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Abstract. Inthis paper, we study projective normality of abelian surfaces, with embeddings
given by ample line bundles of tyg&, 4). We show that it/ > 7, the generic abelian surface
is projectively normal.

1. Introduction

Let L be an ample line bundle of type= (61, 82, ..., 8,) on an abelian
variety A of dimensiorg. It is known that the embedding df given by the
morphism¢;» associated td." is projectively normal ifz > 3 and when
n = 2, no point ofK (L?) is a base point fof., (see [2], 7.3.1).

Here we consider the case of an abelian surface vithisrprimitive i.e.
8 is of the form(1, d). Whend < 4, L is not even very ample, while for
d = 5, 6, dimension of SymH(L) is less than that oH°(L?) so thatL
can never be projectively normal. Here we show

Theorem 1.1. Let L be an ample line bundle of typ@ = (1,d) on an
abelian surfaceA. Suppose the Neron Severi groupAofs isomorphic to
Z andd > 7, then the image ofi, under the morphism, : A — P =

P(H®(L)Y) associated td., is projectively normal.

This is the generic situation, by [7]. Lazarsfeld has shown (see [4]) that
this is true ford > 13 and ford = 7, 9, 11 whenevel is very ample. Our
method is different even in these cases. We show tlaisinot projectively
normal, then the corresponding imbedding into the complete linear system,
takesA into a quadric of rank less than or equal to 4, which can be ruled out if
Neron Sevemumber is 1. This results from an analysis of the representations
of the theta grou (L) on Synt H°(L) as well as orH°(L?).
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2. Preliminaries

Let L be an ample line bundle of tyge= (d1, d, ..., d,) on an abelian
variety A of dimensiong.

SupposeL is a symmetric line bundle i.d. ~ i*L, wherei is the
involutiona — —a on A. The action ofi can be lifted to the line bundle
L, and we may normalise this action by requiring that this action still be an
involution and that its action on the fibre bfat O be the identity. Consider
the functione,f which associates to any € A,, the elementt-1 or —1,
according as the action ofon the fibreL, of L ata, is+1 or—1.

Definition 2.1. A symmetric line bundI& on an abelian variety is said
to be strongly symmetric, (see [1]), éf (@) = +1, for all elements in
AN K(L), whereK(L) = {a € A: L ~ L} (t, being the translation
map bya on A).

Consider the natural Heisenberg extengitii.) of K (L) by C*, and the
natural Heisenberg extension Hé&i$ of K (8) = (Z/d1Z x - - - x Z]d,Z)?
by C*.
Recall the following homomorphisms, defined as in [5], ifs symmet-
ric,
€2:G(L) — G(L?)
n2: G(L?) — G(L)
8o 1 G(L) — G(L)
E5 : Heis(8) — Heis(26)
D, : Heis(§) — Heis(9).
Then one has,

82 = n2 o€ for G(L)
82 = €5 onp for G(L? (See [5])

Definition 2.2. Foraline bundleL of types, anisomorphisnf : G(L) —
Heis(8), which restricts to identity oft*, is called a theta structure fak.
Moreover, supposé is symmetric, a theta structurg : G(L) — G(8) is
called symmetriciff o§_1 = D_j0 f.

Proposition 2.3. Let L be a symmetric line bundle of typeon an abelian
variety A of dimension g. Theik is strongly symmetric if and only if it
admits symmetric theta structures.

Proof. Supposel is a strongly symmetric line bundle of. Consider an
isomorphism, sayt, of K (L) onto K (§), which respects the corresponding
Weil pairing of the Heisenberg extensions. By [1],1%:6s induced by a
symmetric theta structurg : G(L) —> Heis(9).
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Conversely, ifL admits a symmetric theta structure, sy then by
definition, f 0 §_y = D_; o f. Consider an element of order 2, sayin
K (L). Letz be alift ofw in G(L). By [5], Proposition 3, p. 309,

8_1(2) = ek (w).z
On the other hand, by definition @_1, D_1(f(z)) = f(z). Hence

fod1(x) = fleg(w).2)
= ey (0).f(2)
= ey (w).D_1(f (2)).

implying el (w) = +1. O

Remark 2.4.By[2],6.9.5, ifH is apolarization of typé= (d1, do, . .., d,),
withdy, ..., d;odd andd, 4, ..., d, even, then there arésymmetric line
bundles inPic (X) admitting symmetric theta structures. Hence by 2.1,
there are 2 strongly symmetric line bundles iRic” (X).

