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Abstract. In this paper, we study projective normality of abelian surfaces, with embeddings
given by ample line bundles of type(1, d). We show that ifd ≥ 7, the generic abelian surface
is projectively normal.

1. Introduction

Let L be an ample line bundle of typeδ = (δ1, δ2, . . . , δg) on an abelian
varietyA of dimensiong. It is known that the embedding ofA given by the
morphismφLn associated toLn is projectively normal ifn ≥ 3 and when
n = 2, no point ofK(L2) is a base point forL, (see [2], 7.3.1).

Here we consider the case of an abelian surface whenL is primitive i.e.
δ is of the form(1, d). Whend ≤ 4, L is not even very ample, while for
d = 5,6, dimension of Sym2H 0(L) is less than that ofH 0(L2) so thatL
can never be projectively normal. Here we show

Theorem 1.1. Let L be an ample line bundle of typeD = (1, d) on an
abelian surfaceA. Suppose the Neron Severi group ofA is isomorphic to
Z andd ≥ 7, then the image ofA, under the morphismφL : A −→ P =
P(H 0(L)∨) associated toL, is projectively normal.

This is the generic situation, by [7]. Lazarsfeld has shown (see [4]) that
this is true ford ≥ 13 and ford = 7,9,11 wheneverL is very ample. Our
method is different even in these cases. We show that ifL is not projectively
normal, then the corresponding imbedding into the complete linear system,
takesA into a quadric of rank less than or equal to 4, which can be ruled out if
Neron Severinumber is 1.This results from an analysis of the representations
of the theta groupG(L) on Sym2H 0(L) as well as onH 0(L2).
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2. Preliminaries

Let L be an ample line bundle of typeδ = (d1, d2, . . . , dg) on an abelian
varietyA of dimensiong.

SupposeL is a symmetric line bundle i.e.L ' i∗L, wherei is the
involution a −→ −a onA. The action ofi can be lifted to the line bundle
L, and we may normalise this action by requiring that this action still be an
involution and that its action on the fibre ofL at 0 be the identity. Consider
the functioneL∗ which associates to anya ∈ A2, the element+1 or −1,
according as the action ofi on the fibreLa of L ata, is +1 or−1.

Definition 2.1. A symmetric line bundleL on an abelian varietyA is said
to be strongly symmetric, (see [1]), ifeL∗ (a) = +1, for all elements in
A2 ∩ K(L), whereK(L) = {a ∈ A : L ' t∗aL} ( ta being the translation
map bya onA).

Consider the natural Heisenberg extensionG(L) of K(L) by C∗, and the
natural Heisenberg extension Heis(δ) ofK(δ) = (Z/d1Z × · · · × Z/dgZ)

2

by C∗.
Recall the following homomorphisms, defined as in [5], ifL is symmet-

ric,
ε2 : G(L) −→ G(L2)

η2 : G(L2) −→ G(L)
δn : G(L) −→ G(L)

E2 : Heis(δ) −→ Heis(2δ)

Dn : Heis(δ) −→ Heis(δ).
Then one has,

δ2 = η2 ◦ ε2 for G(L)
δ2 = ε2 ◦ η2 for G(L2) (See [5]).

Definition 2.2. For a line bundleLof typeδ, an isomorphismf : G(L) −→
Heis(δ), which restricts to identity onC∗, is called a theta structure forL.
Moreover, supposeL is symmetric, a theta structuref : G(L) −→ G(δ) is
called symmetric iff ◦ δ−1 = D−1 ◦ f .

Proposition 2.3. LetL be a symmetric line bundle of typeδ on an abelian
varietyA of dimension g. ThenL is strongly symmetric if and only if it
admits symmetric theta structures.

Proof. SupposeL is a strongly symmetric line bundle onA. Consider an
isomorphism, sayh, ofK(L) ontoK(δ), which respects the corresponding
Weil pairing of the Heisenberg extensions. By [1],15.6,h is induced by a
symmetric theta structuref : G(L) −→ Heis(δ).
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Conversely, ifL admits a symmetric theta structure, sayf , then by
definition,f ◦ δ−1 = D−1 ◦ f . Consider an element of order 2, sayw, in
K(L). Let z be a lift ofw in G(L). By [5], Proposition 3, p. 309,

δ−1(z) = eL∗ (w).z

On the other hand, by definition ofD−1,D−1(f (z)) = f (z). Hence

f ◦ δ−1(z) = f (eL∗ (w).z)
= eL∗ (w).f (z)
= eL∗ (w).D−1(f (z)).

implying eL∗ (w) = +1 . ut
Remark 2.4.By [2], 6.9.5, ifH is a polarization of typeδ=(d1, d2, . . . , dg),
with d1, . . . , ds odd andds+1, . . . , dg even, then there are 22s symmetric line
bundles inP icH (X) admitting symmetric theta structures. Hence by 2.1,
there are 22s strongly symmetric line bundles inP icH (X).

