
Introduction to OpenMP
Dilip Angom

angom@prl.ernet.in

Theoretical Physics and Complex Systems

Physical Research Laboratory

HPC Workshop Jan 2005 - Chennai – p.1/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

CPU 1 CPU 2 CPU 3 CPU N

MEM 2 MEM 3 MEM NMEM 1

User synchronizes the processors explicitly.
Debugging is non trivial as there is no common image.
Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

HPC Workshop Jan 2005 - Chennai – p.2/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

CPU 1 CPU 2 CPU 3 CPU N

MEM 2 MEM 3 MEM NMEM 1

User synchronizes the processors explicitly.
Debugging is non trivial as there is no common image.
Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

HPC Workshop Jan 2005 - Chennai – p.2/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

CPU 1 CPU 2 CPU 3 CPU N

MEM 2 MEM 3 MEM NMEM 1

�

User synchronizes the processors explicitly.

�

Debugging is non trivial as there is no common image.

�

Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

HPC Workshop Jan 2005 - Chennai – p.2/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

CPU 1 CPU 2 CPU 3 CPU N

MEM 2 MEM 3 MEM NMEM 1

�

User synchronizes the processors explicitly.

�

Debugging is non trivial as there is no common image.

�

Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

HPC Workshop Jan 2005 - Chennai – p.2/31

POWER5 (IBM) Processor Chip

FXU - Fixed Point (Integer) Unit FPU - Floating Point Unit
ISU - Instruction Sequencing Unit IDU - Instruction Decoding Unit
LSU - Load Store Unit IFU - Instruction Fetch Unit
L2 - Level 2 Cache L3 - Level 3 Cache
MC - Memory Controller

HPC Workshop Jan 2005 - Chennai – p.3/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

�

User synchronizes the processors explicitly.

�

Debugging is non trivial as there is no common image.

�

Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

CPU NCPU 2 CPU 3 CPU 4CPU 1

MEMORY

POWER5 (eSeries Servers) IBM
(http://www.redbooks.ibm.com/redpieces/pdfs/sg245768.pdf)

UltraSPARC IV (Sun Fire Servers) Sun Microsystems
(http://www.sun.com/processors/whitepapers/us4 whitepaper.pdf)

PA-8800 (HP 9000 Servers) Hewlett Packard

HPC Workshop Jan 2005 - Chennai – p.4/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

�

User synchronizes the processors explicitly.

�

Debugging is non trivial as there is no common image.

�

Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

CPU NCPU 2 CPU 3 CPU 4CPU 1

MEMORY

POWER5 (eSeries Servers) IBM
(http://www.redbooks.ibm.com/redpieces/pdfs/sg245768.pdf)

UltraSPARC IV (Sun Fire Servers) Sun Microsystems
(http://www.sun.com/processors/whitepapers/us4 whitepaper.pdf)

PA-8800 (HP 9000 Servers) Hewlett Packard

HPC Workshop Jan 2005 - Chennai – p.4/31

Why OpenMP
There are limitations in message passing libraries based parallel
programming (distributed memory systems).

�

User synchronizes the processors explicitly.

�

Debugging is non trivial as there is no common image.

�

Data duplication across the processors.

Lack of an industry wide standard in shared memory high
performance computing. The microprocessors are based on the
SMP architecture.

CPU NCPU 2 CPU 3 CPU 4CPU 1

MEMORY

�

POWER5 (eSeries Servers) IBM
(http://www.redbooks.ibm.com/redpieces/pdfs/sg245768.pdf)

�

UltraSPARC IV (Sun Fire Servers) Sun Microsystems
(http://www.sun.com/processors/whitepapers/us4 whitepaper.pdf)

�

PA-8800 (HP 9000 Servers) Hewlett Packard

HPC Workshop Jan 2005 - Chennai – p.4/31

What is OpenMP
It is an Application Program Interface (API) to provide a model
for parallel programming portable across different shared
memory architectures.

What is an API?

HPC Workshop Jan 2005 - Chennai – p.5/31

What is OpenMP
It is an Application Program Interface (API) to provide a model
for parallel programming portable across different shared
memory architectures.

