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Abstract. In this note we define the Chern-Simons classes of a flat superconnection
D + L on a complex supervector bundle E such that D preserves the grading, and L is
an odd endomorphism of E on a supermanifold. As an application we obtain a definition
of Chern-Simons classes of a (not necessarily flat) morphism between flat vector bundles
on a smooth manifold. We extend Reznikov’s theorem on triviality of these classes when
the manifold is a compact Kähler manifold or a smooth complex quasi–projective variety,
in degrees > 1.

1. Introduction

Suppose (X, C∞
X ) is a C∞-differentiable manifold endowed with the structure sheaf C∞

X

of smooth functions. Let E be a complex C∞ vector bundle on X of rank r and equipped

with a connection ∇. The Chern-Weil theory defines the Chern classes

ci(E,∇) ∈ H2i
dR(X, C), for i = 0, 1, ..., r

in the de Rham cohomology of X. These classes are expressed in terms of the GLr-

invariant polynomials evaluated on the curvature form ∇2.

Suppose E has a flat connection, i.e., ∇2 = 0. Then the de Rham Chern classes are

zero. It is significant to define Chern-Simons classes for a flat connection. These are

classes in the C/Z-cohomology and were defined by Chern-Cheeger-Simons in [6], [7].

Quillen has pointed out in [19],[20], a homomorphism u : E0 → E1 between vector

bundles on a smooth manifold M and inducing an isomorphism over a subset A ⊂ M

corresponds to an element in the relative K-group K(M,A). A Chern character in the

de Rham cohomology of M associated to the homomorphism u is computed in [19] whose

class is shown to be equal to the difference ch(E0)− ch(E1) of the Chern characters. This

describes the Chern character of the homomorphism u. In fact, we think that it would

be good to look at a quiver, i.e., a sequence of homomorphisms between vector bundles

E0 → E1 → ... → Er

over a smooth manifold and define the Chern character of the sequence in the de Rham

cohomology. This will involve a study of Zr+1-graded objects, which we will look in the

future. Quillens proof involves regarding E = E0 ⊕E1 as a supervector bundle on M and
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D be any connection preserving the grading and associating an odd endomorphism of E,

with respect to u and a choice of a metric.

In this paper, we want to look at a morphism u between flat vector bundles and extend

Quillen’s construction and define Chern-Simons classes for the morphism u. Hence it is

relevant to define Chern-Simons classes for flat connections in the setting of supermani-

folds, in a more general set-up.

For the definition of supermanifolds, see [8] (as well as [1], [15]). The Chern classes of

supervector bundles are defined in [4], on a supermanifold in the integral cohomology. We

note that the usual Chern-Weil theory on smooth manifolds expresses de Rham Chern

classes in terms of GLn-invariant polynomials on the curvature form of a connection on a

smooth vector bundle. In the supersetting, a study of the GL(r, s)–invariant polynomials

has been carried out by Sergeev [23], following works by Berezin [3],[5] and Kac [12],

see also [24] by Shander. The differential forms defined by Quillen which are obtained

from the Chern character streD+L can be expressed as rational functions of the GL(r, s)–

invariant polynomials, by the above results in [3], [5], [12], [24], [23]. In this paper we use

the existence of such polynomials to define the Chern-Simons classes.

Let (M,OM) denote a complex supermanifold and (MB, C∞
M ) denote the underlying

C∞-manifold.

With notations as in [8] or §2, we show

Theorem 1.1. Suppose {∇t}t is a family of superconnections on a complex supervector

bundle E, such that ∇0 preserves the grading. Suppose ∇t0 is flat, for some t0. Then

there is a uniquely determined Chern-Simons class

ĉn(E,Dt0) ∈ H2n−1(MB, R/Z),

for n ≥ 1.

