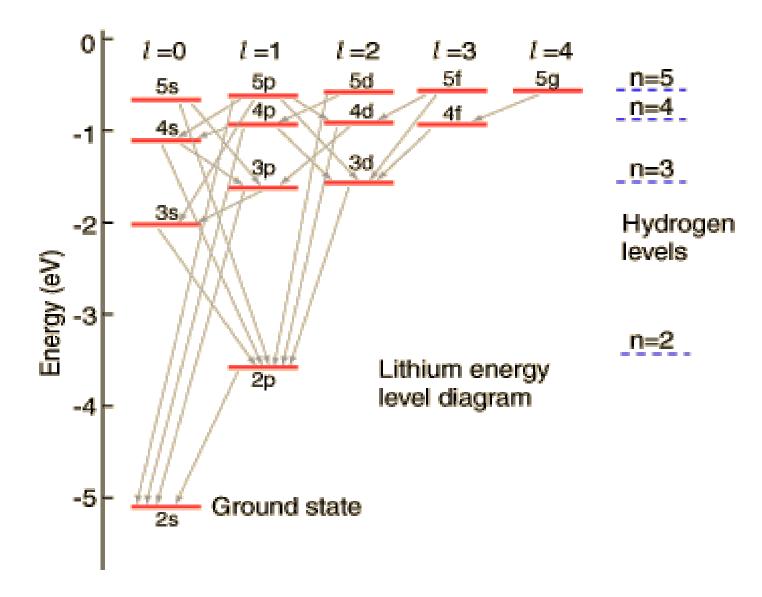
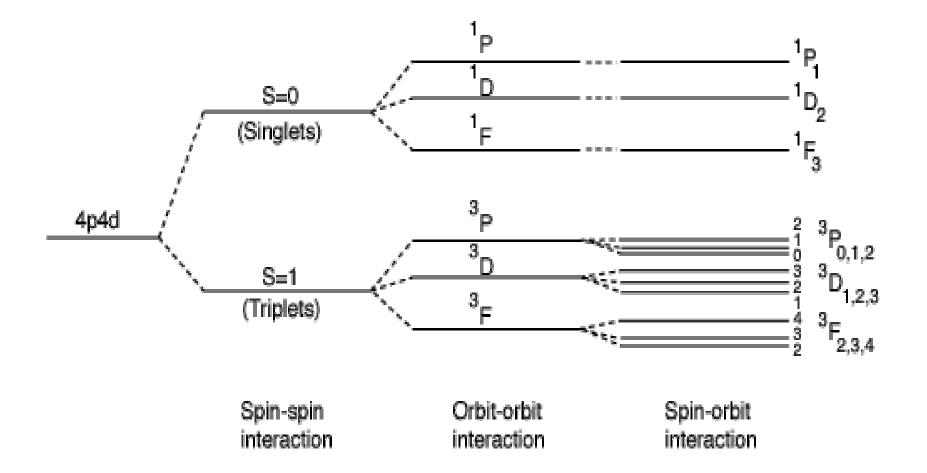
High performance computation of relativistic many-body effects in atoms


Chiranjib Sur

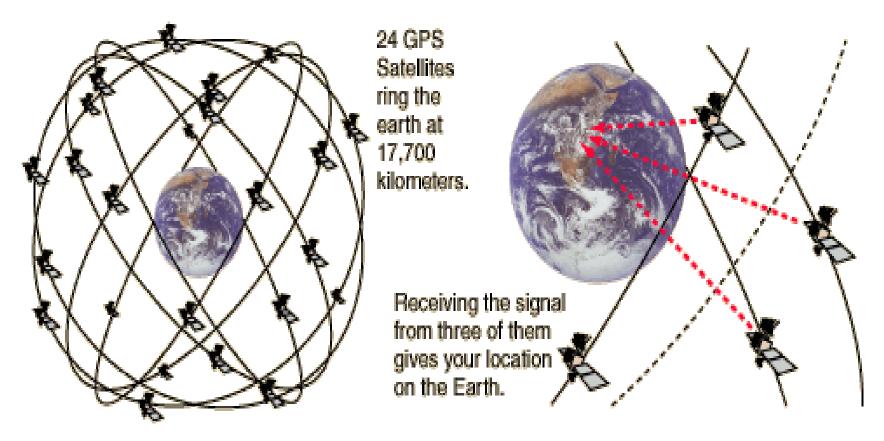
Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore


People @ NAPP Group, IIA

Prof. Bhanu Pratap Das Dr. Rajat K Chaudhuri Dr. Chiranjib Sur Mr. Bijaya Kumar Sahoo Mr. Malaya Kumar Nayak Ms. K. V. P. Latha

What is meant by *electronic structure*?

