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LINEAR SYSTEMS ON ABELIAN VARIETIES
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ABSTRACT. We show that polarisations of type (1, ...,1,2¢g+2) on g-dimension-
al abelian varieties are never very ample, if g > 3. This disproves a conjecture
of Debarre, Hulek and Spandaw. We also give a criterion for non-embeddings
of abelian varieties into 2g + 1-dimensional linear systems.

1. INTRODUCTION

Let L be an ample line bundle of type § = (d1, ds, ..., dy) on an abelian variety A
of dimension g. Classical results of Lefschetz (n > 3) and Ohbuchi (n = 2) imply
very ampleness of L™, if |L| has no fixed divisor when n = 2. Suppose L is an ample
line bundle of type (1,...,1,d) on A. When g = 2, Ramanan (see [4]) has shown
that if d > 5 and the abelian surface does not contain elliptic curves, then L is very
ample. When g > 3, Debarre, Hulek and Spandaw (see [3], Corollary 2.5, p. 201)
have shown the following.

Theorem 1.1. Let (A, L) be a generic polarized abelian variety of dimension g and
type (1,...,1,d). For d > 29, the line bundle L is very ample.

They further conjecture that if d > 2g + 2, then the line bundle L is very ample
(see [3], Conjecture 4, p. 184). In particular, when g = 3 and d > 8, their results
(for d > 9) and conjecture (for d = 8) imply that L is very ample.

The results due to Barth ([I]) and Van de Ven ([5]) show

Theorem 1.2. For g > 3, no abelian variety A, can be embedded in P%, for d < 2g.

In particular, it implies that line bundles of type (1,...,1,d), d < 2g + 1, are
never very ample.
We show

Theorem 1.3. Suppose L is an ample line bundle of type (1,...,1,d) on an abelian
variety A, of dimension g. If g > 3 and d < 2g + 2, then L is never very ample.

This disproves the conjecture of Debarre et. al when d = 2¢g + 2 and gives a
different proof of Theorem 1.2, for morphisms into the complete linear system |L|.
The proof of Theorem 1.3 also indicates the type of singularities of the image in
L.
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Now any abelian variety A of dimension g can be embedded in a projective space
of dimension 2g + 1.

Consider a morphism A — |V|, where dim|V| = 2g+ 1. Suppose the involution
i: A — A, a — —a lifts to an involution on the vector space V, hence on the
linear system |V/|. (Such a situation will arise, essentially, if A is embedded by a
symmetric line bundle into its complete linear system, of dimension greater than
2g + 1. One may then project the abelian variety from a vertex which is invariant
for the involution i to a projective space of dimension 2¢g + 1, and the involution i
will then descend down to this projection.)

Then we show

Theorem 1.4. Suppose there is a morphism A 2, [V, with dim|V|=2g+1 and
the involution i acting on the vector space V. If degree ¢(A) > 229 and dimV, #
dimV_, then the morphism ¢ is never an embedding, for all ¢ > 1. In fact, ¢
identifies some pairs {a,—a}, where a is not a 2-torsion element of A. Here Vi
and V_ denote the t£1-eigenspaces of V', for the involution i.

When dimVy = dimV_, the morphism ¢ need not identify any pairs {a, —a} in
|[V| (see Remark 3.1 for counterexamples).

2. PROOF OF THEOREM 1.3

Consider a pair (A, L), as in Theorem 1.3.

We may assume, after suitable translation by an element of A, that L is a
symmetric line bundle on A, i.e. there is an isomorphism L ~ i* L, for the involution
i:A— A, a— —a. This induces an involution on the vector space H°(L), also
denoted as i. Let H°(L)* and H°(L)~ denote the +1 and —1-eigenspaces of H°(L),
for the involution i and h(L)* and hY(L)~ denote their respective dimensions.
Further, we assume that L is of characteristic 0. Then by [2], 4.6.6, h®(L)* =

0
% + 297571 where s is the number of odd integers in the type § of L. Choose a
normalized isomorphism v : L ~ ¢*L, i.e. the fibre map (0) : L(0) — L(0) is +1.

Let A denote the set of torsion 2 points of A. If a € Ay, then ¢(a) : L(a) —
L(a) is either +1 or —1.

Let

AT ={a € Ay : ¢(a) = +1}
and
Ay ={a € Az : ¢(a) = -1}
and Card(A) and Card(A; ) denote their respective cardinalities.

Consider the associated morphism A 2L pH O(L) and let
P, =P{s=0:s¢ H(L)"}
and
P.=P{s=0:s€ H(L)"}.

Then the involution i acts trivially on the subspaces P, and P_ of PH?(L). More-
over, ¢r,(AF) C Py and ¢r(A;) CP_.