What is an API?

HPC Workshop Jan 2005 - Chennai – p.5/31

Application Program Interface
A set of routines, protocols, and tools for building software
applications. A good API makes it easier to develop a program
by providing all the building blocks. A programmer puts the
blocks together.

APIs compromises flexibility, however provides standard and
higher level of abstraction to programmers. Consider the
component tasks to print hello world on the screen.

1. Outline the shapes of the letters H, e, l, l, o, W, o, r, l, d.
2. Locate a matrix of black and white squares resembling these

letters.
3. Program the CPU to put this matrix into the display adapter’s

frame buffer.
4. Set the graphics card to scan its frame buffer and generate the

signal.

A much simpler option is to use an API
1. Write an HTML document containing hello world.
2. Open the document using a web browser.

HPC Workshop Jan 2005 - Chennai – p.6/31

Application Program Interface
A set of routines, protocols, and tools for building software
applications. A good API makes it easier to develop a program
by providing all the building blocks. A programmer puts the
blocks together.

APIs compromises flexibility, however provides standard and
higher level of abstraction to programmers. Consider the
component tasks to print hello world on the screen.

1. Outline the shapes of the letters H, e, l, l, o, W, o, r, l, d.
2. Locate a matrix of black and white squares resembling these

letters.
3. Program the CPU to put this matrix into the display adapter’s

frame buffer.
4. Set the graphics card to scan its frame buffer and generate the

signal.

A much simpler option is to use an API
1. Write an HTML document containing hello world.
2. Open the document using a web browser.

HPC Workshop Jan 2005 - Chennai – p.6/31

Application Program Interface
A set of routines, protocols, and tools for building software
applications. A good API makes it easier to develop a program
by providing all the building blocks. A programmer puts the
blocks together.

APIs compromises flexibility, however provides standard and
higher level of abstraction to programmers. Consider the
component tasks to print hello world on the screen.

1. Outline the shapes of the letters H, e, l, l, o, W, o, r, l, d.
2. Locate a matrix of black and white squares resembling these

letters.
3. Program the CPU to put this matrix into the display adapter’s

frame buffer.
4. Set the graphics card to scan its frame buffer and generate the

signal.

A much simpler option is to use an API
1. Write an HTML document containing hello world.
2. Open the document using a web browser.

HPC Workshop Jan 2005 - Chennai – p.6/31

What is OpenMP
It is an Application Program Interface (API) to provide a model
for parallel programming portable across different shared
memory architectures and scalable.

Standard is jointly defined by a group with members from major
computer hardware and software vendors like IBM, Silicon
Graphics, Hewlett Packard, Intel, Sun Microsystems, The
Portland Group, etc.

OpenMP API consists of the following components:
Compiler directives
Instructs the compiler to process the code section following the
directive for parallel execution.
Library routines
Routines that affect and monitor threads, processors and
environment variables. It also has routines to control thread
synchronization and get timings.
Environment variables
Variables controlling the execution of the OpenMP program.

HPC Workshop Jan 2005 - Chennai – p.7/31

What is OpenMP
It is an Application Program Interface (API) to provide a model
for parallel programming portable across different shared
memory architectures and scalable.

Standard is jointly defined by a group with members from major
computer hardware and software vendors like IBM, Silicon
Graphics, Hewlett Packard, Intel, Sun Microsystems, The
Portland Group, etc.

OpenMP API consists of the following components:

�

Compiler directives
Instructs the compiler to process the code section following the
directive for parallel execution.

�

Library routines
Routines that affect and monitor threads, processors and
environment variables. It also has routines to control thread
synchronization and get timings.

�

Environment variables
Variables controlling the execution of the OpenMP program.

HPC Workshop Jan 2005 - Chennai – p.7/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

Program execution begins as a single thread of execution, called
the initial thread.
A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.
All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private MemoryRelaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.
Flush operation causes the last modified variable in the
temporary view to be written to memory.
Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

Program execution begins as a single thread of execution, called
the initial thread.
A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.
All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private MemoryRelaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.
Flush operation causes the last modified variable in the
temporary view to be written to memory.
Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

�

Program execution begins as a single thread of execution, called
the initial thread.