Proposition 2.5. For a pair (A, L), as in 1.1, withL strongly symmetric,
there exist symmetric theta structuresf1 and f2 such that the following
diagram

G(L) f1−→ Heis(δ)

↓ε2 ↓E2

G(L2)
f2−→ Heis(2δ)

commutes.

Proof. Consider the homomorphismη(x,l) : Heis(2δ) −→ Heis(δ), where
(x, l) is an order 2 element inK(2δ), given asη(x,l)(α, y,m) = (α2l(y)m(x),
2y,m′), wherem′ is the image inK1(δ)̌ of m induced by the inclusion

K1(δ)
×2−→ K1(2δ).

By [1], 16.19, there exist(x, l), an element of order 2 inH(2δ), and
symmetric theta structuresf1 andf2, such that the following diagram,

G(L2)
f2−→ Heis(2δ)

↓η2 ↓η(x,l)
G(L) f1−→ Heis(δ)
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commutes. Observe thatE2 ◦ η(x,l) = D2 for Heis(2δ). Now consider,

f2 ◦ ε2(η2(z)) = f2(δ2(z))

= f2((z
3).δ−1(z))

= f2(z
3).f2(δ−1(z))

= f2(z)
3.D−1(f2(z))

= D2(f2(z))

= E2 ◦ η(x,l)(f2(z))

= E2 ◦ f1(η2(z))

hencef2 ◦ ε2 = E2 ◦ f1. ut

3. Representations of the Heisenberg group with central charge 2

An irreducible representation of the theta groupG(L) such thatα ∈ C∗ acts
asα 7→ αn is said to be ofcentral charge n.

Proposition 3.1. Let L be an ample line bundle of type(d1, d2) on an
abelian surfaceA. Then any irreducible representation of the theta group
G(L), with central chargen, is of dimension at least d1d2

(n,d1).(n,d2)
, where(n, di)

denotes the greatest common divisor ofn anddi . In particular, if the type is
(1, d) andn = 2, then every irreducible representation is of dimension at
leastd, if d is odd, and at leastd/2, if d is even.

Proof. See [2], Ex. 6.4.a.ut

Now, we prove some statements on irreducible representations of
Heis(δ) with central charge 2, and these strengthen 3.1.
Consider the standard Heisenberg group Heis(δ), of typeδ=(δ1, δ2, . . . ,δg).
Then we have the short exact sequence

(1) 1 −→ C∗ −→ Heis(δ) −→ K(δ) −→ 0

whereK(δ) = (Z/δZ)2.

Proposition 3.2. The set of isomorphism classes of irreducible representa-
tions ofHeis(δ)with central charge 2 is in bijection with the set of quadratic
forms onK(δ)2 whose associated bilinear form is the restriction of the Weil
formeδ toK(δ)2. Moreover, each such representation has dimension equal
to |δ|/√|K(δ)2|, where|δ| = δ1 . . . δg.
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Proof. Letρ be an irreducible representation of Heis(δ)with central charge
2. Then,ρ descends to a representation of Heis(δ)/{±1} with central charge
1. Call it ρ again. We have a diagram with exact rows,

1 −→ C∗ −→ Heis(δ)
η−→ K(δ) −→ 0

↓ ↓ ↓
1 −→ C∗ −→ Heis(δ)/{±1} ψ−→ K(δ) −→ 0

The left vertical map is the homomorphismz 7→ z2. Notice thatK(δ)2 is
isotropic for(eδ)2, since ifx, y ∈ K(δ)2, (e

δ)2(x, y) = eδ(2x, y) = 1. In
fact, it is thenilradical of (eδ)2. In particular, ifs is a splitting overK(δ)2
in the second row, then

1 −→ C∗ −→ Heis(δ)/{±1, s(K(δ)2} −→ K(δ)/K(δ)2 −→ 0

is a standard Heisenberg extension.
Also the subgroupF = ψ−1(K(δ)2) is the centre of Heis(δ)/{±1}.

