
BUNDLES OF VERLINDE SPACES IN ALGEBRAIC GEOMETRY

JAYA NN IYER

Abstract. A Verlinde space of level k is the space of global sections of the k-th power of
the determinant line bundle on the moduli space SUC(r) of semi-stable bundles of rank
r on a curve C. The aim of this note is to make accessible some remarks on the action
of the Theta group on the Verlinde spaces of higher level, well–known to the experts on
the subject. This gives a decomposition of the bundle of Verlinde spaces over the moduli
space of curves and we indicate how to compute the rank of the isotypical components
in the decomposition.

Contents

1. Introduction

2. The space H0(SUC(r), ΘC) is a Heisenberg module

3. Parabolic case

4. A decomposition of the Verlinde bundles of higher level

5. A remark on the multiplicities of the isotypical components

6. References

1. Introduction

Let C be a nonsingular connected projective curve defined over C. The Jacobian variety

J(C) associated to the curve is a moduli space of rank one and degree zero bundles on the

curve C. There is a natural polarization ΘC on the Jacobian and one can associate the

space H0(J(C), Θk
C) of global sections of the k-th power of the line bundle ΘC , also called

as the abelian theta functions. The Theta group G(Θk
C) was introduced by Mumford

[Mu2] and he prescribed an action of this group on H0(J(C), Θk
C) (more generally for

sections of line bundles on abelian varieties, see §2.1) and obtained results on equations

defining abelian varieties amongst many other moduli questions.

A higher rank analogue of J(C) is the moduli space UC(r, 0) of semi–stable bundles

of rank r and degree 0 and the moduli space SUC(r) of semi–stable vector bundles of

rank r and trivial determinant on C, introduced by Mumford, Narasimhan and Seshadri

[Mu1], [Na-Se], [Se]. There is a polarization Θ on the moduli space SUC(r) called as

the determinant bundle [Dr-Na]. The space H0(SUC(r), Θk) of global sections of Θk are
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called as the Verlinde spaces of level k. The sections are also called as the generalized

theta functions. An action of a theta group G on the space H0(SUC , Θ) was prescribed

in [BNR] and it was shown to be an irreducible G–module. We wish to investigate the

G–action on the higher level Verlinde spaces.

We put this in the framework of families of these moduli spaces over the moduli space

of curves. This is done to be able to compute the Chern classes of the bundle of the

Verlinde spaces of level one and we hope that it finds applications on further questions.

Suppose πC : C −→ T is a smooth projective family of curves of genus g. We can

associate to this family, the relative moduli space

(1) πS : SUC(r) −→ T

of semi–stable vector bundles of rank r and trivial determinant. There is a relative

polarization Θ on SUC(r), also called as the determinant bundle.

The Verlinde bundles

Vr,k := πS ∗(Θ
k)

are known to be equipped with a projectively flat connection (i.e., a flat connction on the

projectivization P(Vr,k)), also called as Hitchin’s connection (see [Fa1], [Hi]). We notice

that ΘC is not uniquely defined since we can tensor it by the pullback of any line bundle

on T . This implies that the Verlinde bundles are defined upto taking tensor product with

a line bundle on T .

Let γr,k = dimH0(SUCt
(r), Θk

t ) be the dimension of the space of sections of Θk
t . Then,

by [Be-La], [Fa2] we have the ‘Verlinde formula’:

γr,k = (
r

r + k
)g.

∑

StR=[1,r+k]

|S|=r

∏

s∈S

z∈R

|2.sin π
s − z

r + k
|g−1.

We show that there is a decomposition of the Verlinde bundle, of the form
⊕

χ∈K̂(δ)k

Wχ ⊗ Fχ

over a suitable cover of T . Here Wχ is an irreducible Heisenberg representation (of higher

weight) and Fχ is a vector bundle on an étale cover of T over any point (Proposition 4.2).

This is an application of Mumford’s Theorem [Mu3, Proposition 2, p.80] of theta groups,

to the case of generalized theta functions.