Proposition 2.5. For a pair (A, L), as in 1.1, withL strongly symmetric,
there exist symmetric theta structurgs and f> such that the following
diagram

G(L) -2 Heis(s)
le VE>
G(L?) - Heis(25)

commutes.

Proof. Consider the homomorphism, ; : Heis(25) — Heis(§), where
(x, l)isanorder 2 elementiki (28), givenas) . ; (a, y, m) = (a?l(y)m(x),
2y, m’), wherem’ is the image inK,(8) of m induced by the inclusion
K1(8) =5 K1(28).

By [1], 16.19, there existx, [), an element of order 2 i (25), and
symmetric theta structure§ and f>, such that the following diagram,

G(L?) -2 Heis(25)
l/ n2 \L Nx,D
G(L) -2 Heis(s)
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commutes. Observe thay o 1, ;) = D- for Heis(2§). Now consider,

f20e212(2)) = f2(82(2))
= f2((z%).8_1(2))
= f2(z%). £(5-1(2))
= f2(2)°.D_1(f2(2))
= D>(f2(2))
= Ezo0nun(f2(2)
= Ezo f1(n2(2))

hencefooe; = Eoso f1. O

3. Representations of the Heisenberg group with central charge 2

An irreducible representation of the theta gr@i(d.) such thatr € C* acts
asa — " is said to be otentral charge n

Proposition 3.1. Let L be an ample line bundle of typ@,, d>) on an
abelian surfaceA. Then any irreducible representation of the theta group
G (L), with central charge:, is ofdi_m_ension at Iea%, where(n, d,-)_
denotes the greatest common divisor @ndd;. In partlcuiar, if the type is
(1,d) andn = 2, then every irreducible representation is of dimension at
leastd, if d is odd, and at leasi /2, if d is even.

Proof. See [2], Ex. 6.4.a.0

Now, we prove some statements on irreducible representations of
Heis(8) with central charge 2, and these strengthen 3.1.
Considerthe standard Heisenberg group K®isoftypes = (81, 82, . . . ,,).
Then we have the short exact sequence

(1 1— C* — Heis(§) — K@) — 0

wherek (8) = (Z/87)2.

Proposition 3.2. The set of isomorphism classes of irreducible representa-
tions ofHeis(8) with central charge 2 is in bijection with the set of quadratic
forms onkK (8), whose associated bilinear form is the restriction of the Weil
forme® to K (8),. Moreover, each such representation has dimension equal
to |8]//|K (8)2], where|§| = 81 ... 8,.
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Proof. Let p be an irreducible representation of Heigwith central charge
2. Then,p descends to arepresentation of Héig {+1} with central charge
1. Call it p again. We have a diagram with exact rows,

1— C*—> Heis(¥) —> K@) —0
! ! 2
1—> C* —> Heis(8)/{+1)} % K@) — 0

The left vertical map is the homomorphism— z2. Notice thatk (8); is
isotropic for(e?)?, since ifx, y € K(8)2, (¢%)?(x,y) = €*(2x,y) = 1. In
fact, it is thenilradical of (e?)2. In particular, ifs is a splitting overk (8),
in the second row, then

1 — C* — Heis(8)/{£1, s(K(8)2} — K(8)/K(8)2 — 0

is a standard Heisenberg extension.