�

A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.

�

All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private MemoryRelaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.
Flush operation causes the last modified variable in the
temporary view to be written to memory.
Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

�

Program execution begins as a single thread of execution, called
the initial thread.

�

A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.

�

All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private MemoryRelaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.
Flush operation causes the last modified variable in the
temporary view to be written to memory.
Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

�

Program execution begins as a single thread of execution, called
the initial thread.

�

A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.

�

All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private Memory

Relaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.
Flush operation causes the last modified variable in the
temporary view to be written to memory.
Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

Execution and Memory Models
Parallel execution in OpenMP is based on the fork-join model,
where the master thread creates a team of threads for parallel
execution.

FO
RK

JO
IN

JO
IN

FO
RK

 Parallel Section Parallel Section

Program Flow

 Sequential Sections

�

Program execution begins as a single thread of execution, called
the initial thread.

�

A thread encountering a parallel construct becomes a master,
creates a team of itself and additional threads.

�

All members of the team execute the code inside parallel
construct.

Each thread has a temporary view of the memory, which is like a
cache, and a private memory not accessible other threads.

MEMORY

Temporary View

Private Memory

Private Memory

Thread 2

Thread 1

Temporary View

Thread 3

Temporary View

Private Memory

�

Relaxed consistency, the thread’s view of memory is not required
to be consistent with the memory at all times.

�

Flush operation causes the last modified variable in the
temporary view to be written to memory.

�

Private variables of a thread can be copies of data from memory
and cannot be accessed by other threads.

The parallel construct can be nested arbitrary number of
times. Thread encountering parallel becomes the master.

HPC Workshop Jan 2005 - Chennai – p.8/31

How OpenMP Works
In FORTRAN comment charac-
ter followed by a sentinel indi-
cates the line of code is OpenMP
directive.

!$omp OpenMP directive

c$omp OpenMP directive

HPC Workshop Jan 2005 - Chennai – p.9/31

How OpenMP Works
In FORTRAN comment charac-
ter followed by a sentinel indi-
cates the line of code is OpenMP
directive.

parallel is the OpenMP di-
rective which creates a team of
threads.

!$omp OpenMP directive

c$omp OpenMP directive

!$omp parallel

!$omp parallel

HPC Workshop Jan 2005 - Chennai – p.10/31

How OpenMP Works
In FORTRAN comment charac-
ter followed by a sentinel indi-
cates the line of code is OpenMP
directive.

parallel is the OpenMP di-
rective which creates a team of
threads.

Work is distributed among
the threads using work-sharing
OpenMP directives loop,
section and single.

!$omp OpenMP directive

c$omp OpenMP directive

!$omp parallel

c$omp parallel

!$omp parallel

!$omp do/section/single

HPC Workshop Jan 2005 - Chennai – p.11/31

How OpenMP Works
In FORTRAN comment charac-
ter followed by a sentinel indi-
cates the line of code is OpenMP
directive.

parallel is the directive in
OpenMP which creates a team of
threads.

Work is distributed among
the threads using work-sharing
OpenMP directives loop,
section and single.

Each of these directives have
associated clauses to control
data sharing and mode of execu-
tion.

!$omp OpenMP directive

c$omp OpenMP directive

!$omp parallel

c$omp parallel

!$omp parallel

!$omp do/section/single

!$omp parallel[clause]

!$omp workshare[clause]

HPC Workshop Jan 2005 - Chennai – p.12/31

How OpenMP Works
In FORTRAN comment charac-
ter followed by a sentinel indi-
cates the line of code is OpenMP
directive.

parallel is the directive in
OpenMP which creates a team of
threads.

Work is distributed among
the threads using work-sharing
OpenMP directives loop,
section and single.

Each of these directives have
associated clauses to control
data sharing and mode of execu-
tion.

end directive terminates the
work share and parallel con-
structs.