We indicate how the rank of the bundles Fχ can be computed (section 5). This shows

that the dimension of the isotypical components are different and the isotypical component

corresponding to the trivial character is greater than the other components. This is in

contrast with the abelian theta functions, where all the components are equi-dimensional

(see [Iy1, Proposition 3.7], which is stated for level 2, but in fact it holds for any level).
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As an application, we compute the Chern character of the level one Verlinde bundle in

the rational Chow groups (Corollary 4.3).

The proof is via a study of the Heisenberg group representations [Mu2], [Iy1]. We extend

the action of the Heisenberg group to higher level Verlinde spaces to obtain our assertion.

The action is prescribed in a more general set-up, i.e., for moduli of parabolic bundles. Our

hope was to compute the multiplicities using degeneration of the moduli spaces with their

polarizations and using the Factorisation theorems. It then becomes essential to consider

moduli of parabolic bundles with a G-action on the space of generalized theta sections .

The Factorization theorems were proved by Faltings, Narasimhan, Ramadas, Sun [Fa2],

[Na-Ra], [Su] and many other mathematicians in computing the Verlinde formula in some

cases. It seemed difficult for us to carry out the computations with a G–action though.

We include §3 for the interested readers who might want to use this approach.

The results on the decomposition using the theta group seems to be well–known to the

experts though not written down explicitly in the literature. Beauville, Laszlo, Sorger

[Be1], [Be-La-So], Andersen-Masbaum [An-Ma] have treated special cases. We thank the

referees for the helpful comments, pointing out some references, indicating some errors and

making useful remarks on improving the exposition. We thank H. Esnault for suggesting

to investigate the Chern classes of the Verlinde bundles. This is an extension of the

questions posed in [Es2] and we hope to consider it in a future work. We also thank

A. Beauville for informing us to consider the quotients of SUC(r) which led to §5 and

pointing out a gap in an earlier version.

2. The space H0(SUC(r), ΘC) is a Heisenberg module

All the varieties are considered over the field of complex numbers.

2.1. Theta groups. We recall the definition of the Theta group introduced by Mumford

and refer to [Mu2] for details.

Suppose A is an abelian variety of dimension g and let L be an ample line bundle on

A. Consider the translation map, for any a ∈ A :

ta : A −→ A, x 7→ x + a.

Consider the group :

K(L) = {a ∈ A : L ' t∗aL}

and the Theta group of L:

G(L) = {(a, φ) : L
φ
' t∗aL}.

In particular there is a central extension :

1 −→ C∗ −→ G(L) −→ K(L) −→ 0.
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2.2. Heisenberg groups. Fix positive integers δ1, δ2, ..., δg such that δi divides δi+1, for

each i. The g–tuple δ = (δ1, . . . , δg) is called the type of δ.

Given a type δ, write

K1(δ) = (
Z

δ1Z
× ... ×

Z

δgZ
)

K̂1(δ) = Group of characters on K1(δ)

K(δ) = K1(δ) ⊕ K̂1(δ).

The Heisenberg group Heis(δ) is the set

C∗ × K(δ)

with a twisted group law: (α, x, l).(β, y,m) = (α.β.m(x), x + y, l.m) [Mu2].

Consider the C–vector space

V (δ) = {f :
Z

δ1Z
× ... ×

Z

δgZ
−→ C}

and the action of (α, x, l) ∈ Heis(δ) on f ∈ V (δ) is given as :

(α, x, l).f(y) = αl(y).f(x + y).

Then we have

Theorem 2.1. The C–vector space V (δ) is of dimension equal to δ1.δ2...δg and is the

unique irreducible representation of the Heisenberg group Heis(δ) such that α ∈ C∗ acts

by its natural character.

Proof. See [Mu2, Proposition 1]. ¤

Definition: If W is a representation of the Heisenberg group Heis(δ) such that α ∈ C∗

acts as multiplication by αl, then we say that W is a Heis(δ)–module of weight l.