Atomic energy levels


What we calculate ?

- Energies of atomic states
- Transition amplitudes
- Transition (lifetime) among different energy levels
- Hyperfine structure constants
- Parity violation in atoms
- Atomic electric dipole moment

Atomic clocks

1 second = 9,192, 631,770 cycles of the standard ¹³³Cs transition. UTC (Universal Coordinated Time).

Atomic clocks are integral parts of the Global Positioning System (GPS) since extreme accuracy in timing is necessary

Ref :http://tycho.usno.navy.mil/cesium.html

Relativistic atomic Many-body theory

Information wanted

- Needs accurate numerical wavefunctions
- Appropriate numerical methods
- Corresponding algorithm

Different theories

- MCDF
- MBPT
- CI
- Green's Function
- Coupled Cluster

To solve a set of non-linear equations – which is CPU as well as memory intensive

1998 : Nobel Prize in Chemistry : Walter Kohn & John Pople (*For Work on electronic structure and computational methods*)

EOM : QM treatment

 $H \Psi = E \Psi$

In Coupled Cluster (CC) theory

$$\Psi = \exp(T)(1+S)\Phi$$

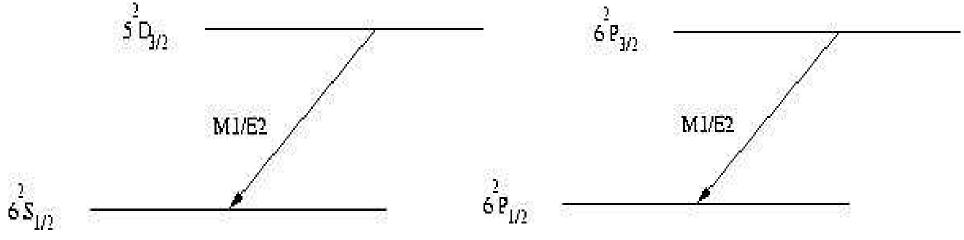
 $A(T) \times T = B$ $A'(S) \times S = B'$

In CC the EOM takes the matrix form

Explicit form

$$\begin{cases} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \dots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{cases} \times \begin{cases} t_1 \\ t_2 \\ \vdots \\ t_n \end{cases} = \begin{cases} b_1 \\ b_2 \\ \vdots \\ b_n \end{cases}$$

- Any direct method to solve ? No way
- We use the Jacobi algorithm to solve it iteratively


How we calculate ?

In several steps using a series of *Fortran* 77 codes which depend on the earlier codes

Calculation of any atomic properties involves the exact wavefunction Ψ

Lifetime of excited states of atoms

Excited states of Ba⁺ and Pb⁺ ions

Transition probabilities for the decay of excited states are defined as

$$A_{fi}^{MI} = \frac{\left(2.6973 \times 10^{13}\right)}{\left[J_{i}\right]} \left(\Delta E\right)^{3} S_{fi}^{MI}$$

Lifetime (in *s*) is defined as

$$\tau = \frac{1}{A} = \frac{1}{\left(A^{MI} + A^{E2}\right)}$$

$$A_{fi}^{E2} = \frac{\left(1.1199 \times 10^{18}\right)}{\left[J_{i}\right]} \left(\Delta E\right)^{5} S_{fi}^{E2}$$

Some results

Lifetime (in *s*) of the excited states of Ba⁺ and Pb⁺ using Unitary Coupled Cluster (UCCSD(T)) theory

Ion	States	UCCSD(T)	Others (semi-empirical)	Experiment
Ba ⁺	$5^2 D_{3/2}$	81.01	81.5 [1] 83.7 [2]	79 ± 4.6
Pb ⁺	$6^2 P_{3/2}$	0.0413 0.0425 [3]		0.0412 ± 0.0007

[1] Dzuba *et al*, *Phys. Rev. A*, **63**, 062101 (2001).
[2] Guet *et al*, *Phys. Rev. A*, **44**, 1531 (1991).
[3] Our Group, CCSD(T), *J. Phys. B*, **37**, 3409 (2004).

