist of
, �

and �.
2. column_mpi

constructed using MPI_Type_vector column elements
of a

�� �

matrix.

These derived datatypes can be use in any MPI communication
function call. For example

1. Broadcast
, �

and � using mesg_mpi_strct
MPI_Bcast(&a, 1, mesg_mpi_strct,

0, MPI_COMM_WORLD);

2. Send the second column from root to the first ranked
processor

MPI_Send(&A[0][2], 1, column_mpi,
1, MPI_COMM_WORLD);

HPC Workshop Jan 2005 - Chennai – p.21/28

Type Matching

Suppose we are using two processors and we construct
mesg_mpi_strct. Since the memory usage need not be
identical on the two processors, the addresses of
, �

and � are
different on the two processors.

The derived data type mesg_mpi_strct are constructed
separately by the two processors. In the most general case, the
name of the derived datatype can be different on the two
processors.

How to ensure that mesg_mpi_strct received is the same as
the local one. This is achieved by type matching

1. mesg_mpi_strct is a sequence of datatype and
location pairs. On each processor, the mesg_mpi_strct
is {(MPI_FLOAT, &a), (MPI_FLOAT, &b),
(MPI_INT, &n)}

HPC Workshop Jan 2005 - Chennai – p.22/28

Type Matching (contd)

2. type signature is the sequence of the MPI datatypes, for
mesg_mpi_strct is
{MPI_FLOAT, MPI_FLOAT, MPI_INT}

3. type signature must be compatible in a send and receive
pair of function calls.

Compatibility of the type signature does not mean exact match
between the sender and receiver. Suppose

{t0, t1,, tn}

is the type signature passed to MPI_Send and

{u0, u1,, um}

is the type signature specified in MPI_Recv.

By compatibility, it means n must be less than or equal to m and
ti must be equal to ui.

HPC Workshop Jan 2005 - Chennai – p.23/28

Type Matching (contd)

This means that a MPI_Recv function call with type signature

{MPI_FLOAT, MPI_FLOAT, MPI_INT, MPI_FLOAT}

can receive data sent using the type signature of
mesg_mpi_strct

{MPI_FLOAT, MPI_FLOAT, MPI_INT}

In the more general case, it is not necessary for the processors to
share the same sequence of derived datatype constructions.

HPC Workshop Jan 2005 - Chennai – p.24/28

MPI_Type_contiguous

The calling sequence of MPI_Type_contiguous is

int MPI_Type_contiguous (

int count,
MPI_Datatype old_type,
MPI_Datatype* new_mpi_type)

This derived datatype groups count number of consecutive
entries of type old_type.

This derived datatype can be used to define a new datatype
row_mpi representing one row of the

�� �

matrix discussed
earlier. The calling sequence is

MPI_Type_contiguous (

/* int */ 4,
/* MPI_Datatype */ MPI_INT,
/* MPI_Datatype* */ &row_mpi);

HPC Workshop Jan 2005 - Chennai – p.25/28

MPI_Type_indexed

The calling sequence of MPI_Type_indexed is

int MPI_Type_contiguous (

int count,
int block_lengths[],
int displacements[],
MPI_Datatype old_type,
MPI_Datatype* new_mpi_type)

The calling sequence is very similar to that of
MPI_Type_struct, except that there is only one entry for the
datatype.

HPC Workshop Jan 2005 - Chennai – p.26/28

MPI_Type_indexed (contd)

The derived datatype function MPI_Type_indexed can be
used to define a new datatype diag_mpi representing the
diagonal elements of

�� �

matrix discussed earlier. The calling
sequence is

MPI_Type_contiguous (

/* int */ 4,
/* int */ block_lengths,
/* int */ relloc,
/* MPI_Datatype */ MPI_INT,
/* MPI_Datatype* */ &row_mpi);

where block_lengths and relloc are the arrays
{1, 1, 1} and {4, 4, 4, 4} respectively.

HPC Workshop Jan 2005 - Chennai – p.27/28

Bibliography

1. Books

(a) Peter S. Pacheco
Parallel Programming with MPI

(b) William Gropp, Ewing Lusk, Anthony Skjellum
Using MPI: Portable Parallel Programming with the
Message-Passing Interface

2. URLs

(a) http://www.cs.usfca.edu/mpi/

(b) http://www-unix.mcs.anl.gov/mpi/mpich/

(c) http://www.lam-mpi.org/

(d) http://www.scali.com/

HPC Workshop Jan 2005 - Chennai – p.28/28

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