We have the following result on higher weight Heis(δ)–modules.

Proposition 2.2. The set of irreducible representations of the Heisenberg group Heis(δ)

of weight l is in bijection with the set of characters on the subgroup of l–torsion elements,

K(δ)l ⊂ K(δ).

Moreover the dimension of any such representation is

δ1...δg

(l, δ1)...(l, δg)
.

If χ is a character on K(δ)l and Wχ is the corresponding irreducible representation then

Wχ ⊗ χ−1 is identified with the Heis( δ
l
)–representation V ( δ

l
) of weight 1. Here δ

l
=

( δ1
(l,δ1)

, ...,
δg

(l,δg)
) and (l, δi) denotes the greatest common divisor of l and δi.
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Proof. See [Iy1, Proposition 3.2] when l = 2 and [Iy2, Proposition 5.1] when l > 2. ¤

2.3. H0(SUC(r), ΘC) as a Heis(δ)–module of weight 1. Given a nonsingular projective

curve C of genus g and integers r, d, the moduli space of semi–stable vector bundles of

rank r and degree d is denoted by UC(r, d). The moduli space of semi–stable bundles on

C of rank r and trivial determinant is denoted by SUC(r) and the ample polarization

on it by ΘC [Dr-Na]. The Jacobian Jn
C parametrises degree n line bundles on C, upto

isomorphisms.

Notice that the subgroup (JC)r of r-torsion points on JC , acts on the moduli space

SUC(r)

E 7→ E ⊗ l, for l ∈ Pic0(C)r = J(C)r

and it leaves ΘC invariant [BNR, p.178].

Consider the commutative diagram (I):

Θk
C

φ
' Θk

C

↓ ↓

SUC(r)
⊗lr−→ SUC(r)

Here lr is the line bundle corresponding to a r-torsion point on J(C).

Consider the group

Gk(ΘC) = {(lr, φ) : Θk
C

φ
' (⊗lr)

∗Θk
C}.

Then there is an exact sequence:

1 −→ C∗ −→ Gk(ΘC) −→ J(C)r −→ 0

which is a central extension.

We recall the constructions in [BNR] which leads to a description of the vector space

H0(SUC(r), ΘC).

Firstly, the moduli space UC(r, d) is described as follows.

Theorem 2.3. There is a r–sheeted (ramified) covering π : C ′ −→ C with C ′ nonsin-

gular and irreducible such that the rational map π∗ : J
β
C′ −→ UC(r, d) is dominant. The

indeterminacy locus of π∗ is of codimension at least 2 and β = d − degπ∗(OC′).

Proof. See [BNR, Theorem 1]. ¤

Let σ = (detπ∗OC′)−1 be the line bundle and consider the norm map

Nm : J
degσ
C′ −→ J

degσ
C .

Let P ′ = Nm−1σ be the variety associated to the ramified covering π : C ′ −→ C. We

denote g = genus of C and g′ = genus of C ′. Then there is a commutative diagram (I)

([BNR, Proposition 5.7, p. 178]) :
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P ′ × J
g−1
C

is
−→ J

g′−1
C′

↓ π∗,is ↓ π∗

SUC(r) × J
g−1
C

isU−→ U(r, r(g − 1))

and satisfying:

P.1. the morphism is is an isogeny of degree r2g and isU is the map given by tensor

product. Further, (isU)∗ΘU ' p∗1ΘC ⊗ p∗2ΘJ , for the natural projections pi.

P.2. π∗ induces a dominant (generically finite) rational map

π∗,is : P ′ −→ SUC(r).

The indeterminacy locus of π∗,is is of codimension at least 2.

P.3. ΘP ′ = (π∗,is)
∗(ΘC) is a primitive line bundle (i.e., not a power of another line

bundle) and is of type δ = (1, 1, ..., 1, r, r, ..., r). Here r occurs g–times.