Lemma 2.1. If a € AJ, then the intersection of the image ¢r(A) and Py is
transversal at the point ¢ (a).
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Proof. The action of the involution ¢ at the tangent space, T4 q4, at a, is —1. If the
intersection of ¢, (A) with P4 is not transversal at ¢r,(a), then ¢r.(T4,q) intersects
P,, giving a i-fixed non-trivial subspace of T4 4, which is not true. (This argument
was given by M. Gross.) O

Let Z = ¢1(A) NPy in PHO(L). Then ¢(A5) C Z. Suppose dimZ > 0.
Since the involution ¢ acts trivially on Z, the morphism ¢y, restricts on ¢Zl(Z ) —
Z, as a morphism of degree at least 2, with its Galois group containing (7). If
dimZ = 0, then by Lemma 2.1, the points of ¢1,(AJ) have multiplicity 1 in Z. Let
r = degZ — Card(Aj). Then there are 5-points on ¢ (A) on which the involution
i acts trivially, i.e. there are Z-pairs (a,—a), a € A — Ay, which are identified
transversally by ¢,. By K (L)-invariance of the image ¢r,(A), there are more such
pairs.

Remark 2.2. If dimZ > 0 or r > 0, then L is not very ample.

Casel: d=2mand m < g+ 1.

By [2], 4.6.6, h°(L)* =m + 1 and h°(L)™ =m — 1.

Hence dimP; = m and dimP_ =m — 2.

a) If m<g+1, then dimZ >g+m—2m+1>0.

b) If m = g + 1, by Riemann-Roch, degor(A) = (29 + 2).g!. If dimZ = 0, then
since P and ¢, (A) have complementary dimensions in PH?(L), degZ = (2g+2).g!.

Now by [2], Exercise 4.12 b)-Remark 4.7.7,

Card(A3) < 2%9~(9=D=1(99-1 1 1)

=29(2971 4+ 1).

Since g >3, r > (29 +2).g! —29(2971 + 1) > 0.

Hence by Remark 2.2, L is not very ample.

Case2:d=2m—1land m< g+ 1.

Then h°(L)T = m and h°(L)~ = m — 1. Hence dimP, = m — 1 and dimP_ =
m — 2.

a) If m<g+1, then dimZ >g+m+1-2m > 0.

b) If m = g+ 1, as in Case 1, degor(A) = (29 + 1)g!, and P4 and ¢, (A) have
complementary dimension in PH?(L). Hence if dimZ = 0, then degZ = (29 +1)g!.
Also, in this case, Card(AF) < 2971(29 + 1).

Since g > 3, r > (29 + 1)g! — 2971(29 4+ 1) > 0. Hence by Remark 2.2, L is not
very ample. O

3. MORPHISMS INTO ¢-INVARIANT LINEAR SYSTEMS

Proof of Theorem 1.4. Consider the morphism A 2, |V|, with the involution ¢
acting on the vector space V. Let

P, =P{s=0:s€V_}
and
P_=P{s=0:s5€V,},

where V. and V_ denote the +1 and —1-eigenspaces of the vector space V', for the
involution 4. Let d = degree¢(A).
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Now dimPy > g or dimPy < g or dimPy = g.

Case 1: dimP, > g.

Consider the intersection Z = P4 N ¢(A).

Then dimZ > g+g+1—29g—12>0.

As in the proof of Theorem 1.3, if dimZ > 0, then the restricted morphism
¢~ 1(Z) — Z is of degree at least 2, since 7 acts trivially on Z. Suppose dimZ = 0.
Then the intersection of ¢(A) and P is transversal at the image of torsion 2 points
of A, by Lemma 2.1. Since Card(As) = 229 and degree(¢(A)) > 229, there are
pairs {a,—a} on A which get identified transversally by the morphism ¢.

Case 2: dimP, < g.

In this situation, dimP_ > g and we can repeat the above argument.

Hence ¢ is never an embedding. [l

Remark 3.1. When dimV, = dimV_, the morphism ¢ need not identify any pair
of points {a, —a} in the linear system |V|. For example, consider a symmetric line
bundle L, of type (1,1,9), on a generic abelian threefold A. Then L is very ample
and dimH°(L); = 5 and dimH°(L)_ = 4. Hence dimP; = 4 and dimP_ = 3.
Consider the scroll S4 = UaeA_A2 lg,—a, Where [, _, is the line joining the points
a and —a, in |L|. Then the line [, _, is invariant for the involution ¢ and has two
fixed points, one of them, say x € P, and the other, 2’ € P_. This defines a map
A—A; — P4, a— z. Hence S, intersects P4 in at most a 3—dimensional subset.
Now we can project from a point of P, outside this subset, and the projection will
have the fixed spaces of i to be equidimensional. Also, by the choice of the point
of projection, there are no pairs {a, —a} identified in the projection.
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