Also the subgroupgF = ¥~ 1(K(8),) is the centre of Hei6s)/{+1}).
Hence in the representatign the subgroupF acts as a character, sgy,
such thaty, (o) = « for « € C*. We call such a character, a character with
central charge 1. We first show that this correspondence is a bijection. Let
o1 and p, be two irreducible representations of He&ig/{£1}, with cen-
tral charge 1. Supposg,, = x,,. Since we have chosen the splitting
Xp, Corresponds to a character &n§), which extends to a character on
K(8). Callit x'. Theny = x’ o ¢ is a character on He{8)/{£1} which
is trivial on C*. Notice thats(K (8),) acts trivially in p; ® x~* as well as
in p» ® x 1. Hence these representations descend to irreducible represen-
tations of G = Heis(8)/{£1, s(K (8)2)} with central charge 1. Sinc&
has a unique irreducible representation, upto scalars, with central charge
1, we conclude thap; ® x 1 ~ p, ® x~' as aG-module. This gives
p1 =~ p2 as a Heigd)/{£+1}-module. Conversely, given a character Bn
it corresponds to a charactgron Heis(§)/{£1} of central charge 1, as
shown above. Hence i is the unique irreducible representation®fand
p : Heis(8)/{+1} — G is the quotient map, thefr o p) ® x gives an
irreducible representation of Hgi®)/{41} with central charge 1. Clearly
dimension of any such representation/sk (8)/K (8)2| = |8|//|K(8)2].
Now a charactery’ on F gives a charactey on n~%(K(8),) such that
x (o) = ? for all @ € C*. Define a quadratic form : (K (§)2) — C*
as follows,x — x2x~1(x). One easily sees thatix) = ¢(x), for» € C*
andg(x.y) = €%(x, y)g(x)q(y). Henceg corresponds to a quadratic form
on K (8), whose associated bilinear form is the restriction of the Weil form
e t0 K (), O

Let V (§) be the unique irreducible representation of Héjswith central
charge 1 andlaD be the set of all quadratic forms &h(§), whose associated
bilinear form is the restriction of® to K (§),.
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Lemma 3.3. The vector spac® () ® V(8) is aHeis(§)-module with cen-
tral charge 2 and splits into isotypical components correspondirg4oQ,
each of dimension equal t6/°/| K (8)-|.

Proof. Let G = (Heis(8) x Heis(8))/{(x, A1) : A € C*}. Then by [6],
1.1.5,

1—C"—G—K@B)xK@®B)—0

is a Heisenberg extension with Weil pairia) x ¢’ and the vector space
V(§)®V (8) isthe unique irreducible representatiortoivith central charge
1. Notice thak (K (8)2) C Heis(8)/{£1} & G andK (8), & K@) x K ()

is isotropic fore® x ¢°. HenceV (8) ® V(§) = ersm) I,. Clearly dim

I, = |81%/1K (8)2]. Sincex € s(K (8)2) correspond to quadratic forms as
shown in 3.2, the proposition is provedi

Now, Synt(V (8)) andA?V (8) are Heigs) /{#1}-modules and we wish
to determine the isotypical decomposition of these vector spaces for any type
8. SincekK (§) can be written ak (81) x K (82) such that;, = (2,2,...2)
andé; = (81,62, ...,8,), where if§; is even then it is divisible by 4, the
Heisenberg group He{g) = Heis(81) x Heis(82)/{(x, A1) : » € C*} and
the unique irreducible representatiBigs) can be written a¥ (51) ® V (82).
Hence it is enough to study the cases wbea §; andsé = 4».

Remark 3.4Whens = (2,2, ..., 2) it is well known that SymV (§) =

Y g0, arfgr=0 Eq @A APV(S) = 3 4 (=1 Eq» Where Arf(q) de-
notes the Arf invariant ofy and E, are the isotypical components corre-
sponding tay of dimension 1.

