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What are the questions we are interested in?
* Properties of materials

— How stable is a molecule, cluster or solid?
* Binding energy (BE)
* Jonization potential (IP), electron affinity (EA)
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— What are the electronic energy levels in a molecule
OR energy bands in a solid?

* Optical properties--Metal, insulator or semiconductor

Wave vector k

Si bands: gapped Sn bands: metallic



— Nature of bonding

* Electronic charge distribution, moments
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— Solid surfaces

* Reconstruction: surface states/bands
* Adsorption of atoms, molecules, adlayers

e Nanowires on surfaces

— Motion of ion cores at zero or finite
temperature

* Structural relaxation OR molecular dynamics

— Vibrational spectrum of molecules
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How do we answer these questions?

* Molecules or solids consist of atoms, which
consist of electrons and nuclei

— Quantum mechanical objects obeying Schroedinger's
equation 12 702 1 o2
H=--—ET»"2 Ll to= M
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— The task 1s to find the eigenvalues and eigenvectors of
this Hamiltonian
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* We cannot solve this exactly, make
approximations:

— 1. Decouple electronic and nuclear motions (BO)

* Flectronic Hamiltonian (a.u.)

1 A 1
H=-sVi-3 245 =
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* Total energy
o G4
étot = (V|H|V) + P
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— Ground state wavefunction is W that gives the lowest
total energy

We cannot (exactly) solve the electronic problem either



* Further approximation

- We know
* Many electron wavefunction is antisymmetric
U(X1,X9,...,X;, ..., X irm e KN =
—W(Xq, Xo,..., . T —

X; = {75, 05}

* For non-interacting electrons a single (Slater) determinant
of spin orbitals 1s the exact wavefunction

xi(z1) xi(z2) ... xilzn)
¥ = (N2 xa(z1) xalz2) ... xz(:’ﬂw)

xn(e) xn(@o) ... xnlzN)
= |X1,X2- -1 XN)



— II. HF approx, Claim: Even in the interacting system, a
single determinant 1s the correct form of the wavefunction

* Minimize energy to calculate the optimum spin-orbitals

* Constraint: spin orbitals are orthonormal

= Electrons move 1n an effective 1-body, nonlocal potential

— We have a scheme to find a solution to S' equation
— What does HF imply?

— Probability of finding two electrons at the same point in
space

e Non-zero if the spins are opposite  P(T!) 20
e Zero if the spins are parallel P(TT) =0

— HF incorporates exchange effect but no correlation



Another approach to interacting electron
system: Density Functional Theory

— G.S. energy of a system of interacting electrons is a
functional of its density (Hohenberg—Kohn)

fv (F)p(F)dF+V |p|+T|p]

— Minimize E but the functionals V and 7 are unknown

— Kohn-Sham method of solution: noninteracting electrons
moving in
f p(F

= |

’—I—vxc(f)
R

‘Exchange-correlation pot.

Vor(F)=V,(

— We need to solve:

v ofp e with  p(r)=X, o0




Again, we do not know v_

Local Density Approximation (LDA): exch-corr
energy in each infinitisimal vol = exch-corr energy of a

homogeneo

infinitisimal

LLDA 1includ

us e-gas with same density as in the
vol.

es both exchange and correlation, but

simplisticall

- GGA's

y. Improvement---

Though extremely simple, LDA has been remarkably

successful

No qualitative improvement with GGA's



Applications are too many to list
Some random examples
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e Band structure of Si

Energy (V)

L

r
Expt Gap ~1.1 eV LDA Gap ~0.5 eV

X

LDA underestimates band-gap



* Binding energy/stability

— Cohesive energy of bulk Si (eV/atom)
HEF LDA expt
4.02 5.28 4.62(8)

e Si1(100) surface

— Reconstruction

Si(100)1x1 ideal termination Si(100)2x1 dimer reconsfruction




Nature of bonding

e (Ga clusters

Breaux et al PRL '03
Chako et al PRL '04

pared to bulk Ga!!

