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Abstract

Let M be a compact connected complex manifold equipped with a holomorphic submersion to a complex torus such that the
fibers are all rationally connected. Then any holomorphic vector bundle over M admitting a holomorphic connection actually
admits a flat holomorphic connection. A similar statement is valid for any finite quotient of M . To cite this article: I. Biswas,
J.N. Iyer, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Connexions holomorphes sur quelques variétés complexes. Soit M une variété complexe compacte connexe, munie d’une
submersion holomorphe M → T , où T est un tore complexe, telle que les fibres soient rationnellement connexes. Soit E un fibré
vectoriel holomorphe sur M admettant une connexion. Alors E admet une connexion holomorphe plate. Un énoncé similaire vaut
pour tout quotient fini de M . Pour citer cet article : I. Biswas, J.N. Iyer, C. R. Acad. Sci. Paris, Ser. I 344 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The notion of a holomorphic connection on holomorphic fiber bundles was introduced by Atiyah [2]. It is a long-
standing question whether any vector bundle on a compact complex manifold admitting a holomorphic connection
admits a flat holomorphic connection.

Here we consider holomorphic connections on the following type of compact complex manifolds.
Let M be a connected compact complex manifold such that there is a finite étale cover

γ : M̃ −→ M (1)

of the following type: there is a holomorphic submersion

f : M̃ −→ T (2)

to a complex torus T with the property that for any point x ∈ T , the fiber f −1(x) is a rationally connected complex
projective manifold.
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Theorem 1.1. Let E be a holomorphic vector bundle over M admitting a holomorphic connection. Then E admits a
flat holomorphic connection.

Examples of M are: (1) holomorphic fiber bundles over a complex torus T with Fano manifolds as fiber, in par-
ticular, any flag bundle associated to any holomorphic vector bundle over T ; (2) any compact Kähler manifold with
numerically effective tangent bundle in the sense of [5] (this includes hyperelliptic varieties); and (3) moduli space of
stable vector bundles of rank r and degree δ over a compact Riemann surface Y , with r and δ mutually coprime, and
also the symmetric product Symd(Y ), where d > 2(genus(Y ) − 1).

2. Fiber bundles over a torus

A smooth complex projective variety Z is called rationally connected if for any two points of Z, there is an irre-
ducible rational curve on Z that contains them; see [8, p. 433, Theorem 2.1] and [8, p. 434, Definition–Remark 2.2]
for other equivalent conditions.

Let E be a holomorphic vector bundle over a complex manifold Y . A holomorphic connection on E is a first order
holomorphic differential operator

D :E −→ E ⊗ Ω1
Y

satisfying the Leibniz identity D(f s) = f D(s) + s ⊗ df , where f is any locally defined holomorphic function and s

is any locally defined holomorphic section of E; here Ω1
Y is the holomorphic cotangent bundle. The curvature D ◦ D

of D is a holomorphic section of End(E) ⊗ Ω2
Y over Y . A flat (or integrable) holomorphic connection is one whose

curvature vanishes identically.
Let T be a complex torus. Let X be a compact connected complex manifold and

φ :X −→ T (3)

a holomorphic submersion. We also assume that for each point t ∈ T , the fiber φ−1(t) is a rationally connected
complex projective manifold.

Proposition 2.1. Let E be a holomorphic vector bundle over X admitting a holomorphic connection. Then there is
a unique, up to an isomorphism, holomorphic vector bundle V over T such that φ∗V is holomorphically isomorphic
to E, where φ is the projection in (3). Furthermore, the vector bundle V admits a holomorphic connection.

Proof. Let D be any holomorphic connection on E. Fix a point t0 ∈ T . Let Z0 denote the fiber φ−1(t0), where φ is
the projection in (3). The restriction of E to Z0 will be denoted by E0. Let D0 denote the holomorphic connection on
E0 induced by the holomorphic connection D.