Hence in the representationρ, the subgroupF acts as a character, sayχρ ,
such thatχρ(α) = α for α ∈ C∗. We call such a character, a character with
central charge 1. We first show that this correspondence is a bijection. Let
ρ1 andρ2 be two irreducible representations of Heis(δ)/{±1}, with cen-
tral charge 1. Supposeχρ1 = χρ2. Since we have chosen the splittings,
χρ1 corresponds to a character onK(δ)2 which extends to a character on
K(δ). Call it χ ′. Thenχ = χ ′ ◦ ψ is a character on Heis(δ)/{±1} which
is trivial on C∗. Notice thats(K(δ)2) acts trivially inρ1 ⊗ χ−1 as well as
in ρ2 ⊗ χ−1. Hence these representations descend to irreducible represen-
tations ofG = Heis(δ)/{±1, s(K(δ)2)} with central charge 1. SinceG
has a unique irreducible representation, upto scalars, with central charge
1, we conclude thatρ1 ⊗ χ−1 ' ρ2 ⊗ χ−1 as aG-module. This gives
ρ1 ' ρ2 as a Heis(δ)/{±1}-module. Conversely, given a character onF ,
it corresponds to a characterχ on Heis(δ)/{±1} of central charge 1, as
shown above. Hence ifσ is the unique irreducible representation ofG and
p : Heis(δ)/{±1} −→ G is the quotient map, then(σ ◦ p) ⊗ χ gives an
irreducible representation of Heis(δ)/{±1} with central charge 1. Clearly
dimension of any such representation is

√|K(δ)/K(δ)2| = |δ|/√|K(δ)2|.
Now a characterχ ′ on F gives a characterχ on η−1(K(δ)2) such that
χ(α) = α2 for all α ∈ C∗. Define a quadratic formq : η−1(K(δ)2) −→ C∗
as follows,x 7→ x2χ−1(x). One easily sees thatq(λx) = q(x), for λ ∈ C∗
andq(x.y) = eδ(x, y)q(x)q(y). Henceq corresponds to a quadratic form
onK(δ)2 whose associated bilinear form is the restriction of the Weil form
eδ toK(δ)2. ut

LetV (δ) be the unique irreducible representation of Heis(δ)with central
charge 1 and letQbe the set of all quadratic forms onK(δ)2 whose associated
bilinear form is the restriction ofeδ toK(δ)2.
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Lemma 3.3. The vector spaceV (δ)⊗V (δ) is aHeis(δ)-module with cen-
tral charge 2 and splits into isotypical components corresponding toq ∈ Q,
each of dimension equal to|δ|2/|K(δ)2|.
Proof. Let G = (Heis(δ) × Heis(δ))/{(λ, λ−1) : λ ∈ C∗}. Then by [6],
1.1.5,

1 −→ C∗ −→ G −→ K(δ)×K(δ) −→ 0

is a Heisenberg extension with Weil pairingeδ × eδ and the vector space
V (δ)⊗V (δ) is the unique irreducible representation ofGwith central charge

1. Notice thats(K(δ)2) ⊂ Heis(δ)/{±1} 1
↪→ G andK(δ)2

1
↪→ K(δ)×K(δ)

is isotropic foreδ × eδ. HenceV (δ)⊗ V (δ) = ∑
χ∈ ̂s(K(δ)2)

Iχ . Clearly dim

Iχ = |δ|2/|K(δ)2|. Sinceχ ∈ ̂s(K(δ)2) correspond to quadratic forms as
shown in 3.2, the proposition is proved.ut

Now, Sym2(V (δ)) and∧2V (δ) are Heis(δ)/{±1}-modules and we wish
to determine the isotypical decomposition of these vector spaces for any type
δ. SinceK(δ) can be written asK(δ1)×K(δ2) such thatδ1 = (2,2, . . .2)
andδ2 = (δ1, δ2, . . . , δg), where ifδi is even then it is divisible by 4, the
Heisenberg group Heis(δ) = Heis(δ1)×Heis(δ2)/{(λ, λ−1) : λ ∈ C∗} and
the unique irreducible representationV (δ) can be written asV (δ1)⊗V (δ2).
Hence it is enough to study the cases whenδ = δ1 andδ = δ2.

Remark 3.4.Whenδ = (2,2, . . . ,2) it is well known that Sym2V (δ) =∑
q∈Q,Arf (q)=0Eq and ∧2V (δ) = ∑

q∈Q,Arf (q)=1Eq , whereArf (q) de-
notes the Arf invariant ofq andEq are the isotypical components corre-
sponding toq of dimension 1.

Proposition 3.5. Supposeδ = (δ1, δ2, . . . , δg), such that ifδi is even then
it is divisible by 4. Then the isotypical decomposition is given as follows,

Sym2V (δ) =
∑

χ∈K̂(δ)2,χ 6=1

|δ|/(2√|K(δ)2|).ρχ

+ (|δ| + |K(δ)2|)/(2√|K(δ)2|).ρ1

and

∧2V (δ) =
∑

χ∈K̂(δ)2,χ 6=1

|δ|/(2√|K(δ)2|).ρχ

+ (|δ| − |K(δ)2|)/(2√|K(δ)2|).ρ1,

whereρχ is the irreducible representation ofHeis(δ)with central charge 2,
corresponding to the characterχ onK(δ)2.
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Proof. Notice thatK(δ)2 ⊂ 2K(δ). HenceK(δ)2 is isotropic foreδ, since
if x, y ∈ K(δ)2, x = 2x ′ andeδ(x, y) = eδ(x ′, y)2 = eδ(x ′,2y) = 1. Thus
the quadratic forms onK(δ)2 are actually characters onK(δ)2. Hence ifs
is a splitting overK(δ)2 in (1) thenV (δ) = ∑