!$omp OpenMP directive

c$omp OpenMP directive

!$omp parallel

c$omp parallel

!$omp parallel

!$omp do/section/single

!$omp parallel[clause]

!$omp workshare[clause]

!$omp end workshare

!$omp end parallel

HPC Workshop Jan 2005 - Chennai – p.13/31

Parallel Execution in OpenMP
........................
sequential block

HPC Workshop Jan 2005 - Chennai – p.14/31

Parallel Execution in OpenMP
........................
sequential block

!$omp parallel [clause[[,]clause]...]
........................

where clause is one of the following
if(scalar-logical-expression)
private(list)
firstprivate(list)
default(private|shared|none)
shared(list)
copyin(list)
reduction(...)
num threads(...)

Fork

HPC Workshop Jan 2005 - Chennai – p.15/31

Parallel Execution in OpenMP
........................
sequential block

!$omp parallel [clause[[,]clause]...]
where clause can be if, private,
firstprivate, default, shared,
copyin, reduction, num threads

!$omp do|section|single[clause[...]...]
where clause is one of the following

private(list)
firstprivate(list)
lastprivate(list)
reduction(...)
ordered
schedule(kind[,chunk size])

Fork

Share
 Work

HPC Workshop Jan 2005 - Chennai – p.16/31

Parallel Execution in OpenMP
........................
sequential block

!$omp parallel [clause[[,]clause]...]
where clause can be if, private,
firstprivate, default, shared,
copyin, reduction, num threads

!$omp do|section|single[clause[...]...]
where clause can be private,
firstprivate, lastprivate,
reduction, ordered, schedule
do ia = 1, N
structured block

end do
[!$omp section]
structured block

[!$omp section]
structured block

...

Fork

Share
 Work

HPC Workshop Jan 2005 - Chennai – p.17/31

Parallel Execution in OpenMP
........................
sequential block

!$omp parallel [clause[[,]clause]...]
where clause can be if, private,
firstprivate, default, shared,
copyin, reduction, num threads

!$omp do|section|single[clause[...]...]
where clause can be private,
firstprivate, lastprivate,
reduction, ordered, schedule
do ia = 1, N
structured block

end do
[!$omp section]
structured block

[!$omp section]
structured block

...
!$omp end do|section[nowait]|
!$& single[end clause...]
!$omp end parallel

sequential block
........................

Fork

Share
 Work

Join

HPC Workshop Jan 2005 - Chennai – p.18/31

Workshare Directives

Workshare directives follows after a parallel directive or it
can occur in a region where there are multiple threads.

There are three possible workshare constructs.

�

loop
It distributes the work load of the do which immediately follows it.

�

sections
A set of sections follows the directive and these are executed by
a team of threads.

�

single
The section of code enclosed within this workshare directive is
executed by a single thread.

The generic format of the workshare directives is
!$omp workshare [clause[[,]clause]...]

..........
lines of code
..........

!$omp end workshare

where workshare can be one of the three directives.
HPC Workshop Jan 2005 - Chennai – p.19/31

Data Scope Attribute Clauses

Data scope attribute clauses allow specifying scope of data to
each thread. There are five important data scope attributes.

�

private
Each thread in the team has its own uninitialized local copy of
the variables and common blocks listed as private. A variable
should be defined as private, if it’s value is not dependent on
any other thread.

�

firstprivate
Each thread has its own initialized local copy of the variables and
common blocks listed as firstprivate.

�

lastprivate
Variables or common blocks listed as lastprivate can be
referred to outside of the construct of the directive. The assigned
value is the last calculated in the construct.

HPC Workshop Jan 2005 - Chennai – p.20/31

Data Scope Attribute Clauses (contd)

�

copyin
Variables or common blocks listed in the copyin clause are
duplicated privately for each thread from the master thread’s
copy.

�

shared
Variables and common blocks declared as shared are available
to all the threads.

HPC Workshop Jan 2005 - Chennai – p.21/31

Synchronization Directives

�

critical
The blocks of code enclosed within critical construct are
executed by one thread at a time.

�

barrier
This directive synchronizes all the threads. When a thread
encounters the barrier directive, it will wait untill all other
threads in the team reach the same point.

�

atomic
The atomic ensures that only one thread is writing to a specific
memory location. The directive binds to the executable
statement which follows immediately.