In particular this applies to the following situation:

Corollary 1.2. Suppose (M,OM) is a complex supermanifold. Let Er|s be a complex

supervector bundle on (M,OM) equipped with a superconnection ∇ = D + L such that D

preserves the grading and L is an odd endomorphism of Er|s. Assume that ∇ is a flat

superconnection. Then there exists uniquely determined Chern-Simons classes

ĉn(Er|s,∇) ∈ H2n−1(MB, C/Z)

for n > 0. Furthermore, if MB is a compact Kähler manifold or a smooth complex quasi–

projective variety and D itself is a flat smooth connection, then these classes are torsion,

in degrees > 1.

This can be thought of as an extension of Reznikov’s fundamental theorem [22] on

rationality of Chern-Simons classes on compact Kähler manifold, in the setting of super-

manifolds. We also define Chern-Simons classes of a (not necessarily flat) homomorphism
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u : E0 → E1 between flat complex vector bundles, extending Quillen’s construction of the

de Rham Chern character. Then we prove a relative Reznikov theorem (see Theorem 3.12)

for the classes of the morphism u. More generally, we extend the question of Cheeger-

Simons on the rationality of these classes (see Question 3.10) for flat superconnections of

the type D + L.

2. Preliminaries

We briefly recall the definitions and terminologies from [15] and from the notes by

Deligne and Morgan [8].

Let C∞ be the sheaf of C∞-functions on Rp. The space Rp|q is the topological space

Rp, endowed with the sheaf C∞[θ1, ..., θq] of supercommutative super R-algebras, freely

generated over C∞ by the anticommuting θ1, ..., θq. The coordinates ti of Rp and the θj

and all generators of C∞ obtained from them by any automorphism are said to be the

coordinates of Rp|q. A supermanifold M of dimension p|q is a topological space MB (or

also called as the body manifold with the structure sheaf C∞
M ) endowed with a sheaf of

super R-algebras which is locally isomorphic to Rp|q. The structure sheaf of M is denoted

by OM . We denote p|q, the real dimension of the supermanifold M .

On M = Rp|q, the even derivations ∂/∂ti and the odd derivations ∂/∂θj are defined.

Proposition 2.1. [15, 2.2.3] The OM -module of R-linear derivations of OM is free of

dimension p|q, with basis: the ∂/∂ti and the ∂/∂θj.

Complex supermanifolds are topological spaces endowed with a sheaf of super C-

algebras, locally isomorphic to some (Cp,O[θ1, ..., θq]). Here O is the sheaf of holomorphic

functions on Cp. As before we denote p|q, the complex dimension of the complex super-

manifold M .

Suppose R be a commutative superalgebra and the standard free module Ar|s is the

module freely generated by even elements e1, ..., er and odd elements f1, ..., fs. An auto-

morphism of Ar|s is represented by an invertible matrix

X =

(
X1 X2

X3 X4

)
(1)

such that the (r×r)–matrix X1 and the (s×s)–matrix X4 have even entries and the (s×r)–

matrix X3 and the (r × s)–matrix X2 have odd entries. The group of all automorphisms

of Ar|s is denoted by GL(r, s).

The supertrace of the matrix X is the difference

str(X) := tr(X1) − tr(X2)

of the usual trace of the matrices X1 and X4.

Suppose M is a supermanifold and locally it looks like Rp|q as above. A complex

supervector bundle V on M is a fiber bundle V over M with typical fiber Cr|s and structural
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group GL(r, s). Alternately, it can be considered as a sheaf of OM -supermodules V , locally

free of rank r|s.

The tangent bundle TM is the OM -module of derivations of OM and is a supervector

bundle of rank p|q. The cotangent bundle Ω1
M is the dual of TM . There is a differential

d : OM −→ Ω1
M , giving rise to the super de Rham complex Ω•

M on M .

Lemma 2.2. (Poincaré lemma)[8, p.73] The complex Ω•
M is a resolution of the constant

sheaf on the body manifold MB.