By our assumption on φ, the compact complex manifold Z0 is rationally connected. From [8] we know that given
any point x ∈ Z0, there is a holomorphic map

f : CP
1 −→ Z0 (4)

such that x ∈ image(f ) and the vector bundle f ∗T Z0 over CP
1 is ample; this follows from [8, p. 430, Corollary 1.3]

and [8, p. 434, Claim 2.3.1], and this assertion can actually be found in [8, p. 436, Proof (2.6)] (see also [1]).
The vector bundle f ∗E0 is equipped with the holomorphic connection f ∗D0. Any holomorphic connection on a

Riemann surface is automatically flat, as a Riemann surface does not have nonzero holomorphic two-forms. Since
CP

1 is simply connected, any vector bundle over CP
1 admitting a holomorphic connection must be holomorphically

trivializable.
Let Θ0 denote the curvature of the holomorphic connection D0 on E0. So

Θ0 ∈ H 0(Z0,End(E0) ⊗ Ω2
Z0

)
. (5)

Consider the pulled back section

f ∗Θ0 ∈ H 0(
CP

1, f ∗(End(E0) ⊗ Ω2 )) = H 0(
CP

1,End(f ∗E0) ⊗ f ∗Ω2 )
(6)
Z0 Z0



I. Biswas, J.N. Iyer / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 577–580 579
by the map f in (4). We know that the vector bundle f ∗T Z0 is ample. Using this, together with the fact that any holo-
morphic vector bundle over CP1 splits holomorphically into a direct sum of line bundles [6], it follows immediately
that

∧2
f ∗T Z0 is ample.

Since
∧2

f ∗T Z0 is ample, and f ∗E0 is holomorphically trivializable, the section f ∗Θ0 in (6) vanishes identically.
Since x is an arbitrary fixed point, and x ∈ image(f ), we conclude that the section Θ0 in (5) vanishes identically.

In other words, the holomorphic connection D0 is flat. As Z0 is rationally connected, a theorem of [4] and [9] says
that Z0 is simply connected; see [7, p. 362, Proposition 2.3]. Since E0 admits a flat holomorphic connection, and Z0
is simply connected, we conclude that E0 is holomorphically trivializable.

Since for each point t ∈ T , the restriction of E to the fiber φ−1(t) is holomorphically trivializable, where φ is the
projection in (3), we conclude that the direct image

V := φ∗E (7)

on T , of the coherent analytic sheaf E, is a holomorphic vector bundle, and furthermore, the vector bundle φ∗V over
X is canonically isomorphic to E. In other words, the natural homomorphism φ∗φ∗E → E is an isomorphism.

We will now prove that the holomorphic connection D on E descends to a holomorphic connection on V .
Let s be a holomorphic section of V defined over an open subset U ⊂ T . Consider the holomorphic section φ∗s of

the vector bundle φ∗V defined over the open subset φ−1(U) ⊂ X. Using the above mentioned canonical isomorphism
of φ∗V with E, this section φ∗s gives a holomorphic section of E over φ−1(U). This holomorphic section of E|φ−1(U)

will be denoted by ŝ.
Consider the holomorphic section

D(ŝ) ∈ H 0(φ−1(U),E ⊗ Ω1
X

)
, (8)

where D is the connection on E. Take any point t ∈ U . The inverse image φ−1(t) will be denoted by Zt . The restriction
of E to Zt will be denoted by Et . Let

s̃t ∈ H 0(Zt ,Et ⊗ Ω1
Zt

)
(9)

be the section obtained by restricting to Zt the section D(ŝ) in (8) and then using the natural projection of Ω1
X|Zt

to Ω1
Zt

.
We showed earlier that Et is holomorphically trivializable. We also have

H 0(Zt ,Ω
1
Zt

) = 0,

as the complex projective manifold Zt is simply connected. Therefore, the section s̃t in (9) vanishes identically. Since
s̃t vanishes identically for all t ∈ U , we claim that the section

D(ŝ) ∈ H 0(φ−1(U), (φ∗V ) ⊗ Ω1
X

)

in (8) is the pullback, to φ−1(U), of a holomorphic section of V ⊗ Ω1
T over U . To prove this claim, first note that

D(ŝ) is given by a holomorphic section of

E ⊗ (
Ω1

X/Ωφ

) = φ∗(V ⊗ Ω1
T

)

over φ−1(U), where Ωφ is the relative cotangent bundle for φ. Next note that the restriction of the holomorphic vector
bundle φ∗(V ⊗ Ω1

