PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 4, Pages 959–962 S 0002-9939(01)06264-5 Article electronically published on November 9, 2001

LINEAR SYSTEMS ON ABELIAN VARIETIES OF DIMENSION 2g + 1

JAYA N. IYER

(Communicated by Michael Stillman)

ABSTRACT. We show that polarisations of type (1, ..., 1, 2g+2) on g-dimensional abelian varieties are *never* very ample, if $g \ge 3$. This disproves a conjecture of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings of abelian varieties into 2g + 1-dimensional linear systems.

1. INTRODUCTION

Let L be an ample line bundle of type $\delta = (d_1, d_2, ..., d_g)$ on an abelian variety A of dimension g. Classical results of Lefschetz $(n \ge 3)$ and Ohbuchi (n = 2) imply very ampleness of L^n , if |L| has no fixed divisor when n = 2. Suppose L is an ample line bundle of type (1, ..., 1, d) on A. When g = 2, Ramanan (see [4]) has shown that if $d \ge 5$ and the abelian surface does not contain elliptic curves, then L is very ample. When $g \ge 3$, Debarre, Hulek and Spandaw (see [3], Corollary 2.5, p. 201) have shown the following.

Theorem 1.1. Let (A, L) be a generic polarized abelian variety of dimension g and type (1, ..., 1, d). For $d > 2^g$, the line bundle L is very ample.

They further conjecture that if $d \ge 2g + 2$, then the line bundle L is very ample (see [3], Conjecture 4, p. 184). In particular, when g = 3 and $d \ge 8$, their results (for $d \ge 9$) and conjecture (for d = 8) imply that L is very ample.

The results due to Barth ([1]) and Van de Ven ([5]) show

Theorem 1.2. For $g \geq 3$, no abelian variety A_q can be embedded in \mathbb{P}^d , for $d \leq 2g$.

In particular, it implies that line bundles of type (1, ..., 1, d), $d \leq 2g + 1$, are never very ample.

We show

Theorem 1.3. Suppose L is an ample line bundle of type (1, ..., 1, d) on an abelian variety A, of dimension g. If $g \ge 3$ and $d \le 2g + 2$, then L is never very ample.

This disproves the conjecture of Debarre et. al when d = 2g + 2 and gives a different proof of Theorem 1.2, for morphisms into the complete linear system |L|. The proof of Theorem 1.3 also indicates the type of singularities of the image in |L|.

©2001 American Mathematical Society

Received by the editors May 10, 2000 and, in revised form, October 10, 2000. 1991 Mathematics Subject Classification. Primary 14C20, 14B05, 14E25.

Musicinatics Dubject Classification. 1 millary 14020, 14D05, 14D25.

Now any abelian variety A of dimension g can be embedded in a projective space of dimension 2g + 1.

Consider a morphism $A \longrightarrow |V|$, where $\dim |V| = 2g + 1$. Suppose the involution $i: A \longrightarrow A$, $a \mapsto -a$ lifts to an involution on the vector space V, hence on the linear system |V|. (Such a situation will arise, essentially, if A is embedded by a symmetric line bundle into its complete linear system, of dimension greater than 2g + 1. One may then project the abelian variety from a vertex which is invariant for the involution i to a projective space of dimension 2g + 1, and the involution i will then descend down to this projection.)

Then we show

Theorem 1.4. Suppose there is a morphism $A \xrightarrow{\phi} |V|$, with $\dim|V| = 2g + 1$ and the involution *i* acting on the vector space *V*. If degree $\phi(A) > 2^{2g}$ and $\dim V_+ \neq \dim V_-$, then the morphism ϕ is never an embedding, for all $g \geq 1$. In fact, ϕ identifies some pairs $\{a, -a\}$, where *a* is not a 2-torsion element of *A*. Here V_+ and V_- denote the ± 1 -eigenspaces of *V*, for the involution *i*.

When $dimV_+ = dimV_-$, the morphism ϕ need not identify any pairs $\{a, -a\}$ in |V| (see Remark 3.1 for counterexamples).

2. Proof of Theorem 1.3

Consider a pair (A, L), as in Theorem 1.3.

We may assume, after suitable translation by an element of A, that L is a symmetric line bundle on A, i.e. there is an isomorphism $L \simeq i^*L$, for the involution $i : A \longrightarrow A$, $a \mapsto -a$. This induces an involution on the vector space $H^0(L)$, also denoted as i. Let $H^0(L)^+$ and $H^0(L)^-$ denote the +1 and -1-eigenspaces of $H^0(L)$, for the involution i and $h^0(L)^+$ and $h^0(L)^-$ denote their respective dimensions. Further, we assume that L is of characteristic 0. Then by [2], 4.6.6, $h^0(L)^{\pm} = \frac{h^0(L)}{2} \pm 2^{g-s-1}$, where s is the number of odd integers in the type δ of L. Choose a normalized isomorphism $\psi : L \simeq i^*L$, i.e. the fibre map $\psi(0) : L(0) \longrightarrow L(0)$ is +1.