In particular, the cohomology of MB can be computed by the super de Rham complex:

H∗(MB, R) = H∗(Γ(M, Ω•
M)).

We briefly review the group of differential characters and Chern-Simons classes on a

smooth manifold X.

2.1. Analytic differential characters on X [6]. Let Sk(X) denote the group of k-

dimensional smooth singular chains on X, with integer coefficients. Let Zk(X) denote the

subgroup of cycles. Let us denote

S•(X, Z) := HomZ(S•(X), Z)

the complex of Z -valued smooth singular cochains, whose boundary operator is denoted

by δ. The group of smooth differential k-forms on X with complex coefficients is denoted

by Ak(X) and the subgroup of closed forms by Ak
cl(X). Then A•(X) is canonically em-

bedded in S•(X), by integrating forms against the smooth singular chains. In fact, we

have an embedding

iZ : A•(X) →֒ S•(X, C/Z).

The group of differential characters of degree k is defined as

Ĥk
C(X) := {(f, α) ∈ HomZ(Zk−1(X), C/Z) ⊕ Ak(X) : δ(f) = iZ(α) and dα = 0}.

There is a canonical and functorial exact sequence:

(2) 0 −→ Hk−1(X, C/Z) −→ Ĥk
C(X) −→ Ak

Z
(X) −→ 0.

Here Ak
Z
(X) := ker(Ak

cl(X) −→ Hk(X, C/Z)).

Similarly, one can define the group of differential characters Ĥk
R(X) which have R/Z-

coefficients.

2.2. Cheeger-Chern-Simons classes. Suppose (E, θ) is a vector bundle with a con-

nection on X. Then the characteristic forms

ck(E, θ) ∈ A2k
cl (X, Z)

for 0 ≤ k ≤ r=rank (E), are defined using the universal Weil homomorphism [7].
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The characteristic classes

ĉk(E, θ) ∈ Ĥ2k
C(X)

are defined in [6] using a factorization of the universal Weil homomorphism. These classes

are functorial lifting of the forms ck(E, θ).

Similarly, there are classes

ĉk(E, θ) ∈ Ĥ2k
R(X).

Remark 2.3. If the forms ck(E, θ) are zero, then the classes ĉk(E, θ) lie in the cohomology

H2k−1(X, C/Z). If (E, θ) is a flat bundle, then ck(E, θ) = 0 and the classes ĉk(E, θ) are

called as the Chern-Simons classes of (E, θ). Notice that the class depends on the choice

of θ.

Beilinson’s theory of universal Chern-Simons classes yield classes for a flat connection

(E, θ),

ĉk(E, θ) ∈ H2k−1(X, C/Z)

which are functorial and additive over exact sequences (see [9] and [10] for another con-

struction).

3. Chern-Simons classes of flat superconnections on supermanifolds

Let (M,OM) be a complex supermanifold of dimension p|q. Consider the sheaf of

differentials Ω1
M on M and let Er|s be a complex supervector bundle on M of rank r|s.

Lemma 3.1. Given a complex supervector bundle Er|s of rank r|s on M , there exists a

direct sum decomposition

E = E0 ⊕ E1

for some complex smooth vector bundles E0 and E1 of rank r and rank s respectively, on

the underlying C∞-manifold MB.

Proof. A rank r|s complex supervector bundle Er|s determines two complex smooth bun-

dles E0 and E1 on the underlying smooth manifold MB of M as follows. One considers

the body map

OM −→ C∞
M ⊗ C

which is obtained by forgetting the local anticommuting variables θj. Let Er|s denote the

sheaf of (super)sections of Er|s. Then Er+s := Er|s⊗OM
(C∞

M ⊗C) is the sheaf of sections of

a rank r + s smooth complex vector bundle Er+s on the body manifold MB. Locally, the

sheaf Er|s is generated by r even elements and s odd elements as a OM = C∞
M [θ1, ..., θq]–

module. Hence tensoring with C∞
M locally gives a rank r + s free C∞

M–module given by

the same generators. This implies that the complex vector bundle Er+r is of rank r + s.