P.4. The subgroup (JC)r of r–torsion points of JC acts on SUC(r) and leaves the

line bundle ΘC invariant. There is a G(ΘP ′)–action on the sections of ΘP ′ such that

the pullback map H0(SUC(r), ΘC) −→ H0(P ′, ΘP ′) is equivariant for this group and the

pullback map is an isomorphism.

Consider the commutative diagram (II):

P ′ ⊗lr−→ P ′

↓ π∗,is ↓ π∗,is

SUC(r)
⊗lr−→ SUC(r)

Here lr ∈ Pic0(C)r = J(C)r.

Remark 2.4. Notice that P.3 and (II) imply that G1(ΘC) ' G(ΘP ′). Indeed, the map

is given by (lr, φ) 7→ (lr, (π∗,is)
∗φ) which is injective and hence an isomorphism. Further,

this implies that the Weil pairing (given by the commutator map) on J(C)r, corresponding

to the extension

1 −→ C∗ −→ G1(ΘC) −→ J(C)r −→ 0

is nondegenerate. Also, G1(ΘC) acts on H0(SUC(r), ΘC) with weight 1 and is an irre-

ducible representation.

Remark 2.5. The above mentioned remark can be extended to the following case: consider

the moduli space SUC(r, η) of semi-stable bundles with fixed determinant η. Now lr ∈

J(C)r acts on SUC(r, η) as E 7→ E ⊗ lr. Since Pic SUC(r, η) = Z.ΘC ([Dr-Na]) any

point lr of J(C)r corresponds to a finite order automorphism of SUC(r, η), we have ΘC '

(⊗lr)
∗ΘC. As earlier we can form the group of automorphisms G1(ΘC) of ΘC. Further,

there is a Weil form on J(C)r, given by the commutator map associated to the extension,

1 −→ C∗ −→ G1(ΘC) −→ J(C)r −→ 0.
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This form is nondegenerate since ΘC is primitive. In other words, G1(ΘC) can be identified

with the standard Heisenberg group Heis(δ), where δ = (r, ..., r) and r occurs g-times.

Remark 2.6. Since there is a (surjective) homomorphism

G1(ΘC) −→ Gk(ΘC), (x, φ) 7→ (x, φ⊗k)

we see that G1(ΘC) acts on H0(SUC(r, η), Θk
C) and α ∈ C∗ acts as α 7→ αk, i.e., with

weight k.

3. Parabolic case

Suppose C is a nonsingular projective connected curve of genus g and E is a vector

bundle on C. Fix a parabolic data ∆:

S = {xi : 1 ≤ i ≤ n} ⊂ C is a finite set of n distinct points,

fix a positive integer m and for each x ∈ S associate a sequence of integers

0 < a1(x) < a2(x) < ... < alx+1(x) < m

called weights a(x) = (a1(x), ..., alx+1(x)). The weights a(x) have multiplicities n(x) =

(n1(x), n2(x), ..., nlx+1(x)) associated to a flag of the fibre Ex

E(x) = F0(Ex) ⊃ F1(Ex) ⊃ ...Flx(Ex) ⊃ Flx+1(Ex) = 0

such that nj(x) = dim(
Fj−1(Ex)

Fj(Ex)
).

Consider the moduli space SUC(r, ∆) of vector bundles of rank r and trivial determinant

and which are semi–stable with respect to the parabolic data ∆. Then SUC(r, ∆) is a

projective variety ([Me-Se]). There is a parabolic theta line bundle Θ∆ on SUC(r, ∆) which

is ample ([Na-Ra, Theorem 1.(A)]).

We briefly recall the constructions (see also [Su]):

Consider the Quot-scheme Q of coherent sheaves of rank r and degree 0 over C and

trivial determinant, which are quotients of OP (N)(−N), with a fixed Hilbert polynomial

P . Here N is chosen large enough so that every ∆–parabolic semi–stable vector bundle

with Hilbert polynomial P occurs as a point in Q.