χ∈K̂(δ)2 Wχ , whereWχ =
{f ∈ V (δ) : s(x)f = χ(x)f f or x ∈ K(δ)2} and dimWχ = |δ|/|K(δ)2|.
HenceV (δ) ⊗ V (δ) = ∑

χ∈K̂(δ)2 Iχ , whereIχ = ∑
χ1.χ2=χ Wχ1 ⊗ Wχ2 is

the isotypical decomposition as Heis(δ)/{±1}-module.
Now consider the involutionj onV (δ)⊗V (δ)given asj (x⊗y) = y⊗x.

Then

Sym2V (δ) = {f ∈ V (δ)⊗ V (δ) : jf = f }
and

∧2V (δ) = {f ∈ V (δ)⊗ V (δ) : jf = −f }.

Obviously, iff ∈ Wχ1 ⊗Wχ2 thenjf ∈ Wχ2 ⊗Wχ1. Let Sym2V (δ) =∑
χ∈K̂(δ)2 Sχ and∧2V (δ) = ∑

χ∈K(δ)∨2 ∧χ be the isotypical decomposition
as a Heis(δ)-module with central charge 2, whereSχ and∧χ are the isotyp-
ical components. In fact,

(2) Sχ = C{f + jf : f ∈ Wχ1 ⊗Wχ2 andχ1.χ2 = χ}
and

(3) ∧χ = C{f − jf : f ∈ Wχ1 ⊗Wχ2 andχ1.χ2 = χ}.

SinceIχ = |δ|/√|K(δ)2|.ρχ and Iχ = Sχ + ∧χ , it follows that when
χ is nontrivial,Sχ = |δ|/√|K(δ)2|.ρχ and∧χ = |δ|/√|K(δ)2|.ρχ . When
χ is trivial, S1 = ∑

χ∈K(δ)∨2 Sym2Wχ . Since dimWχ = |δ|/|K(δ)2|,
dimSym2Wχ = |δ|(|δ| + |K(δ)2|/(2|K(δ)2|2), we conclude that

S1 = (|δ| + |K(δ)2|/(2√|K(δ)2|).ρ1

and

∧1 = (|δ| − |K(δ)2|)/(2√|K(δ)2|).ρ1 ut

Proposition 3.6. LetSym2V (δ) =∑
q∈Q mqρq and∧2V (δ) =∑

q∈Q nqρq
be the isotypical decomposition of the symmetric and the exterior power of
the unique irreducible representation ofHeis(δ) of central charge 1. LetK⊥
be the nilradical of the restriction ofeδ toK(δ)2. Then the restriction of any
q in Q toK⊥ is a character and if it is trivial, then it induces a quadratic
formq ′ onK(δ)2/K⊥.

a) If q|K⊥ is nontrivial thenmq = nq = |δ|/(2√|K(δ)2|).
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b) If q|K⊥ is trivial, then

mq = (|δ| + √|K(δ)2|).√|K⊥|/(2√|K(δ)2|), if Arf (q ′) = 0

= (|δ| − √|K(δ)2|.√|K⊥|)/(2√|K(δ)2|), if Arf (q ′) = 1.

nq = (|δ| − √|K(δ)2|).√|K⊥|/(2√|K(δ)2|), if Arf (q ′) = 0

= (|δ| + √|K(δ)2|.√|K⊥|)/(2√|K(δ)2|), if Arf (q ′) = 1.

Hereρq denotes the irreducible representation ofHeis(δ)/{±1}correspond-
ing toq ∈ Q.

Proof. Clearly q restricted toK⊥ is a character and ifx ∈ K(δ)2, y ∈
K⊥ thenq(x + y) = q(x)q(y)eδ(x, y) = q(x). Henceq descends to a
quadratic formq ′ onK(δ)2/K⊥. Recall that one can writeK(δ) = K(δ1)×
K(δ2),Heis(δ) = (Heis(δ1)× Heis(δ2))/{(λ, λ−1) : λ ∈ C∗} andV (δ) =
V (δ1)⊗ V (δ2) whereδ1 andδ2 are as in 3.4 and 3.5 respectively. Then we
observe that

1) K(δ1) is isomorphic toK(δ)2/K⊥ and
2) K(δ2) is isomorphic toK⊥.