Now, we notice that the structural group of Er|s is GL(r, s) and the structural group of

the vector bundle Er+s factors via the projection

GL(r, s) → GL(r + s).
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Using the description of the elements in GL(r, s) in (1), it follows that the image under

this projection consists of block diagonal matrices of sizes r × r and s × s.

This implies that the matrix of the transition functions of Er+s is a block diagonal

matrix of rank r and rank s which correspond to smooth complex vector bundles E0 and

E1 such that r = rank E0 and s = rank E1 on MB. �

In view of the above lemma, we may regard a supervector bundle Er|s on M as a

supervector bundle E = E0 ⊕ E1, on the underlying C∞-manifold MB where E0 and E1

are C∞-vector bundles on MB.

3.1. Superconnections. Let Er|s = E = E0 ⊕ E1 be a complex supervector bundle on

a manifold MB. Let Ω(MB) = ⊕Ωp(MB) be the algebra of smooth differential forms with

complex coefficients. Let

Ω(MB, E) := Ω(MB) ⊗Ω0(MB) Ω0(MB, E).

where Ω0(MB, E) is the space of (super)sections of E.

Then Ω(MB, E) has a grading with respect to Z × Z2

A superconnection D on Er|s is an operator on Ω(MB, E) of odd degree satisfying the

derivation property

D(ωα) = (dω)α + (−1)deg ω∇α.

For example, a connection on E preserving the grading when extended to an operator on

Ω(MB, E) in the usual way determines a superconnection.

In local coordinates, when E is trivial it looks like MB × V , V is a Z2-graded complex

vector space, and a superconnection D is of the form d + θ, where θ is an odd element of

Ω(MB) ⊗ End(V ).

The curvature of a superconnection D is the even degree operator D2 := D ◦ D on

Ω(MB, E).

A superconnection is said to be flat if D2 = 0. We call the pair (Er|s, D) as a flat

complex supervector bundle.

We want to define Chern-Simons classes of (E,D) when D is a flat superconnection,

for special types of superconnection.

For this purpose, we look at the situation, considered by Quillen [19] when the super-

connection is locally of the form d + θ where

θ = A + L ∈ Ω1(MB) ⊗ (End V )0 ⊕ Ω0(MB) ⊗ (End V )1.

It is an interesting question to define Chern-Simons classes for arbitrary flat supercon-

nections d+ θ, where θ is an arbitrary odd element of Ω(MB)⊗End(V ), which we do not

know how to treat.
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3.2. Quillen’s construction. Suppose M is a supermanifold and E is a complex super-

vector bundle on M . Regard E = E0⊕E1 as a complex supervector bundle on M in view

of Lemma 3.1, where E0 and E1 are smooth vector bundles on the body manifold MB.

Under this identification we omit the suffix B from MB and without confusion we write

M = MB in the following discussion.

Suppose E is equipped with a superconnection D. From the curvature D2, one can

construct differential forms

str(D2)n = strD2n

in Ω(M)even. These are even forms since the supertrace preserves the grading.

We have,

Theorem 3.2. The form strD2n is closed, and its de Rham cohomology class is indepen-

dent of the choice of superconnection D.

Proof. See [19, Theorem, p.91]. �

Quillen described the (super) Chern character of E in terms of the usual Chern char-

acters of E0 and E1 in the following situation.

Regard E = E0⊕E1 as a complex supervector bundle and D = D0+D1 be a connection

on E preserving the grading. Let L be an odd degree endomorphism of E and write

Dt := D + t.L where t is a parameter.

Proposition 3.3. (Quillen)[19] Replacing L by t.L, where t is a parameter, one obtains

a family of forms

(3) str e(D+tL)2 = str er2L2+t[D,L]+D2

all of which represent the Chern character ch(E0) − ch(E1) in the de Rham cohomology

of M . Here str denotes the supertrace.