Thus on C ×Q, there is a universal sheaf F , flat over Q and denote the restriction on

x ×Q by Fx, for x ∈ S. Let

Flagn(x)(Fx) −→ Q

be the relative Flag scheme of type n(x). Consider the fibre product

R = ×x∈SFlagn(x)(Fx)
pr
−→ Q.

Let Rss ⊂ R denote the open subscheme of R whose points correspond to ∆–parabolic

semi–stable bundles with trivial determinant. The pullback of F −→ C × Q, under

Id × pr, to C ×Rss is still denoted by F .
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Denote the quotients

Qx,i =
Fx

Fi(Fx)
.

The parabolic theta line bundle is defined as

(2) Θ∆ = (detRπ∗(F))m ⊗
⊗

x∈S

((detFx)
m−alx+1 ⊗

lx⊗

i=1

(detQx,i)
ai+1(x)−ai(x)).

Here π : C ×Rss −→ Rss is the second projection and

detRπ∗(F) = (detπ∗F)−1 ⊗ detR1π∗(F).

The variety SUC(r, ∆) is the ‘good quotient’ of Rss under the action of SL(P (N)).

The ample line bundle Θ∆ descends to an ample line bundle on SUC(r, ∆) and is still

denoted by Θ∆.

Remark 3.1. Consider the open subscheme Q0 ⊂ Q whose points correspond to semi–

stable vector bundles (in the usual sense). Then SL(P (N)) acts on Q0 and there are

rational dominant maps

(3) q1 : Q0 −→ SUC(r)

(4) q2 : SUC(r, ∆) −→ SUC(r)

Remark 3.2. Further, the ample line bundle detRπ∗(F) on Q0 descends to the theta line

bundle ΘC on SUC(r). If m = 1, we write SUC(r, ∆) = SUC(r).

3.1. The space H0(SUC(r, ∆), Θ∆) is a G1(ΘC)–module. Firstly, notice that the group

J(C)r acts on the moduli space SUC(r, ∆):

E 7→ E ⊗ lr

for a line bundle lr ∈ Pic0C = J(C)r.

In fact, there is a commutative diagram (III):

SUC(r, ∆)
⊗lr−→ SUC(r, ∆)

↓ q2 ↓ q2

SUC(r)
⊗lr−→ SUC(r)

Lemma 3.3. Suppose the indeterminacy of the map q2 is of codimension at least 2. Then

the vector space H0(SUC(r, ∆), Θ∆) is a G1(ΘC)–module of weight m.

Proof. Since the indeterminacy of q2 is of codimension at least 2, the pullback of ΘC

defines a line bundle on SUC(r, ∆). Further, it follows from (2) that, Θ∆ = q∗Θm
C ⊗ M ,

for some line bundle M on SUC(r, ∆) which is not a pullback from SUC(r). Hence, given

an element (lr, φ) ∈ G1(ΘC), there is an isomorphism
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φ̃ = q∗φ⊗m ⊗ Id : Θ∆ ' (⊗lr)
∗Θ∆

over SUC(r, ∆).

This gives an action of G1(ΘC) on the space of sections H0(SUC(r, ∆), Θ∆). In partic-

ular, the scalars act as α 7→ αm. This proves our assertion.

¤

Corollary 3.4. The vector space H0(SUC(r, ∆), Θk
∆) is a G1(ΘC)–module of weight km.

Proof. Indeed, as shown in Lemma 3.3, (lr, φ) ∈ G1(ΘC) induces isomorphisms

Θk
∆

φ̃⊗k

' (⊗lr)
∗Θk

∆

over SUC(r, ∆). Thus α ∈ C∗ acts on H0(SUC(r, ∆), Θk
∆) as α 7→ αkm. ¤

Suppose δ = (r, r, ..., r) with r occuring g times.