Proposition 3.5. Supposé = (81, 82, ..., §5), such that if§; is even then
it is divisible by 4. Then the isotypical decomposition is given as follows,

SymtvE) = Y 181/QVIK®)al).0q
xeK@)2.0#1
+ (8] + 1K 82D/ (2J/1K 8)a]). 01
and
NV = ) 1BI/@VIK®)aD)-py
XK ()2, x#1

+ (18] = 1K (8)2)/(2J/|K (8)2]). o1,

wherep, is the irreducible representation efeis(§) with central charge 2,
corresponding to the charactef on K (8)..
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Proof. Notice thatK (§), C 2K (8). Hencek (8) is isotropic fore®, since
if x,y € K(8)2,x =2x"ande’(x, y) = e’ (x', y)? = €*(x', 2y) = 1. Thus
the quadratic forms o (8), are actually characters dti(s8),. Hence ifs
is a splitting overk (3)2 in (1) thenV(8) = > 55, Wy, WhereW, =
{feV@®) :s)f =x@)f forx € K(§)2} and dinW, = |5]/|K (8)2].
HenceV(6) ® V() = X gy, - Wherel, =32,y W @ Wy, is
the isotypical decomposition as Heébs /{£1}-module.
Now consider the involutiofonV (§)® V (§) givenasj (x®y) = yQx.

Then

Syt V@) ={feV@®QVE®) :jf = f)
and

NV@) ={f eV RVES):jf =—f)

Obviously, if f € W,, ® W,, thenjf € W,, ® W,,. Let Synf V(§) =
> ek S andA?V (§) = >_yek sy ~x be the isotypical decomposition
as a Heigs)-module with central charge 2, whefg andA, are the isotyp-
ical components. In fact,

2 Sy =C{f+jf:feW,®@W,, andxi.x2 = x}
and

B Ay =Cl{f —jf:feW,®W,andxi.x2 = x}.

Sincel, = |8|/J/IK(8)2l.0, and I, = S, + A,, it follows that when
x is nontrivial, S, = |8]/4/|K(8)2].p, @andA, = |8]//IK(8)2].p,. When
x is wivial, S1 = 3 ks Syn? W,. Since dinW, = [8|/|K(5)2l,
dim Syn? W, =181(16] + IK (8)2/(2|K (8)2]%), we conclude that

S1=(I8] + |K()2l/ (2K (8)2]).p1
and

A= (18] = 1K(®)2D)/(2V/IK(@)2D).p1 D

Proposition 3.6. LetSyn¥ V(8) =Y, ., mypa @ndA?V(8) =", nqpq

be the isotypical decomposition of the symmetric and the exterior power of
the unique irreducible representationtgéis(s) of central charge 1. Lek -

be the nilradical of the restriction @f to K (8),. Then the restriction of any

g in Q to K+ is a character and if it is trivial, then it induces a quadratic
formg’ on K (8),/K+.

a) If g|x+ is nontrivial thenm, = n, = |8]/(2/|K (8)2]).



146 J. N. lyer

b) If g|x. is trivial, then

mq = (18] + V/IK (8)2])-/IK*|/(2J/|K (8)2]), if Arf(g') =0
= (8] = VIK ®)2l-/IK )/ 2J1K (8)2]). if Arf(q)) = 1.
ng = (18] = VIK8)2))-/IK 1/ 2J/IK()2)). if Arf(q') =0
= (I8 + VIK ®)2|-/IK )/ 2J1K (8)2]). if Arf(q') = 1.

Herep, denotesthe irreducible representatiorHsfis(§) /{£1} correspond-
ingtog € Q.

Proof. Clearly ¢ restricted toK is a character and if € K(8)2,y €

K+ theng(x +vy) = g(x)g(y)e’(x, y) = g(x). Henceq descends to a
quadratic formy’ on K (8),/ K +. Recall that one can writ& (§) = K (81) x

K (8,), Heis(8) = (Heis(81) x Heis(82))/{(x, A7) : 1 € C*} andV (§) =
V(81) ® V(82) wheres; ands, are as in 3.4 and 3.5 respectively. Then we
observe that

1) K (8,) is isomorphic tok (8),/K+ and
2) K (8,) is isomorphic tok +.

Since Sym V (8) = Syn? V (81) @ Syn? V(82) & A2V (81) ® A2V (8,) and
the irreducible representatigp of Heis(§) with central charge 2 is a tensor
product of irreducible representations of H@ig and Heigs,) of central
charge 2, the proposition follows from 3.4 and 3.5.