T ) to Zt is trivializable. Hence any holomorphic section of φ∗(V ⊗ Ω1
T ) over Zt must be a constant

section, proving the claim.
Let s′ ∈ H 0(U, V ⊗ Ω1

T ) be the unique section such that φ∗s′ = D(ŝ).
Now it is easy to check that the map from the locally defined holomorphic sections of V to the locally defined

holomorphic sections of V ⊗ Ω1
T , defined by the above prescription s 	→ s′, satisfies the Leibniz identity; it follows

from the fact that D satisfies the Leibniz identity. Therefore, the vector bundle V admits a holomorphic connection.
This completes the proof of the proposition. �
Proof of Theorem 1.1. If ψ :Y ′′ → Y ′ is an étale covering map between complex projective varieties with Y ′′ smooth
and rationally connected, then Y ′ is also smooth and rationally connected. Hence Y ′ is simply connected. Therefore,
ψ is an isomorphism. Since the fibers of f (in (2)) are rationally connected, this implies that for any point x ∈ T , the



580 I. Biswas, J.N. Iyer / C. R. Acad. Sci. Paris, Ser. I 344 (2007) 577–580
inverse image γ −1(γ (f −1(x))) (see (1)) is a finite union of copies of the rationally connected variety γ (f −1(x)). We
note that γ (f −1(x)) does not admit any nonconstant holomorphic maps to T (there are no nonconstant holomorphic
maps from CP

1 to T ). Hence there is a finite subset Sx ⊂ T such that γ −1(γ (f −1(x))) = f −1(Sx). Let T ′ be the
quotient of T obtained by identifying the points of Sx for each x. It is easy to see that the quotient map γ0 :T → T ′
is an étale covering map (because γ is étale), and also there is a natural holomorphic map f0 :M → T ′, such that γ is
the pullback of γ0 by f0.

Let E be a holomorphic vector bundle over M equipped with a holomorphic connection D. Consider the holo-
morphic vector bundle γ ∗E on M̃ equipped with the holomorphic connection γ ∗D. From Proposition 2.1 we know
that γ ∗E descends to T . Let V be the holomorphic vector bundle over T such that f ∗V = γ ∗E. We also know from
Proposition 2.1 that V admits a holomorphic connection DV . Since f ∗V = γ ∗E descends to M , and M̃ = T ×T ′ M ,
the vector bundle V descends to T ′. Let V ′ be the holomorphic vector bundle over T ′ such that γ ∗

0 V ′.
The holomorphic connection DV on V induces a holomorphic connection on V ′. To see this, first note that for

any simply connected neighborhood Ux0 of a point x0 ∈ T ′, the inverse image γ −1
0 (Ux0) is a union of copies of Ux0

parametrized by the finite set γ −1
0 (x0). Furthermore, the restriction of V to each such copy of Ux0 in γ −1

0 (Ux0) is
identified with V ′|Ux0

. Now for any holomorphic section s ∈ Γ (Ux0 , V ′|Ux0
), define

DV ′
(s) := 1

#γ −1
0 (x0)

∑
ν∈γ −1

0 (x0)

DV (sν) ∈ Γ
(
Ux0, (V

′|Ux0
) ⊗ Ω1

Ux0

)
,

where sν is the section of V , over the copy of Ux0 in γ −1
0 (Ux0) indexed by ν, given by s. It is easy to see that the map

V → V ′ ⊗ Ω1
T ′ defined by s 	→ DV ′

(s) is a holomorphic connection on the holomorphic vector bundle V ′ on T ′.
Since V ′ admits a holomorphic connection, from [3, Theorem 4.1] it follows that V ′ admits a flat holomorphic

connection. The proof of Theorem 1.1 is now completed using the fact that f ∗
0 V ′ = E.

We note that any Fano manifold is rationally connected [9, p. 766, Theorem 0.1]. This gives the first example in the
list following Theorem 1.1. The second example follows from [5, p. 296, Main Theorem]. The last examples follow
by considering the natural projection to Picd(Y ).
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