Since Sym2V (δ) = Sym2V (δ1)⊗ Sym2V (δ2)⊕ ∧2V (δ1)⊗ ∧2V (δ2) and
the irreducible representationρq of Heis(δ)with central charge 2 is a tensor
product of irreducible representations of Heis(δ1) and Heis(δ2) of central
charge 2, the proposition follows from 3.4 and 3.5.ut

Proposition 3.7. RegardV (2δ) = {f : Z/2δZ −→ C}, as aHeis(δ)-
module via the homomorphismE2 : Heis(δ) −→ Heis(2δ). Then its iso-
typical decomposition is given as follows

V (2δ) =
∑

χ∈K̂(δ)2
(2g/

√|K(δ)2|).ρχ .

Proof. Recall the homomorphismE2 : Heis(δ) −→ Heis(2δ). Then the
irreducible representation of Heis(2δ) with central charge 1,V (2δ), splits
into isotypical components as aE2(Heis(δ))-module. SinceE2(Heis(δ)) =
Heis(δ)/{±1} is a normal subgroup, each of the isotypical components
has the same dimension. Now, given any irreducible representationσ of
Heis(δ)/{±1} with central charge 1, consider the induced representation
ρ on Heis(2δ). Thenρ is a direct sum of isomorphic copies ofV (2δ),
andσ ⊂ ρ. Thus every irreducible representation of Heis(δ) with central
charge 2, occurs with equal multiplicity inV (2δ). Since dimV (2δ) = 2g|δ|
and dimσ = |δ|/√|K(δ)2|, the proposition is proved.ut
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4. Proof of Theorem 1.1

We need the following two propositions in our proof of 1.1.

Proposition 4.1. LetPN be the space of all quadrics inPn for some fixedn >
0. Then the subvarietyVk = { t ∈ PN : qt is a quadric in Pn of rank ≤
n+ 1 − k}, of PN , is of dimensionN − l, wherel = k(k + 1)/2.

Proof. See [3], Example 22.31.ut
Proposition 4.2. Let(A,L) be a pair as in1.1. Then there are no quadrics
of rank less than or equal to four, containing the image ofA, in P.

Proof. SupposeQ is a quadric of rank less than or equal to four, inP,
containing image ofA. Clearly rank ofQ cannot be≤ 2 since thenAwould
be contained in a hyperplane. We will denote byZ the inverse image of the
nullspaceN for the quadricQ. Since the Neron Severi groupNS(A) of A
is isomorphic toZ, generated byL, the pullback toA of any hyperplane
section is an irreducible curve. Also, since codimension ofN is at least 4 in
P, letH1 andH2 be distinct hyperplanes containingN . Then the intersection
of pullbacks ofH1 andH2 toA is a finite set of points.

Case 1:If rankQ = 4, then write

Q = X2
0 + X2

1 + X2
2 + X2

3

for some basis ofH 0(L). ProjectQ toT = (X4 = X5 = · · · = Xd−1 = 0).

Then one has a finite morphismA − Z
p−→ Q′ ⊂ T , whereQ′ is a

smooth quadric inT . Now OT (1) restricted toQ′ which is P1 × P1 is
p∗

1O(1) ⊗ p∗
2O(1), wherepi are projections toP1, for i = 1,2. Hence

p∗(p∗
1O(1)⊗p∗

2O(1))onA−Z extend toL1⊗L2 onA, whereL1 andL2 are
nontrivial line bundles onA. HenceL ' L1 ⊗L2, which is a contradiction.

Case 2:If rankQ = 3, then one has a mapA−Z −→ C ⊂ S, whereS
is a linear space of dimension 2, defined similarly as in Case 1, andC is a
conic. ThenOS(1) restricts to a divisor of degree 2 onC, hence its pullback
onA gives a reducible divisor as in Case 1, which is a contradiction.ut

Consider the action ofG(L) on Symn H 0(A,L) andH 0(A,Ln). The
natural maps

H 0(P,OP(n)) = Symn H 0(L)
ρn−→ H 0(A,Ln),

are clearly equivariant for the action ofG(L). ut
We have to show thatρn, for n ≥ 2, are surjective. Supposen = 2. Then

dimH 0(OP(2)) = d(d+1)
2 and dimH 0(A,L2) = 4d. Hence dim Kerρ2 ≥

d(d+1)
2 − 4d.
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Lemma 4.3. LetW = Ker ρ2. If dimW > d(d + 1)/2 − 4d, andd ≥ 7
odd,d ≥ 14 andd even, there are quadrics of rank less than or equal to 4
in W .