Proposition 3.7. RegardV (28) = {f : Z/25Z — C}, as aHeis(s)-
module via the homomorphishy : Heis(§) — Heis(2§). Then its iso-
typical decomposition is given as follows

V@S = ) (@2/JIK®)2).py.

x€K ()2

Proof. Recall the homomorphismi, : Heis(§) —> Heis(28). Then the
irreducible representation of Hgi&5) with central charge 1V (26), splits

into isotypical components agz (Heis(8))-module. SinceE,(Heis(8)) =
Heis(8)/{£1} is a normal subgroup, each of the isotypical components
has the same dimension. Now, given any irreducible representatiai
Heis(8)/{£1} with central charge 1, consider the induced representation
o on Heis(28). Thenp is a direct sum of isomorphic copies &f(26),
ando C p. Thus every irreducible representation of Hgiswith central
charge 2, occurs with equal multiplicity #(25). Since dinV (28) = 28|§]

and dinv = |§|/4/|K (8)2|, the proposition is proved.o
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4. Proof of Theorem 1.1

We need the following two propositions in our proof of 1.1.

Proposition 4.1. LetP" be the space of all quadricsitf for some fixed >
0. Then the subvariety, = {r € PV : ¢, is a quadric in P" of rank <
n+ 1— k}, of PV, is of dimensionV — [, wherel = k(k + 1)/2.

Proof. See [3], Example 22.310

Proposition 4.2. Let(A, L) be a pair as inl.1. Then there are no quadrics
of rank less than or equal to four, containing the imageiofn P.

Proof. SupposeQ is a quadric of rank less than or equal to four,Fin
containing image ofi. Clearly rank ofQ cannot be< 2 since them would
be contained in a hyperplane. We will denotezthe inverse image of the
nullspaceN for the quadricQ. Since the Neron Severi groupS(A) of A
is isomorphic toZ, generated by, the pullback toA of any hyperplane
section is an irreducible curve. Also, since codimensioN @ at least 4 in
P, let H; andH> be distinct hyperplanes containing Then the intersection
of pullbacks ofH; and H, to A is a finite set of points.

Case lilf rank Q = 4, then write

0= X5+ X5+ X5+ X3

for some basis aff°(L). ProjectQto7T = (X4 = X5 = --- = X4_1 = 0).
Then one has a finite morphisi — Z L, Q' c T,whereQ'is a
smooth quadric irf. Now Oz (1) restricted toQ’ which is P! x P! is
P;iO(1) ® p5O(1), where p; are projections td®?, for i = 1, 2. Hence
Pr(p;0(1H®p;0(1)) onA—Z extendtaL1® L, on A, whereL; andL, are
nontrivial line bundles om. HencelL ~ L1 ® L,, which is a contradiction.

Case 2Ifrank Q = 3, then one hasamap— Z — C C S, whereS§
is a linear space of dimension 2, defined similarly as in Case 1Casd
conic. ThenDg (1) restricts to a divisor of degree 2 @h hence its pullback
on A gives a reducible divisor as in Case 1, which is a contradictian.

Consider the action of (L) on Synf H°(A, L) and H°(A, L"). The
natural maps

HO(P, Op(n)) = Synt' H(L) > H°(A, L"),
are clearly equivariant for the actiongfL). O
We have to show that,, forn > 2, are surjective. Suppose= 2. Then

dim H%(Op(2)) = 44 and dimH (A, L?) = 4d. Hence dim Kerp, >

d(d+1)
T2 M
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Lemma4.3. LetW = Ker p,. If dimW > d(d + 1)/2 — 4d, andd > 7
odd,d > 14andd even, there are quadrics of rank less than or equal to 4
in W.

Proof. Let R = P(W). ThenR is a space of quadrics Bfcontaining image
of A. Supposé is odd. Thendimension & is atleast/(d+1)/2—3d—1, by
3.4. Consider the subvariety definedasin 4.1, for = d—1andk = d—4.
It is enough to see that the linear spaatersects the subvariely, in the
space of all quadrics d. This is clear, since

_dd+D . d-3d-4)
=5 3d -1 >

2d — 14
= >0if d=>7

m— 1

If d is even, thew! = 2r,r > 7. In this caselimW > 44D — 44 4 r,
by 2.4. One does similar computation as above, to show there are quadrics
of rank less than or equal to 4 containing imagedof O

This contradicts 4.2. Heng® is surjective ifd > 7, odd andi > 14.