Lemma 3.5. Given a level r–structure on the Jacobian J(C), there is an isotypical de-

composition

H0(SUC(r, ∆), Θk
∆) '

⊕

χ∈K̂(δ)km

nχ.Wχ

where Wχ is an irreducible representation of Heis(δ) of weight km. Moreover, Wχ⊗χ−1

is identified with the Heis( δ
km

)–representation V ( δ
km

) of weight 1.

Proof. A level r–structure h : J(C)r ' K(δ) is induced by an isomorphism

G1(ΘC) ' Heis(δ).

This is true by Remark 2.4 and the arguments in [Mu2, p.318]): consider the subgroups

h−1(K1(δ)), h
−1(K̂1(δ)) ⊂ J(C)r. Consider their lifts which are level subgroups

˜K1(δ),
˜̂

K1(δ) ⊂ G1(ΘC).

Construct f : G1(ΘC) −→ Heis(δ) by mapping ˜K1(δ) onto the subgroup {(1, x, 0) : x ∈

K1(δ)} and
˜̂

K1(δ) onto the subgroup {(1, 0, l) : l ∈ K̂1(δ)}. Now extend multiplicatively

to obtain an isomorphism G1(ΘC) ' Heis(δ).

Hence, by Remark 2.6 and Corollary 3.4, H0(SUC(r, ∆), Θk
∆) is now a Heis(δ)–module

of weight km. By Proposition 2.2, there is an isotypical decomposition as asserted.

¤

Definition 3.6. An isomorphism G1(ΘC) ' Heis(δ) is called a generalized theta struc-

ture.
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4. A decomposition of the Verlinde bundles of higher level

4.1. The Verlinde bundles of level km. Fix a parabolic data ∆ as in the previous

section and satisfying the hypothesis in Lemma 3.3.

Consider a smooth projective family of curves with n–marked points

(5) π : C −→ T

of genus g > 0 and suppose T is nonsingular.

Remark 4.1. We may assume that T is the moduli space of nonsingular projective con-

nected n–marked curves of genus g, with suitable level structures, so that there is a uni-

versal curve over T .

We can associate to (5), the following families:

(6) πJ : J −→ T

is the family of Jacobian varieties of dimension g,

(7) πr : SU(r) −→ T

is the family of moduli spaces of semi–stable vector bundles of rank r and trivial deter-

minant and

(8) πS : SU(r, ∆) −→ T

is the family of moduli spaces SU t(r, ∆) of ∆–parabolic semi–stable vector bundles on Ct

of rank r and trivial determinant.

There is a line bundle Θ∆ (resp. Θ) on SU(r, ∆) (resp. SU(r)) such that Θ∆ restricts on

any fibre SU t(r, ∆) (resp. SU t(r)) to the parabolic theta bundle Θ∆,t (resp. Θt) [Dr-Na],

[Na-Ra].

Definition: The vector bundles

Vr,km = πS ∗(Θ
k
∆)

are called as the Verlinde bundles of level km, for k > 0.

4.2. A decomposition of the Verlinde bundles. We denote

γr,km =
rg

(km, r)g
.

∑

χ∈K̂(δ)km

nχ = rank Vr,km.

Consider the group scheme Jr −→ T which is the kernel of the homomorphism

J −→ J

given by multiplication by r on J . There is an exact sequence

1 −→ Gm,T −→ G1(Θ) −→ Jr −→ 0
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where G1(Θ) represents the functor defining the automorphisms of Θ over the sections of

Jr (see also [Mu3, p.76], for similar constructions).

Proposition 4.2. Given a t0 ∈ T , there is an étale open cover U −→ T of t0, such that

Vr,km '
⊕

χ∈K̂(δ)km

Wχ ⊗ Fχ

over U and for some vector bundles Fχ on U .