Proof. LetR = P(W). ThenR is a space of quadrics ofP containing image
ofA. Supposed is odd.Then dimension ofR is at leastd(d+1)/2−3d−1, by
3.4. Consider the subvarietyVk defined as in 4.1, forn = d−1 andk = d−4.
It is enough to see that the linear spaceR intersects the subvarietyVk in the
space of all quadrics ofP. This is clear, since

m− l = d(d + 1)

2
− 3d − 1 − (d − 3)(d − 4)

2

= 2d − 14

2
≥ 0 if d ≥ 7

If d is even, thend = 2r, r ≥ 7. In this casedimW ≥ d(d+1)
2 − 4d + r,

by 2.4. One does similar computation as above, to show there are quadrics
of rank less than or equal to 4 containing image ofA. ut

This contradicts 4.2. Henceρ2 is surjective ifd ≥ 7, odd andd ≥ 14.
We now consider the cases whend = 8,10, and 12.
One may assumeL is strongly symmetric, from 2.4. By 2.5, there ex-

ist compatible theta structuresb : G(L) ' Heis(δ) and b∗ : G(L2) '
Heis(2δ). These induce isomorphismsb′ : H 0(L) −→ V (δ) = {f :
Z/dZ −→ C}, b∗′ : H 0(L2) −→ V (2δ) = {f : Z/2 × Z/2dZ −→ C},
unique upto scalars, and compatible withb andb∗.

Via the isomorphismsb′, b∗′
and 2.5, it is enough to show that the induced

Heis(δ)-equivariant map,

ρ ′
2 : Sym2(V (δ)) −→ V (2δ)

is surjective.
First we consider the case whenδ = (1,10).
Notice that Heis(δ) = (Heis(2) × Heis(5))/{(α, α−1) : α ∈ C∗}, and

thatV (2) andV (5) are the unique representations of Heis(2) and Heis(5)-
modules respectively with central charge 1. HenceV (10) = V (2)⊗ V (5)
as a Heis(10)-module.

Proposition 4.4. The vector spacesSym2(V (2) ⊗ V (5)) andV (2δ) split
as

∑4
k=1 Ik and

∑4
k=1 Jk respectively, whereIk andJk are isotypical com-

ponents for action ofHeis(δ), with central charge 2, withdimIk = 15, k =
1,2,3, dimI4 = 10 anddimJk = 10 for k = 1,2,3,4 . Moreover,Ik and
Jk correspond to isomorphic representations ofHeis(δ), for eachk.
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Proof. Here Heis(δ) acts on Sym2V (δ) andV (2δ), with central charge
2. In fact, Heis(2) and Heis(5) act onV (4) andV (10) respectively with
central charge 2. Now any irreducible representation of Heis(δ), with central
charge 2, is a tensor product of irreducible representations of Heis(2) and
Heis(5), respectively, with central charge 2. Hence we proceed to compute
irreducible representations of Heis(2) and Heis(5) with central charge 2.

By 3.2, one deduces Heis(5) has unique irreducible representation, upto
scalars, sayW , of dimension 5, with central charge 2. Hence Sym2V (5) '
3W and

∧2
V (5) ' 2W .

Now, consider the exact sequence,

(4)0 −→
2∧
V (2)⊗

2∧
V (5)

i−→ Sym2(V (2)⊗ V (5))

j−→ Sym2V (2)⊗ Sym2V (5) −→ 0
where

i(e1 ∧ f1)⊗ (e2 ∧ f2) = (e1 ⊗ e2).(f1 ⊗ f2)− (e1 ⊗ f2).(f1 ⊗ e2),

and

j (e1 ⊗ e2).(f1 ⊗ f2) = e1f1 ⊗ e2f2.

Also, one easily sees that Sym2V (2) ' V1 ⊕ V2 ⊕ V3 for the action of
Heis(2), with central charge 2. Since Sym2V (2) ⊗ Sym2V (5) ' (V1 ⊕
V2⊕V3)⊗3W and

∧2
V (2)⊗∧2

V (5) ' V4⊗2W , Sym2(V (2)⊗V (5)) =
I1 ⊕ I2 ⊕ I3 ⊕ I4, whereIk ' 3(Vk ⊗W), k = 1,2,3 andI4 ' 2(V4 ⊗W)

and this is an isotypical decomposition for Heis(δ)with central charge 2. By
3.7, it follows thatV (2δ) = ∑4

k=1 Jk as a Heis(δ)-module with dimJk = 10
for eachk. ut
Remark 4.5.It follows thatρ ′

2 = r1 ⊕ r2 ⊕ r3 ⊕ r4, whereri : Ii ' 3(Vi ⊗
W) −→ Ji , for i = 1,2,3 andr4 : I4 ' 2(V4 ⊗ W) −→ J4. Hence
Ker ρ ′

2 = ⊕4
i=1 Ker (ri).

Proposition 4.6. Supposeri is not surjective for somei. Then there are
quadrics of rank 4 in the kernel.