We now consider the cases wheénr= 8, 10, and 12.

One may assume is strongly symmetric, from 2.4. By 2.5, there ex-
ist compatible theta structurds: G(L) ~ Heis(§) andb* : G(L?) ~
Heis(28). These induce isomorphisnié : HY(L) — V() = {f :
Z/dZ —> C}, b* : HO(L?) — V(28) = {f : Z/2 x Z/2dZ —> C},
unique upto scalars, and compatible witandb*.

Via the isomorphisms’, b* and 2.5, it is enough to show that the induced
Heis(8)-equivariant map,

05 2 SYME(V (8)) —> V(26)

is surjective.

First we consider the case whénr= (1, 10).

Notice that Heigs) = (Heis(2) x Heis(5))/{(o, ™) : « € C*}, and
thatV (2) andV (5) are the unique representations of H&sand Heig5)-
modules respectively with central charge 1. Hel¢d0) = V(2) ® V(5)
as a Heig10)-module.

Proposition 4.4. The vector spaceSyn?(V(2) ® V(5)) and V (25) split
as 2221 I, and Zﬁzl Ji. respectively, wheré, and J, are isotypical com-
ponents for action dfleis(), with central charge 2, witdim I, = 15 k =
1,2, 3, dimly =10anddimJ, = 10fork = 1, 2, 3, 4 . Moreover,l; and
Ji. correspond to isomorphic representationdH#is(§), for eachk.
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Proof. Here Heig$) acts on SymV (8) and V(28), with central charge
2. In fact, Heig2) and Heig5) act onV (4) and V (10) respectively with
central charge 2. Now any irreducible representation of ¢jsvith central
charge 2, is a tensor product of irreducible representations of(Pjeésnd
Heis(5), respectively, with central charge 2. Hence we proceed to compute
irreducible representations of H&B and Heig5) with central charge 2.

By 3.2, one deduces HegiS) has unique irreducible representation, upto
scalars, sayV, of dimension 5, with central charge 2. Hence $ying5) ~
3W and \° V(5) ~ 2W.

Now, consider the exact sequence,

2 2 '
@0 — AV@ e \V®E — Synh(V(2) ® V(5)

L, symPV(2) ® Syn? V(5) —> 0
where

i(er N f1)® (2N f2) = (e1®€2).(f1® f2) — (1 ® f2).(f1® e2),
and

Jje1®e2).(f1® f2) =e1f1 ez fa.

Also, one easily sees that Sy¥i(2) ~ Vi @ V> @ V3 for the action of
Heis(2), with central charge 2. Since Sy (2) ® Syn? V(5) ~ (V1 &
Vo Va)@3W and A2 V()@ A? V(5) ~ V4®2W, Symi(V(2) @V (5)) =
LeL®L® Iy, wherel, ~3(V, W), k=12 3andl; >~ 2(V,@ W)
and this is an isotypical decomposition for Heigwith central charge 2. By
3.7, itfollows thatV (28) = 22:1 Jr as aHeigd)-module with diny, = 10
for eachk. O

Remark 4.5.It follows thatp), = ry @ 1o @ r3 @ ra, Wherer; : [; =~ 3(V; ®
W) — J;,fori = 1,2 3andry : I4 >~ 2(V, ® W) — Js. Hence
Ker py, = @, Ker (r;).

Proposition 4.6. Suppose:; is not surjective for somé. Then there are
guadrics of rank 4 in the kernel.