Bottlenecks of the calculation -CPU

S2 and S3 are hugely CPU and memory intensive
More than 2/3 time is spent on S2 & S3

CPU mapping

Atom	PIV @2.4 GHz	SUN @450 MHz	Param Padma
Li (3) S2	5m35.003s	16m37.67s	6m43.466s
<i>S3</i>	7m12.31s	17m29.81s	8m35.386s
Cs (55) S2	~14 hrs (Xeon)	~96 hrs	~9 hrs

Bottlenecks of the calculation – *memory*

Memory requirements mapping

PIV @2.4 GHz S	UN @450 N	/IHz	Param Padma
Memory available512 MB4 GB0			0.5 TB
	Li (3)	<u>S2</u> 300	<u>S3</u> 350
Memory required	Rb(37)	500	700
(MB)	Cs (55)	1600	1900
	Pb (82)	3700	5500

Bottlenecks of the calculation – I/O

Dependent of the quality of HDD and system BUS

I/O mapping

PIV @2.4 GHz	SUN @450 MHz	Param Padma
7500 RPM	10K RPM	Ultra-SCSI
(<i>IDE</i>) 100 MBps	(<i>Ultra-SCSI</i>) 200 MBps	~1GBps

What kind of parallelisation ?

Mostly we do SIMD parallel programming

- Extensive use of MPI in different subroutines
 - Grouping of datas, use buffering
- Along with MPI, implementation of I/O (to make life simple for future)

Atom	Xeon	SUN	Param Padma
Mg(12) S2	<mark>S</mark> :69m6.96s	<mark>S</mark> : ~203m	P1 :~25m, P6 :~6m
<i>S3</i>	<mark>S</mark> :78m6.48s		
Cs (55) S2	P3 :~500m	P3 :~900m	P3 : ~270m

Scaling of the MPI codes (CPU timings)

Have a plan to do MIMD kind of task parallelism also - Seek help from you

Recent Publications

• Ab initio determination of lifetime of $6p_{3/2}$ state of Pb⁺

J. Phys. B, 2004

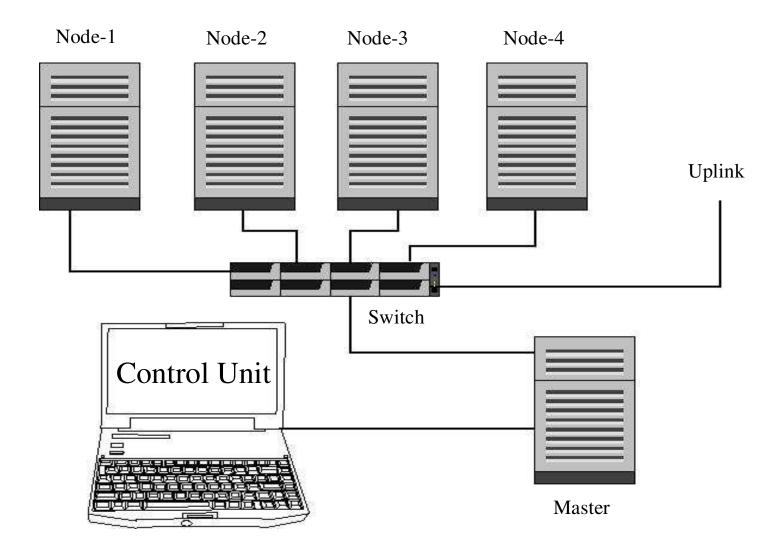
• Relativistic coupled-cluster calculation of core ionization potentials using the normal and semi-normal ordered antastz

J. Phys. B, 2004

- Strong correlation effects in hyperfine interaction in Pb⁺ Submitted to *Phys. Rev. Lett.*, 2004
- Comparative studies of magnetic dipole and electric quadrupole hyperfine constants for the ground and low lying excited states of $^{25}\mathrm{Mg^{+}}$

Euro. Phys. J. D, 2004

• Relativistic unitary coupled cluster theory and applications Submitted to *Phys. Rev.Lett.*, 2004


Collaborations

Dr. Debasish Mukherjee and his group IACS, Kolkata

Acknowledgments

- Dr. V. Sundararajan, CDAC, Pune
- Dr. Angom Dilip Singh, PRL, Ahmedabad
- Dr. Holger Merlitz, Karlsruhe, Germany
- Param Padma support team, CDAC, Bangalore

ATOMOS – Our cluster at NAPP

Our cluster ATOMOS @ NAPP

Compute Nodes

- Configuration : 5 Nos of 2 way SMP nodes
- Processors : Intel Xeon 2.66 Ghz
- File system : NFS
- > Agreegate memory : 12 GB
- > Operating system : RedHat Linux 9
 - Kernel : 2.4.20-8smp

Networks

Gigabit networks – (Netgear)

Software

- > MPI-CH, MPI-LAM
- > GNU compilers and Intel® compilers

Parallel computing – how is it ?