�

The referee has pointed out that the above computations on a supermanifold produces

pseudodifferential forms. For our purpose, it suffices to note that the trace form in (3) de-

fines a closed differential form whose de Rham class is independent of the superconnection

[19, Theorem p.91].

In this situation we want to define uniquely determined Chern-Simons classes of (E,Dt)

which is independent of t and if ∇1 = D + L is flat.

For this purpose, we look at the Character diagram of Simons and Sullivan (see [25]):
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(4)

0 0

ց ր

Hk−1(R/Z)
−B
−→ Hk(Z)

ց αր ց i1 δ2 ր ց r ր

Hk−1(R) Ĥk
R(M) Hk(R)

ր ց β i2 ր ց δ1 s ր ց

Ak−1/Ak−1
Z

d
−→ Ak

Z

ր ց

0 0

The diagonal sequences are exact and (α,B, r) is the Bockstein long exact sequence

associated to the coefficient sequence Z → R → R/Z. Also (β, d, s) is another long exact

sequence in which β and s are defined via the de Rham theorem. (A similar diagram

holds by replacing R with C).

Lemma 3.4. Suppose (F,∇) is a smooth connection on a manifold M . Then there is a

uniquely determined differential character

ĉk(F,∇) ∈ Ĥk
R(M)

which lifts the k-th Chern form defined in Ak
Z
. Furthermore, if ∇ is flat then ck(F ) ∈

H2k(M, Z) vanishes in H2k(M, R). There is a unique lifting ĉk(F,∇) ∈ H2k−1(M, R/Z)

of the integral class ck(F ), for k > 0.

Proof. The vanishing of the Chern form for a flat connection is by the Chern-Weil theory.

The rest of the assertion is by the Chern-Simons-Cheeger construction [6] of differential

characters. �

Consider the total Chern class

c(F ) = 1 + c1(F ) + ... + cf (F )

and the total Segre class

s(F ) = 1 + s1(F ) + ... + sf (F ).

Then we have the relations

(5) s(F ) =
1

c(F )
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and

(6) c(F − G) = c(F ).s(G)

where G is any other vector bundle. These relations also hold if we replace the classes

ci(F ) by ĉi(F,∇) and si(F ) by ŝi(F,∇) which are defined by the relation (5). See [6,

p.64-65].

Our goal is to define a canonical lifting in Ĥ∗
R
(M) of the supertrace form (3) associated

to a superconnection (E,∇).

To motivate the definition, we firstly look at the superconnection of the type D + L

where D preserves the grading and L is an odd endomorphism of the complex supervector

bundle E. We consider the family of superconnection Dt = D + t.L as above. We will

see how the class is represented in the de Rham cohomology. Consider the product

manifold R×M and the pullback pr∗2E of the bundle E. This bundle is equipped with a

superconnection

D̄ := dt∂t + D′

whose restriction to {t} ×M is Dt. In terms of local trivialization of E = M × V we can

describe D̄, D′ as follows. Write Dt = dM + θt, where θt is a family of one-forms on M

with values in EndV and let θ be the form on R × M not involving dt and having the

restriction θt on {t} × M . Then D′ = dM + θ and

D̄ = dt∂t + D′ = (dt∂t + dM) + θ = dR×M + θ.

See also [19, p.91].

By the homotopy property of de Rham cohomology, it follows that the class of strD2n
t

in H2n(M, R) is independent of t.