Proof. Notice thatin 4.4, SyrV (2) = V1 @ V, @ Vs whereV; = C(xZ +

x%), V, = (C(xg — x%), Vs = C(xg ® x1 + x1 ® xg). Hencel;, = V; ®

Sym2 V(5), fori = 1, 2, 3. If r; is not surjective for some i, ¥ i < 3,

then dim Ker(r;) > 10. Consider the subvariety; defined as in 4.1,
whose points correspond to quadrics of rank less than or equal to 2 in
Syn? V (5) and dimV; = 8. Let yz be a quadric of rank 2 in Syn? V (5).

Then V; ® C(yz) represent quadrics of ragk 4 in Syn? V(10). Since

i+ P(V; ® Syn? V(5)) — P(Syn? V(5)) is the natural isomorphismvz
intersects the isomorphic image Bt K er(r1)) in P(Syn? V (5)). Call this
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intersectionQ. Then points in ~1(Q) corresponds to quadrics of rank than
or equal to 4 inP(Syn¥ V (10)). This gives the assertion wher= 1, 2, 3.

Now if r4 is not surjective, then Kdir,) is a vector subspace of dimension
at least 5 ofl,.

LetR = P(A?V(2)® A\? V(5)). ThenR is a projective space of dimen-
sion 9. Fixabasif;, f1}0of V(2). Considerthe embeddinG,2, V (5)) LI
R,which sends a 2-plari&{e,, f>}to(e1A f1) R (e2A f2). ThenG = Im(a)
is a subvariety oR of dimension 6. >From the exact sequence (4) in 4.4,
we have

1) Linear embeddin® —— P(Sym?((V(2) ® V(5)) andi’(R) = P(Ls).
2) Points ofi’G represent quadrics of ragkd in Synf(V(2) ® V (5)).

Hence intersection a? (Ker (r4)) andi’G in i’ R is a subvariety of dimension
at least 1, whose points correspond to quadrics of raakn P(HO(L))
containingg, (A). O

If p, is not surjective, then by 3.7 and 4.6, there are quadrics of rank less
than or equal to 4 in the kernel p§ which contradicts 4.2.
We now consider the cases whee- (1, 8) ands = (1, 12).
Here K (8), ¢ 2K (8) and so from 3.5, it follows that SyhV (§) =
> oD S,,whereS, are the isotypical components as a Héismodule
with central charge 2 and
Case 1: Wheid = (1, 8), dimS, = 12, if x is trivial and din, = 8, if
X is nontrivial.
Case 2: Whed = (1, 12), dimS, = 24, if x is trivial and dinf,, = 18,
if x is nontrivial.

Proposition 4.7. Suppose is trivial.

a) In Case 1, any vector subspa®é of S; of dimension at least 8, has
quadrics of rank less than or equal to 4.

b) In Case 2, any vector subspaBé of S; of dimension at least 18, has
quadrics of rank less than or equal to 4.

Proof. From 3.5,V(6) = ¥ iw, @81 = X &5 Syn? W,
whereW, = {f € V&) @ V() : s(x)f = x(x)fforx e K(8)2). Let
W be a vector subspace 6f andR, , = Synm? W, + Syn? W,,, for
X # X

a) Notice that dini, = 2 hence dimR, ,» = 6 and dim$; = 12. If
dimW > 8, thenW intersects any of the subspades , in S;. Since the
elements ofR, ,- correspond to quadrics of rank 4, a) in 4.7 is proved.

b) Here dinW, = 3 hence dimR, ,, = 12 and dimS, = 24 . If
dimw > 18, then?, ,, = WNR, , is of dimension at least 6. Bat, ,» C
Ry, C SymA(W,+W,).By4.1,V, C P(SymA(W, +W,)) parametrizes
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guadrics of rank less than or equal to 4 and is of dimension equalto 17. Hence
V, intersectsP (T, ) and this proves b).0O

Proposition 4.8. Supposey is nontrivial.

a) In Case 1, any vector subspa®e of S, of dimension at least 4, has
quadrics of rank less than or equal to 4.

b) In Case 2, any vector subspadéof S, of dimension at least 12, has
quadrics of rank less than or equal to 4.