Let A_2 denote the set of torsion 2 points of A. If $a \in A_2$, then $\psi(a) : L(a) \longrightarrow L(a)$ is either +1 or -1.

Let

$$A_2^+ = \{a \in A_2 : \psi(a) = +1\}$$

and

$$A_2^- = \{a \in A_2 : \psi(a) = -1\}$$

and $Card(A_2^+)$ and $Card(A_2^-)$ denote their respective cardinalities.

Consider the associated morphism $A \xrightarrow{\phi_L} \mathbb{P}H^0(L)$ and let

$$\mathbb{P}_+ = \mathbb{P}\{s = 0 : s \in H^0(L)^-\}$$

and

$$\mathbb{P}_{-} = \mathbb{P}\{s = 0 : s \in H^0(L)^+\}$$

Then the involution *i* acts trivially on the subspaces \mathbb{P}_+ and \mathbb{P}_- of $\mathbb{P}H^0(L)$. Moreover, $\phi_L(A_2^+) \subset \mathbb{P}_+$ and $\phi_L(A_2^-) \subset \mathbb{P}_-$.

Lemma 2.1. If $a \in A_2^+$, then the intersection of the image $\phi_L(A)$ and \mathbb{P}_+ is transversal at the point $\phi_L(a)$.

960

Proof. The action of the involution i at the tangent space, $T_{A,a}$, at a, is -1. If the intersection of $\phi_L(A)$ with \mathbb{P}_+ is not transversal at $\phi_L(a)$, then $\phi_{L*}(T_{A,a})$ intersects \mathbb{P}_+ , giving a *i*-fixed non-trivial subspace of $T_{A,a}$, which is not true. (This argument was given by M. Gross.)

Let $Z = \phi_L(A) \cap \mathbb{P}_+$ in $\mathbb{P}H^0(L)$. Then $\phi_L(A_2^+) \subset Z$. Suppose $\dim Z > 0$. Since the involution *i* acts trivially on *Z*, the morphism ϕ_L restricts on $\phi_L^{-1}(Z) \longrightarrow Z$, as a morphism of degree at least 2, with its Galois group containing $\langle i \rangle$. If $\dim Z = 0$, then by Lemma 2.1, the points of $\phi_L(A_2^+)$ have multiplicity 1 in *Z*. Let $r = \deg Z - Card(A_2^+)$. Then there are $\frac{r}{2}$ -points on $\phi_L(A)$ on which the involution *i* acts trivially, i.e. there are $\frac{r}{2}$ -pairs $(a, -a), a \in A - A_2$, which are identified transversally by ϕ_L . By K(L)-invariance of the image $\phi_L(A)$, there are more such pairs.

Remark 2.2. If dim Z > 0 or r > 0, then L is not very ample.

Case 1: d = 2m and $m \leq g + 1$. By [2], 4.6.6, $h^0(L)^+ = m + 1$ and $h^0(L)^- = m - 1$. Hence $dim\mathbb{P}_+ = m$ and $dim\mathbb{P}_- = m - 2$. a) If m < g + 1, then $dimZ \geq g + m - 2m + 1 > 0$. b) If m = g + 1, by Riemann-Roch, $deg\phi_L(A) = (2g + 2).g!$. If dimZ = 0, then since \mathbb{P}_+ and $\phi_L(A)$ have complementary dimensions in $\mathbb{P}H^0(L)$, degZ = (2g+2).g!.

Now by [2], Exercise 4.12 b)-Remark 4.7.7,

$$Card(A_2^+) \le 2^{2g-(g-1)-1}(2^{g-1}+1)$$

= $2^g(2^{g-1}+1).$

Since $g \ge 3$, $r \ge (2g+2) \cdot g! - 2^g (2^{g-1}+1) > 0$.

Hence by Remark 2.2, L is not very ample.

Case 2: d = 2m - 1 and $m \le g + 1$.

Then $h^0(L)^+ = m$ and $h^0(L)^- = m - 1$. Hence $\dim \mathbb{P}_+ = m - 1$ and $\dim \mathbb{P}_- = m - 2$.

a) If m < g + 1, then $dimZ \ge g + m + 1 - 2m > 0$.

b) If m = g + 1, as in **Case 1**, $deg\phi_L(A) = (2g + 1)g!$, and \mathbb{P}_+ and $\phi_L(A)$ have complementary dimension in $\mathbb{P}H^0(L)$. Hence if dimZ = 0, then degZ = (2g + 1)g!. Also, in this case, $Card(A_2^+) \leq 2^{g-1}(2^g + 1)$.