Proof. Suppose T is the moduli space of nonsingular n–marked curves with level r–

structure. Given a t0 ∈ T , a level r–structure can be lifted locally on T to a generalized

theta structure, say over an open étale cover U −→ T , i.e., the group scheme G1(Θ) trivi-

alizes over U and is identified with Heis(δ)×U . Hence Heis(δ)×U acts on the Verlinde

bundle Vr,km with weight k.

Now the proof is, by using Lemma 3.5 and the arguments in [Mu3, Proposition 2, p.80]:

Since the subgroup K(δ)km is represented over T , there is a vector bundle decomposition

Vr,km '
⊕

χ∈K̂(δ)km

Wχ

where Wχ is a subbundle and is acted by the character χ.

Over U , we know that Wχ is acted upon by Heis( δ
km

) and hence

Wχ ' Wχ ⊗ Fχ

where Wχ is defined in section 2. and for some vector bundle Fχ of rank nχ.

This gives the required isomorphism

(9) Vr,km
'

−→
⊕

χ∈K̂(δ)km

Wχ ⊗ Fχ

over U .

¤

Corollary 4.3. The Chern character of the Verlinde bundle Vr,1 is written as

ch(Vr,1) = γr,1.ch(LS) ∈ CH∗(T )Q

for some line bundle LS on T .

Proof. In the rational Grothendieck group K0(T )Q,

Vr,1 ' L
⊕γr,1

S

where LS = F0 is a line bundle. This gives the assertion on the Chern characters in the

rational Chow groups CH∗(T )Q.

¤
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Remark 4.4. Since the moduli stack Mg of curves has PicMg = Z.λ ([Ar-Co]), where

λ is the first Chern class of the Hodge bundle π∗ωC/T , it follows that

LS = l.λ ∈ CH∗(T )Q, for some l ∈ Q,

(we may assume T −→ Mg). In particular,

ch(Vr,1) = γr,1.ch(l.λ) ∈ CH∗(T )Q.

5. A remark on the multiplicities of the isotypical components

In this section, we indicate how the multiplicity nχ of the representation Wχ which

occurs in H0(SUC(r, η), Θk
C) (here nχ are as defined in Lemma 3.5), can be computed.

This was mentioned to us by A. Beauville.

Let K ⊂ J(C)r be any subgroup isomorphic to µs × µs, s ≤ r. Consider the moduli

space MSL(r)
µs

of principal semistable SL(r)
µs

bundles.

5.1. The multiplicities when K = J(C)r. In this case we obtain the moduli space

MPGL(r) of principal semi-stable PGL(r)-bundles. Further, fix a point p ∈ C and denote

L = OC(d.p). Then we have [Be1],

MPGL(r) = q0≤d<rM
d
PGL(r)

and

Md
PGL(r) =

SUC(r, L)

J(C)r

.

Suppose Θ′ denotes the primitive line bundle on Md
PGL(r) (i.e., the first power of the

determinant line bundle which descends to the quotient) and

γd
r,k = dimH0(SUC(r, L), Θk

C).

By Remark 2.6, we can write

γd
r,k =

∑

χ∈Ĵ(C)r

nd
χ.dimWχ.

Here nd
χ is the multiplicity of Wχ which occurs in H0(SUC(r, L), Θk

C).

Lemma 5.1. Suppose k is a multiple of r and r is odd or if k is a multiple of 2r and r

is even. Then

nχtriv = dim H0(Md
PGL(r), Θ

′)

and

nχ =
γd

r,k − nχtriv

r2g − 1
, χ 6= χtriv.
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Proof. In [Be-La-So], it is shown that Θk
C descends down to the quotient Md

PGL(r) if k = l.r

and r is odd or if k = l.2r and r is even. We note that the J(C)r-invariant sections of

H0(SUC(r, L), Θk
C) is the isotypical component nd

χtriv .Wχtriv which is precisely the pullback

of the space of sections H0(Md
PGL(r), Θ

′l). Further, by Proposition 2.2, it follows that

dimWχ = 1, for any χ ∈ Ĵ(C)r. The assertion now follows from the equality

γd
r,k =

∑

χ∈Ĵ(C)r

nd
χ.dimWχ

and noting that nd
χ is constant, for any χ 6= χtriv. ¤

Remark 5.2. In [Be1, Proposition 3.4], when r is a prime, dimH0(Md
PGL(r), Θ

′l) is com-

puted. Hence we get an explicit formula for the multiplicities nχtriv and nχ in this case.