Proposition 3.5. Suppose the superconnection D = D0 ⊕ D1 on the supervector bundle

E = E0 ⊕E1 preserves the grading and the individual connections D0 and D1 are smooth

flat connections on E0 and E1 respectively. Then Dt = D + t.L is a superconnection on

E where L is an odd endomorphism of E. Then there is a uniquely determined class

ĉn(E,Dt) ∈ H2n−1(M, R/Z), independent of t. Moreover this class is equal to

ĉn(E,D + L) =
∑

p+q=n

ĉp(E0, D
0).ŝq(E1, D

1)

Proof. We notice that the trace forms are integral valued. This implies that the Chern

class associated to these forms lies in the integral cohomology H2n(M, Z) which is indepen-

dent of t in H2n(M, R), by Quillen’s Theorem 3.2. This determines a class in H2n(M, Z)

independent of t. But this class vanishes in H2n(M, R) since D has components D0 and

D1 which are flat connections, hence D2 = 0. Using the Bockstein operator in (4), we

conclude that there is a class

ĉn(E,Dt) ∈ H2n−1(M, R/Z)
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which is independent of t and we denote this class by ĉn(E,D + L). We get a uniquely

determined class ĉn(E,D + L) = ĉn(E,D) ∈ H2n−1(M, R/Z), as follows.

To get an expression for this class, we notice that by Quillen’s result Proposition 3.3

the (super) Chern character form of E is the difference ch(E0) − ch(E1) in the integral

cohomology. In particular we want to lift the integral Chern classes of E0 − E1 in the

R/Z-cohomology. The relations in (5) and (6) give the formula

ĉn(E,D + L) :=
∑

p+q=n

ĉp(E0, D
0).ŝq(E1, D

1).

The uniqueness of ĉn(E,D + L) follows from the uniqueness of the Chern-Simons classes

ĉp(E0, D
0) and ĉq(E1, D

1), see Lemma 3.4. This concludes the lemma. �

Remark 3.6. All the above constructions follow verbatim by replacing R/Z-coefficients

with C/Z-coefficients. We call the resulting classes ĉn(E,D+L) ∈ H2n−1(M, C/Z) as the

Chern-Simons classes of the superconnection D + L (or D + t.L for a parameter t).

To define the Chern-Simons class for any flat superconnection, we consider the (super)

Chern character of D + L,

ch(D + L) = str e(D+L)2 .

We look at the degree 2i-terms of this expression,

chi(D + L) := (str e(D+L)2)2i

and we want to lift chi(D + L) as a differential character. Notice that there is a GL(r, s)-

invariant polynomial Pi (see [3], [5], [12], [24], [23]) such that the term chi(D + L) is

obtained by plugging in D + L in Pi, i.e.,

(7) chi(D + L) = Pi(D + L, ..., D + L).

Lemma 3.7. Suppose ∇t is a family of superconnections on a complex supervector bundle

E such that when t = 0, ∇0 is a connection which preserves the grading. Then we can

define the n-th Chern class of (E,∇t) (equivalently ĉhn(∇t)) in the ring of differential

characters.

Proof. Firstly, since ∇0 preserves the grading on E, it corresponds to smooth connections

D0 and D1 on the component bundles of E = E0 ⊕ E1. Hence the differential character

ĉn(E,∇0) is defined by the expression (see Proposition 3.5),

ĉn(E,∇0) =
∑

p+q=n

ĉp(E0, D0).ŝq(E1, D1).

Similarly, we can define the n-degree term of the Chern character in terms of the Chern

characters of E0 and E1,

ĉhn(E,∇0) := ĉhn(E0,∇0) − ĉhn(E,∇0).



CHERN-SIMONS CLASSES 11

To define ĉhn(E,∇t), for t 6= 0, we can use the variational formula of differential

characters of Cheeger-Simons [6, Proposition], obtained by looking at the polynomial Pn

which defines ĉhn(E,∇1) (see (7)):

(8) ĉhn(E,∇1) := n.

∫ 1

0

Pn(
d

dt
∇t ∧∇

2(n−1)
t )dt]Z2n−1

+ ĉhn(E,∇0).

This defines ĉhn(E,∇1) and similarly for any t. By well-known formulas we obtain an

expression for ĉn(E,∇t) also from ĉhn(E,∇t). �

The referee suggested to use the variational formula to define the Chern–Simons class

for any flat superconnection which belongs to a family where one member preserves the

grading.