HPC Workshop Jan 2005 - Chennai – p.22/31

Synchronization Directives (contd)

�

flush
The flush directive ensures that each thread has access to
data generated by other threads. It makes the memory of the
threads consistent.

�

ordered
This directive cause the iteration of a block of code within a
parallel loop to be executed as it would do sequentially.

HPC Workshop Jan 2005 - Chennai – p.23/31

parallel and do directives

Consider the multiplication of two square matrices A and B to
get the matrix C.

��
�� �

�

�
� �
� ��

do ii = 1, nmax
do jj = 1, nmax

sum = 0.

! +------------+
! | Inner Loop |
! +------------+

do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
enddo

HPC Workshop Jan 2005 - Chennai – p.24/31

parallel and do directives

!$omp parallel
!$omp do

do ii = 1, nmax
do jj = 1, nmax

sum = 0.

! +------------+
! | Inner Loop |
! +------------+

do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
enddo

!$omp end do
!$omp end parallel

What about the data attributes?

HPC Workshop Jan 2005 - Chennai – p.25/31

parallel and do directives

!$omp parallel private (ii, jj, kk, sum)
!$omp do

do ii = 1, nmax
do jj = 1, nmax

sum = 0.

! +------------+
! | Inner Loop |
! +------------+

do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
enddo

!$omp end do
!$omp end parallel

HPC Workshop Jan 2005 - Chennai – p.26/31

parallel and sections directives

Consider the multiplication of two square matrices again.

��
�� �

�

�
� �
� ��

do ii = 1, nmax
do jj = 1, nmax

sum = 0.

! +------------+
! | Inner Loop |
! +------------+

do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
enddo

HPC Workshop Jan 2005 - Chennai – p.27/31

parallel and sections directives
do ii = 1, nmax

!$omp parallel private (ii, jj, kk, sum)
!$omp sections
!$omp section

do jj = 1, nmax/2
sum = 0.
do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
!$omp section

do jj = 1 + nmax/2, nmax
sum = 0.
do kk = 1, nmax
sum = sum + A(ii,kk)*B(kk,jj)

enddo
C(ii,jj) = sum

enddo
!$omp end sections
!$omp end parallel

end do
HPC Workshop Jan 2005 - Chennai – p.28/31

Library Functions

In addition to the OpenMP directives, there are library to
get and set the execution environment control variables.

�

omp get thread num ()
The function returns the number (integer) of the currently
executing thread within the team.

�

omp get max threads ()
It returns the maximum number (integer) of threads that can
execute concurrently in a single parallel section.

�

omp get num procs ()
It returns the current number (integer) of online processors on
the machine.

HPC Workshop Jan 2005 - Chennai – p.29/31

Library Functions (contd)

�

omp get dynamic() and omp set dynamic()
The first function returns .TRUE (logical), if dynamic thread
adjustment is enabled. The second function can set the status of
the dyanmic thread adjustment.

�

omp get num threads and omp set num threads
The first function returns the number (integer) of threads in the
current parallel section and the second function sets the
number of threads to execute the parallel section.

�

omp get nested and omp set nested
The first function returns .TRUE. (logical), if nested parallelism
is enabled. The second function can enable or disable nested
parallelism.

HPC Workshop Jan 2005 - Chennai – p.30/31

Bibliography

1. POWER5 (eSeries Servers) IBM

http://www.redbooks.ibm.com/redpieces/pdfs/sg248000.pdf

http://www.redbooks.ibm.com/redpieces/pdfs/sg245768.pdf

2. UltraSPARC IV (Sun Fire Servers) Sun Microsystems

http://www.sun.com/processors/feature/USFamilyBrochure_FINAL.pdf

http://www.sun.com/processors/whitepapers/USIIICuoverview.pdf

http://www.sun.com/processors/whitepapers/us4_whitepaper.pdf

3. OpenMP

http://www.openmp.org/drupal/mp-documents/draft_spec25.pdf

HPC Workshop Jan 2005 - Chennai – p.31/31

	Why OpenMP
	
	Why OpenMP
	What is OpenMP
	
	What is OpenMP
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