5.2. The multiplicties when K ⊂ J(C)r. For a subgroup K = µs×µs ⊂ J(C)r, s < r,

we consider the intermediate quotients

SUC(r, L) −→
SUC(r, L)

K
−→ Md

PGL(r).

As in §5.1, the disjoint union

MSL(r)
µs

:= q0≤d<r
SUC(r, L)

K

is the moduli space of principal semi-stable SL(r)
µs

- bundles.

Lemma 5.3. Given any integer k, there is a subgroup K = µs ×µs ⊂ J(C)r, s ≤ r, such

that Θk
C descends down to the variety SUC(r,L)

K
as a power of a primitive line bundle Θ′

K.

Proof. Notice that the degeneracy of the Weil form on J(C)r associated to the exact

sequence

1 −→ C∗ −→ G1(Θ
k
C) −→ J(C)r −→ 0

is a subgroup K = µs × µs ⊂ J(C)r for some s ≤ r. Hence there is a lift of K in G1(Θ
k
C)

over K which forms a descent data for the line bundle Θk
C . ¤

As in §5.1, we denote for L = O(d.p) and 0 ≤ d < r,

γd
r,k = dimH0(SUC(r, L), Θk

C)

and nd
χ is the multiplicity of Wχ which occurs in H0(SUC(r, L), Θk

C).

Then

γd
r,k =

∑

χ∈ bK

nd
χ.dimWχ.

Hence we write

γr,k :=
∑

0≤d<r

γd
r,k

=
∑

χ∈ bK

nχ.Wχ
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where nχ =
∑

0≤d<r nd
χ.

Lemma 5.4. The multiplicities nχ, for any χ ∈ K̂, can be computed.

Proof. By Lemma 5.3, there is an s, 0 ≤ s ≤ r and K = µs × µs ⊂ J(C)r, such that

Θk
C descends to SUC(r,L)

K
as a power of a primitive line bundle Θ′

K . By Remark 2.5,

H0(SUC(r, L), Θk
C) is a G1(ΘC)-module of weight k, for L = O(d.p) and 0 ≤ d < r. By

conformal field theory ([S-Y]), we know the vector space dimension
∑

0≤d<r

dimH0(Md
SL(r)

µs

, Θ′l
K).

As shown in Lemma 5.1, a similar argument gives the multiplicities nχ =
∑

0≤d<r nd
χ,

for any χ ∈ K̂.

¤

Remark 5.5. If the dimensions of the individual vector spaces H0(Md
SL(r)

µs

, Θ′l
K) are known

then we would be able to compute the individual multiplicties nd
χ.

5.3. A remark on the multiplicities nχ. Let γr,k = dimH0(SUC(r), Θk
C). Then by the

Verlinde formula ([Be-La],[Fa2]), we have

γr,k = (
r

r + k
)g.

∑

StR=[1,r+k]

|S|=r

∏

s∈S

z∈R

|2.sin π
s − z

r + k
|g−1.

Also, by Remark 2.6, we can write

γr,k =
∑

χ∈ ̂(J(C)r)k

nχ.dimWχ

=
rg

(r, k)g
.

∑

χ∈ ̂(J(C)r)k

nχ, by Proposition 2.2.

Comparing the above two expressions, we get

∑

χ∈ ̂(J(C)r)k

nχ =
(r, k)g

(r + k)g
.

∑

StR=[1,r+k]

|S|=r

∏

s∈S

z∈R

|2.sin π
s − z

r + k
|g−1.

(See also [Za], for the various aspects of the Verlinde formula.)
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