N

Ga17 cluster

— Ga clusters melt at higher T co

appens in other systems: Al wire vs. bulk Sen et al '01
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Predicting new materials

* Pentagonal nanowires

— Motivated by experiments on Au

wires Kondo & Takayanagi Sc. 2000
(!

¢ Sen et al '02
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* Experimentally confirmed recently by =

Gonzalez et al. PRL '04 e . e



Can we incorporate correlation effects over HF?

e Different approach taken in quantum Monte Carlo
methods

* QMC methods rely on (many-body)wavefunctions

* Exact wavefunctions are unknown for interacting system

»* Exact equations are impossible to solve (otherwise we
would not need approximate methods)

* Wavefunctions may be complicated quantities,
particularly for large systems

+ Let's see how much we know about
wavefunctions and what we actually can do



* Relevant properties of many-electron wave functions
* Many-body W is anti-symmetric

* Local energy is constant for an eigenfunction

= W should obey e-e and e-n cusp conditions

* Singularities in V (1/r) should be canceled by those from KE

* Example: H atom 1s

wavefunction
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Slater-Jastrow wavefunction

Slater wavefunction cannot have e-e cusp

As there is no I, dependence

The functional form we use for the trial function

_eXp[Z Zl<] Firs JI’ lJ

where

DSL

O‘k<ri1)o‘l<rj1)+o‘k<rjl>o‘l<ri1> -

First term in u: e-e cusp conditions

C=1/4 for like =1/2 for unlike spins

Remaining part introduces correlations

y and ¢,  are variational parameters
m
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Variational Monte Carlo (VMC)

* We need to evaluate integrals like: f (Ij?,[ Hy. ly,|dR
» Where R are distributed Evme™ f L[,12 dR
i T
according to W ° L,
k E, =lim, 6 — Z E, (R)

+ Use stochastic methods to evaluate this multi (3N)-dim
integral

» Y and ¢ _'s are optimized by minimization of variance of
the local energy

2 s 2
Tymc M & [ VMC]



* Cohesive energy of bulk Si (eV/atom)

DMC LDA HF Expt
415 ( 20) S 5828 4.02 4.62(8)

* Binding energy of TiO molecule.

* Binding energies (eV) from various methods

HF 2.64
DFT (LSDA) 9.11
DFT (PW91) 7 45
QMC 6.7(1) Wagner & Mitas '03
Experiment 6.98(17)

* QMC provides the best theoretical value to date
though expensive!



o C20 clusters
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FIG. 15. Relative energies of G, isomers from the HF, LDA,
BLYP, and DMC methods. The energies are given relative to
the lowest-energy isomer within the given theory. From Gross-
man, Mitas, and Raghavachari, 1995.

Grossman & Mitas PRL '95
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FIG. 1. The DMC band structure (filled circles with error bars).
As a guide to the eye, we also show empirical pseudopotential data
(Ref. 21) (solid lines).

Williamson et al '98
QMC energy bands of Si
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- Si  cages encapsulating TM atoms

even number of e: singlets

odd number of e: dublets

“18-e rule” not valid in general
exception: Ti,Zr--singlet and triplet close

+ TiSi_ : singlet or triplet?
HF and B3LYP: triplet
e Competition between
x | localized d on TM and

sp states on Si cage

DMC supports that only TiSi_ is a triplet

WSi12 (Japan)

Sen & Mitas '03



Summary

* Goal: essentially to solve Schroedinger's equation for
interacting electrons in presence of external field of the
1on cores and hence calculate properties of materials

* Different approaches

— Find the wavetunction variationally: HF and beyond

— Minimize energy with respect to charge density: DFT
with LDA/GGA.

e These are “mean field” methods

- Work with many-electron wavefunctions, include
“many-body” exchange-correlation effects: QMC
methods

QMC 1s by far the most accurate method