Since $g \ge 3$, $r \ge (2g+1)g! - 2^{g-1}(2^g+1) > 0$. Hence by Remark 2.2, *L* is not very ample.

3. Morphisms into *i*-invariant linear systems

Proof of Theorem 1.4. Consider the morphism $A \xrightarrow{\phi} |V|$, with the involution *i* acting on the vector space V. Let

$$\mathbb{P}_{+} = \mathbb{P}\{s = 0 : s \in V_{-}\}$$

and

$$\mathbb{P}_{-} = \mathbb{P}\{s = 0 : s \in V_{+}\},\$$

where V_+ and V_- denote the +1 and -1-eigenspaces of the vector space V, for the involution *i*. Let $d = degree\phi(A)$.

Now $\dim \mathbb{P}_+ > g$ or $\dim \mathbb{P}_+ < g$ or $\dim \mathbb{P}_+ = g$. Case 1: $\dim \mathbb{P}_+ > g$. Consider the intersection $Z = \mathbb{P}_+ \cap \phi(A)$.

Then $dim Z \ge g + g + 1 - 2g - 1 \ge 0$.

As in the proof of Theorem 1.3, if $\dim Z > 0$, then the restricted morphism $\phi^{-1}(Z) \longrightarrow Z$ is of degree at least 2, since *i* acts trivially on *Z*. Suppose $\dim Z = 0$. Then the intersection of $\phi(A)$ and \mathbb{P}_+ is transversal at the image of torsion 2 points of *A*, by Lemma 2.1. Since $Card(A_2) = 2^{2g}$ and $degree(\phi(A)) > 2^{2g}$, there are pairs $\{a, -a\}$ on *A* which get identified transversally by the morphism ϕ .

Case 2: $dim \mathbb{P}_+ < g$.

In this situation, $dim\mathbb{P}_{-} > g$ and we can repeat the above argument. Hence ϕ is never an embedding.

Remark 3.1. When $\dim V_+ = \dim V_-$, the morphism ϕ need not identify any pair of points $\{a, -a\}$ in the linear system |V|. For example, consider a symmetric line bundle L, of type (1, 1, 9), on a generic abelian threefold A. Then L is very ample and $\dim H^0(L)_+ = 5$ and $\dim H^0(L)_- = 4$. Hence $\dim \mathbb{P}_+ = 4$ and $\dim \mathbb{P}_- = 3$. Consider the scroll $S_A = \bigcup_{a \in A-A_2} l_{a,-a}$, where $l_{a,-a}$ is the line joining the points a and -a, in |L|. Then the line $l_{a,-a}$ is invariant for the involution i and has two fixed points, one of them, say $x \in \mathbb{P}_+$ and the other, $x' \in \mathbb{P}_-$. This defines a map $A - A_2 \longrightarrow \mathbb{P}_+$, $a \mapsto x$. Hence S_A intersects \mathbb{P}_+ in at most a 3-dimensional subset. Now we can project from a point of \mathbb{P}_+ , outside this subset, and the projection will have the fixed spaces of i to be equidimensional. Also, by the choice of the point of projection, there are no pairs $\{a, -a\}$ identified in the projection.

Acknowledgement

We thank M. Gross for a useful communication and O. Debarre for pointing out a mistake in an earlier version dealing with the case when $dimV_{+} = dimV_{-}$, in Theorem 1.4. We also thank the French Ministry of National Education, Research and Technology, for their support.

References

- Barth, W.: Transplanting cohomology classes in complex-projective space, Amer. J. of Math. 92, 951-967, (1970). MR 44:4239
- Birkenhake, Ch., Lange, H.: Complex abelian varieties, Springer-Verlag, Berlin, (1992). MR 94j:14001
- Debarre, O., Hulek, K., Spandaw, J.: Very ample linear systems on abelian varieties, Math. Ann. 300, 181-202, (1994). MR 95k:14065
- [4] Ramanan, S.: Ample Divisors on Abelian Surfaces, Proc. London Math. Soc. (3), 51, 231-245, (1985). MR 87d:14034
- [5] A. Van de Ven: On the embeddings of abelian varieties in projective spaces, Ann. Mat. Pura Appl. (4), 103, 127-129, (1975). MR 51:8117

INSTITUT DE MATHÉMATIQUES, CASE 247, UNIVERSITÉ PARIS-6, 4, PLACE JUSSIEU, 75252, PARIS CEDEX 05, FRANCE

E-mail address: iyer@math.jussieu.fr

Current address: FB6, Mathematik, Universität GH Essen, 45117 Essen, Germany *E-mail address*: jaya.iyerQuni-essen.de

962