Corollary 3.8. With notations as above, suppose {∇t}t is a family of superconnections

on E, such that ∇0 preserves the grading. Assume that ∇t0 is flat, for some t0. There

there is a uniquely determined class

ĉn(E,Dt0) ∈ H2n−1(M, R/Z),

for n ≥ 2.

Proof. We use definition of ĉn(E, ,Dt0) ∈ Ĥ2n
R(M) from Lemma 3.7. Since Dt0 is flat,

the Chern form is zero and the Character diagram (4), gives a Chern-Simons class. �

Corollary 3.9. With notations as in Proposition 3.5, suppose ∇ = D + L is flat super-

connection on E, such that D preserves the grading. There there is a uniquely determined

class

ĉn(E,D + L) ∈ H2n−1(M, R/Z),

for n ≥ 2.

Proof. Write a family of superconnections ∇t := D + t.L on E, for t ≥ 0. Now apply

Corollary 3.8 directly to obtain the claim. �

We can extend the question of Cheeger and Simons as follows:

Question 3.10. Suppose M is a supermanifold and (E,∇) is a complex flat supercon-

nection on M such that its Chern-Simons classes are defined. Are the classes

ĉn(E,∇) ∈ H2n−1(M, C/Z)

torsion, if n ≥ 2.

We will see some special situations in the next subsection where this question has a

positive answer.
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3.3. Chern Simons classes for a morphism between flat connections. Consider a

homomorphism u : E0 → E1 between complex vector bundles on a smooth manifold M .

Then u determines a class in the K-group K(M).

Let

L = i

(
0 u∗

u 0

)
.(9)

Here u∗ is the adjoint of u relative to a given metric (see [19]). Regard E = E0 ⊕ E1

as a complex supervector bundle on M and D0 = D0 + D1 be a superconnection on E

preserving the grading. Then L is an odd degree endomorphism of E and as shown in

[19], D + L is a superconnection and its curvature form F = (D + L)2 is an even form

with values in EndE.

Lemma 3.11. Suppose (E0, D
0) and (E1, D

1) are flat connections and u and L are as

above. Then we can define the Chern-Simons classes of the morphism u (which need not

be a flat morphism) in the C/Z-cohomology of M by setting

(10) ĉn(u) := ĉn(E,D0 + L) ∈ H2n−1(M, C/Z)

for n ≥ 1, where ĉn(E,D0 + L) are defined in Lemma 3.5.

Proof. The assumptions of Proposition 3.5 are fulfilled and we obtain uniquely defined

classes

ĉn(u) := ĉn(E,D0 + L) ∈ H2n−1(M, C/Z)

for n ≥ 1. �

We look at the following superconnection of the type D + L, considered by Quillen.

Theorem 3.12. (Relative Reznikov theorem) Suppose u : E0 → E1 is a (not necessar-

ily flat) homomorphism between flat complex vector bundles (E0, D
0) and (E1, D

1) on a

compact Kähler manifold M or a smooth complex quasi–projective variety M . Then the

classes

ĉi(u) ∈ H2i−1(M, C/Q)

are zero, for i ≥ 2.

Proof. By Proposition 3.5, Remark 3.6 and Lemma 3.11 we have the explicit expression

of the class

ĉn(u) =
∑

p+q=n

ĉp(E0, D
0).ŝq(E1, D

1).

When M is a compact Kähler manifold then Reznikov’s theorem [22] says that

ĉn(E0, D
0), ĉn(E1, D

1) ∈ H2n−1(M, C/Z)

are torsion, if n ≥ 2. A similar result is true if M is a smooth complex quasi–projective

variety, by [11]. Since the classes ŝq are expressed in terms of ĉi for i ≤ q, the assertion

follows. This proves the theorem �
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