Proof. NoticethatS, = W, .W,,+W,,.W,,,suchthaki.x> = x3.x4 = x.
Let W denote a vector subspaceff. Consider the subvarieties

OQ={a®b:ae P(Wy,),be P(Wy,)} C P(W, @ W,,)
and

Q' ={c®d:ceP(Wy).deP(W,)}CP(W,®W,).

Consider the join oD andQ’, denoted byD + Q’, in P(S,). Then points of
0 + Q' correspond to quadrics of rank less than or equal to 4 i’y ().

a) HeredinW,.W,, = 4anddinQ+Q’is atleast5. HencB(W) intersects
Q + Q'in P(S,). This proves a).

b) Here dinW,,.W,, = 9 and dinQ + Q'is at least 9. Henc& (W) inter-
sectsQ + Q' in P(S,). This proves b). O

Consider the Hei&) equivariant morphisrp; : Syn? V(8) — V(25).
Then p; restricts to Heigé) equivariant morphisms on the four isotypical
components of SyfV (8). If the restrictions are not surjective, then by 3.7,
4.7 and 4.8, there are quadrics of rank less than or equal to 4 in the kernel
of po. This contradicts 4.2.

We now show surjectivity of,,, forn > 3. Consider a generic hyperplane
section ofOp(1) and intersect witlA. Then by Bertini’'s theorem, it is a
smooth curve, sag. Let K- denote the canonical bundle éh Then deg
K¢ = degL/C = C? = 2d, by Riemann Roch theorem. Hencg2- 2 =
2d givesgc = d + 1. One easily sees tha, restricted toC, factors
asC — P(VY) c P(H°L)) whereV c H°(C, K¢) is a subspace of
dimensiond — 1.

Consider the exact sequence of sheaved diorn > 1,

0— L" ' 51" —L""C—0
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Whenn = 1, we get the following exact sequence of vector spaces,
0 — H%Oa) — H(L) — H%(K¢) — H'(O4) — 0

andV = H(L)/H%(O,).
Now consider the following commutative diagram, for 2,

Pn

0— I, — Sym"H°(L) = HO(L"™)
Ly o LB
0— I — Sym'v 25 HOC, K2)

We observe that, 8 are surjective and dim Kep = dim I,_1, hence
dim 7, < dim I,_1 + dim I;. Consider

0— Kernp — I' 5 Iy
whereH is a generic hyperplane iR(VY). Now,
dim Kern =dim I,_,
and

dim 1,/|y > dim 1,/ — dim I/,
>dm17, —dm17l,_, —dm1I _,
SinceH is a generic codim 2 plane i it intersects the abelian surface at 2d
points which can be assumed to be in general positidi.iklencel! | is
a vector space of degree n hypersurfaceld wanishing on 2d points which
are in general position. We prove by induction on n, {hais surjective.
We have proved above; is surjective. Suppose,_; is surjectiven >
3. If p, Is not surjective, then

. d-—1
dim 1, > ( +n) — dn®.
n

We use the general fact:

Fact 4.9. InPP", nr+1 points in general position pose independent condition
on the vector space of degree n hypersurfaces.

Heren > 3, son(d — 3) + 1 > 2d, except whem = 3 andd = 7. So
the dimension of the vector space of degree n hypersurfadévanishing
on 24 points is(*" ") — 2d.
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Let dim/, = (“"*") — dn? + x wherex > 0. Then one easily checks
that

. d—3 .
dlmlr’L|H—<nJr >+2dzd|m1,,
n

. , d—3
—dim/Z,_; —dim/l _; — <n + ) +2d

n
=(d_1+n)—dn2+x—(d_2+n)+d(n—1)2

n n-—1

d—3 d—3
—( +”>+(2n—3)d—(”+ )+2d.
n—1 n
d—1+n d—2+n d—3+n n+d-—3

n n—1 n—1 n

= x.

Hence dim//|y > ("’3“‘) — 2d, contradicting above stated fact. When

n

n =3 andd = 7, similar computation shows didj|z — ("**~°) + n(d —

n

3)+1>x—1.Buthy 3.1x > 7. Hence this contradicts 4.9.
This completes the proof of the theorenm
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