Proof. Notice that in 4.4, Sym2V (2) = V1 ⊕ V2 ⊕ V3 whereV1 = C(x2
0 +

x2
2), V2 = C(x2

0 − x2
2), V3 = C(x0 ⊗ x1 + x1 ⊗ x0). HenceIi = Vi ⊗

Sym2V (5), for i = 1,2,3. If ri is not surjective for some i, 1≤ i ≤ 3,
then dim Ker(ri) ≥ 10. Consider the subvarietyV3 defined as in 4.1,
whose points correspond to quadrics of rank less than or equal to 2 in
Sym2V (5) and dimV3 = 8. Letyz be a quadric of rank≤ 2 in Sym2V (5).
Then Vi ⊗ C(yz) represent quadrics of rank≤ 4 in Sym2V (10). Since
i : P(Vi ⊗ Sym2V (5)) −→ P(Sym2V (5)) is the natural isomorphism,V3

intersects the isomorphic image ofP(Ker(r1)) in P(Sym2V (5)). Call this
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intersectionQ. Then points ini−1(Q) corresponds to quadrics of rank than
or equal to 4 inP(Sym2V (10)). This gives the assertion wheni = 1,2,3.

Now if r4 is not surjective, then Ker(r4) is a vector subspace of dimension
at least 5 ofI4.

LetR = P(
∧2

V (2)⊗∧2
V (5)). ThenR is a projective space of dimen-

sion 9. Fix a basis{e1, f1}ofV (2). Consider the embedding,G(2, V (5))
a−→

R, which sends a 2-planeC{e2, f2} to (e1∧f1)⊗(e2∧f2).ThenG = Im(a)

is a subvariety ofR of dimension 6. >From the exact sequence (4) in 4.4,
we have

1) Linear embeddingR
i′−→ P(Sym2((V (2)⊗ V (5)) andi ′(R) = P(I4).

2) Points ofi ′G represent quadrics of rank≤ 4 in Sym2(V (2)⊗ V (5)).

Hence intersection ofP(Ker (r4))andi ′G in i ′R is a subvariety of dimension
at least 1, whose points correspond to quadrics of rank≤4 in P(H 0(L)̌)

containingφL(A). ut
If ρ2 is not surjective, then by 3.7 and 4.6, there are quadrics of rank less

than or equal to 4 in the kernel ofρ2 which contradicts 4.2.
We now consider the cases whenδ = (1,8) andδ = (1,12).
HereK(δ)2 ⊂ 2K(δ) and so from 3.5, it follows that Sym2V (δ) =∑
χ∈ ̂(K(δ)2)

Sχ , whereSχ are the isotypical components as a Heis(δ)module
with central charge 2 and

Case 1: Whenδ = (1,8), dimSχ = 12, if χ is trivial and dimSχ = 8, if
χ is nontrivial.

Case 2: Whenδ = (1,12), dimSχ = 24, if χ is trivial and dimSχ = 18,
if χ is nontrivial.

Proposition 4.7. Supposeχ is trivial.

a) In Case 1, any vector subspaceW of S1 of dimension at least 8, has
quadrics of rank less than or equal to 4.

b) In Case 2, any vector subspaceW of S1 of dimension at least 18, has
quadrics of rank less than or equal to 4.

Proof. From 3.5,V (δ) = ∑
χ∈K̂(δ)2Wχ , and S1 = ∑

χ∈K̂(δ)2 Sym2Wχ ,
whereWχ = {f ∈ V (δ) ⊗ V (δ) : s(x)f = χ(x)f for x ∈ K(δ)2}. Let
W be a vector subspace ofSχ andRχ,χ ′ = Sym2Wχ + Sym2Wχ ′, for
χ 6= χ ′.

a) Notice that dimWχ = 2 hence dimRχ,χ ′ = 6 and dimS1 = 12. If
dimW ≥ 8, thenW intersects any of the subspacesRχ,χ ′ in S1. Since the
elements ofRχ,χ ′ correspond to quadrics of rank 4, a) in 4.7 is proved.

b) Here dimWχ = 3 hence dimRχ,χ ′ = 12 and dimSχ = 24 . If
dimW ≥ 18, thenTχ,χ ′ = W ∩Rχ,χ ′ is of dimension at least 6. ButTχ,χ ′ ⊂
Rχ,χ ′ ⊂ Sym2(Wχ+Wχ ′). By 4.1,V2 ⊂ P(Sym2(Wχ+Wχ ′)) parametrizes
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quadrics of rank less than or equal to 4 and is of dimension equal to 17. Hence
V2 intersectsP(Tχ,χ ′) and this proves b).ut

Proposition 4.8. Supposeχ is nontrivial.

a) In Case 1, any vector subspaceW of Sχ of dimension at least 4, has
quadrics of rank less than or equal to 4.

b) In Case 2, any vector subspaceW of Sχ of dimension at least 12, has
quadrics of rank less than or equal to 4.

Proof. Notice thatSχ = Wχ1.Wχ2+Wχ3.Wχ4, such thatχ1.χ2 = χ3.χ4 = χ .
LetW denote a vector subspace ofSχ . Consider the subvarieties

Q = {a ⊗ b : a ∈ P(Wχ1), b ∈ P(Wχ2)} ⊂ P(Wχ1 ⊗Wχ2)

and

Q′ = {c ⊗ d : c ∈ P(Wχ3), d ∈ P(Wχ4)} ⊂ P(Wχ3 ⊗Wχ4).

Consider the join ofQ andQ′, denoted byQ+Q′, inP(Sχ). Then points of
Q+Q′ correspond to quadrics of rank less than or equal to 4 in Sym2V (δ).

a) Here dimWχ.Wχ ′ = 4 and dimQ+Q′ is at least 5. HenceP(W) intersects
Q+Q′ in P(Sχ). This proves a).

b) Here dimWχi .Wχj = 9 and dimQ+Q′ is at least 9. HenceP(W) inter-
sectsQ+Q′ in P(Sχ). This proves b). ut

Consider the Heis(δ)equivariant morphismρ ′
2 : Sym2V (δ) −→ V (2δ).

Thenρ ′
2 restricts to Heis(δ) equivariant morphisms on the four isotypical

components of Sym2V (δ). If the restrictions are not surjective, then by 3.7,
4.7 and 4.8, there are quadrics of rank less than or equal to 4 in the kernel
of ρ2. This contradicts 4.2.

We now show surjectivity ofρn, forn ≥ 3. Consider a generic hyperplane
section ofOP(1) and intersect withA. Then by Bertini’s theorem, it is a
smooth curve, sayC. LetKC denote the canonical bundle onC. Then deg
KC = degL/C = C2 = 2d, by Riemann Roch theorem. Hence 2gC − 2 =
2d gives gC = d + 1. One easily sees thatφL restricted toC, factors
asC −→ P(V )̌ ⊂ P(H 0(L)̌) whereV ⊂ H 0(C,KC) is a subspace of
dimensiond − 1.

Consider the exact sequence of sheaves onA, for n ≥ 1,

0 −→ Ln−1 −→ Ln −→ Ln|C −→ 0
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Whenn = 1, we get the following exact sequence of vector spaces,

0 −→ H 0(OA) −→ H 0(L) −→ H 0(KC) −→ H 1(OA) −→ 0

andV = H 0(L)/H 0(OA).
Now consider the following commutative diagram, forn ≥ 2,

0 −→ In −→ Symn H 0(L)
ρn−→ H 0(Ln)

↓γ ↓α ↓β
0 −→ I ′

n −→ Symn V
ρ′
n−→ H 0(C, Kn

C)

We observe thatα, β are surjective and dim Kerγ = dim In−1, hence
dim In ≤ dim In−1 + dim I ′

n. Consider

0 −→ Ker η −→ I ′
n

η−→ I ′
n|H

whereH is a generic hyperplane inP(V )̌. Now,

dim Ker η = dim I ′
n−1

and

dim In
′|H ≥ dim In

′ − dim I ′
n−1

≥ dim In − dim In−1 − dim I ′
n−1

SinceH is a generic codim 2 plane inP, it intersects the abelian surface at 2d
points which can be assumed to be in general position inH . HenceI ′

n|H is
a vector space of degree n hypersurfaces inH vanishing on 2d points which
are in general position. We prove by induction on n, thatρn is surjective.

We have proved above,ρ2 is surjective. Supposeρn−1 is surjective,n ≥
3. If ρn is not surjective, then

dim In >

(
d − 1 + n

n

)
− dn2.

We use the general fact:

Fact 4.9. In Pr ,nr+1 points in general position pose independent condition
on the vector space of degree n hypersurfaces.

Heren ≥ 3, son(d − 3) + 1 > 2d, except whenn = 3 andd = 7. So
the dimension of the vector space of degree n hypersurfaces inH vanishing
on 2d points is

(
d−3+n
n

) − 2d.
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Let dimIn = (
d−1+n
n

) − dn2 + x wherex > 0. Then one easily checks
that

dim I ′
n|H −

(
n+ d − 3

n

)
+ 2d ≥ dim In

− dim In−1 − dim I ′
n−1 −

(
n+ d − 3

n

)
+ 2d

=
(
d − 1 + n

n

)
− dn2 + x −

(
d − 2 + n

n− 1

)
+ d(n− 1)2

−
(
d − 3 + n

n− 1

)
+ (2n− 3)d −

(
n+ d − 3

n

)
+ 2d.

=
(
d − 1 + n

n

)
−

(
d − 2 + n

n− 1

)
−

(
d − 3 + n

n− 1

)
−

(
n+ d − 3

n

)
+ x

= x.

Hence dimI ′
n|H >

(
d−3+n
n

) − 2d, contradicting above stated fact. When
n = 3 andd = 7, similar computation shows dimI ′

n|H − (
n+d−3
n

) + n(d −
3)+ 1 ≥ x − 1. But by 3.1,x ≥ 7. Hence this contradicts 4.9.

This completes the proof of the theorem.ut
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