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Abstract. In this paper, we investigate the question of triviality of the rational Chow

groups of complete intersections in projective spaces and obtain improved bounds for

this triviality to hold. Along the way, we study the dimension and nonemptiness of some

Hilbert schemes of fat r-planes contained in a complete intersection Y , generalizing

well-known results on the Fano varieties of r-planes contained in Y .
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1. Introduction

The aim of this paper is to investigate the triviality of the low-dimensional rational

Chow groups for certain projective varieties. If Y is a nonsingular complete intersection

of multidegree (d1, · · · , ds) in a projective space Pn, and n is sufficiently large with

respect to the degrees, it is known that, for small values of r, the rational Chow group

QCHr(Y ) := CHr(Y ) ⊗ Q is trivial, namely one-dimensional (generated by the linear

sections). The precise conjectural bound on the multidegrees for the triviality follows

from the study of the Hodge type of the complementary open variety Pn−Y initiated by

Deligne [De] and followed by works of Deligne-Dimca [De-Di] and Esnault-Nori-Srinivas
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[Es], [EsNS]. A formulation of the conjectured bound was made in [Pa, Conjecture 1.9],

which says:

Conjecture 1.1. Suppose Y ⊂ Pn is a smooth complete intersection of multidegree

(d1, · · · , ds), and let r be a nonnegative integer. If

r(max1≤i≤sdi) +
s∑
i=1

di ≤ n

then QCHr(Y ) is trivial.

The case of 0-cycles has been handled by Roitman [Ro]. Concerning a general cubic

hypersurface Y ⊂ Pn, C. Schoen [Sc] showed the triviality QCH1(Y ) ' Q when n ≥ 7

and Paranjape [Pa] obtained the sharp bound in this case showing the triviality of 1-

cycles when n ≥ 6. He also gave the first finite bound for general complete intersections.

Later on, a better bound was obtained by Esnault, Levine and Viehweg:

Theorem 1.2. [EsLV] We consider a complete intersection Y in Pn of multidegree

(d1, · · · , ds), with d1 ≥ ... ≥ ds ≥ 2 and an integer r satisfying

s∑
i=1

(
di + r

r + 1

)
≤ n.

In the particular case d1 = ... = ds = 2, we suppose furthermore r < s. Then

QCHr′(Y ) ' Q, for each r′ ≤ r. In the remaining case where d1 = ... = ds = 2

and s ≤ r, the same conclusion as above holds assuming the modified inequality

s(r + 2) ≤ n− r + s− 1.

Their inequality is the sharp condition for the Chow group of 0-cycles of the variety

of r-planes in the general complete intersection Y to be trivial. Hence, as they claim,

their bound cannot be improved ”by only considering rational equivalences of r -planes

among r-planes”.

For Y a nonsingular hypersurface, an improved bound has been obtained by J. Lewis

[Le2], A. Otwinowska [Ot].

Our contribution recovers their bound for hypersurfaces (relaxing the nonsingularity

assumption) by a completely different method, and somehow improves the bound of

[EsLV] in the higher-codimensional case, as we will see below.

The central notions in our approach are those of fat and strong planes, which appear

at least implicitly in [EsLV], and go back to Roitman for the 0-dimensional case.
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By a t-fat r-plane in a projective space, we mean the t-th infinitesimal neighborhood

of an r-plane in an (r + 1)-plane. Given a subscheme Y ′ in a projective space and a

Cartier divisor Y in Y ′, we say that an r-plane L in Y is strong (with respect to Y ′) if

there exists an (r+1)-plane L′ in Y ′ containing L such that the set-theoretic intersection

L′∩Y is either L or L′. The connection between the two notions is given by the following

statement, proven in section 2 :

Proposition 1.3. Suppose Y is in the linear system |OY ′(t)|. Then any strong r-plane

in Y is the support of a t-fat r-plane contained in Y . Conversely, if furthermore Y ′ is

(set-theoretically) defined by equations of degree (strictly) less than t, then the support

of any t-fat r-plane contained in Y is strong.

Our first main result reads as follows:

Theorem 1.4. If, in the subvariety Y ′ ⊂ Pn, the Cartier divisor Y ∈ |OY ′(t)| is covered

by strong r-planes, then the restriction map QCHr+1(Y ′)→ QCHr(Y ) is onto.

This implies in particular that whenever QCHr+1(Y ′) is trivial, so is QCHr(Y ). In

order to apply the above result, we need to find the appropriate condition on the degrees

for our complete intersection Y to be covered by strong r-planes. We recall that the

strongness property is with respect to the pair (Y, Y ′). We say that an r-codimensional

subvariety in a projective space has type (d1, · · · , ds) when it is a union of irreducible

components of a complete intersection of multi-degree (d1, · · · , ds). Accordingly, we say

that a pair Y ⊂ Y ′ has type (d1, · · · , ds) if Y ′ has type (d1, · · · , ds−1) and Y is a divisor

of degree ds in Y ′. In §6, we prove :

Proposition 1.5. Let n, r, s, d1, · · · , ds be integers satisfying r ≥ 0, s ≥ 1, n ≥ r + s,

2 ≤ d1 ≤ · · · ≤ ds−1 < ds and the (”expected”) inequality

ρ+ r ≥ n− s

where ρ stands for (r + 2)(n− r)−Σs
i=1

(
di+r+1
r+1

)
(this is the dimension of the variety of

ds-fat r-planes in the general complete intersection of type (d1, · · · , ds), see §4).

If Y ⊂ Y ′ is any pair of type (d1, · · · , ds) in Pn, then Y is covered by strong r-planes.

Note the strict inequality ds−1 < ds. Apart from this restriction, our result is the

expected one. The discarded case would involve a refined analysis.

Combining the previous results, we obtain our main result:



4 A.HIRSCHOWITZ AND J. N. IYER

Theorem 1.6. Let n, r, s, d1 ≤ · · · ≤ ds−1 < ds be integers as above, satisfying

ρ+ r ≥ n− s.

If Y ⊂ Y ′ is any pair of type (d1, · · · , ds) in Pn, and if QCHr+1(Y ′) is trivial, then so

is QCHr(Y ).

This theorem may be applied either recursively or combined with the result of [EsLV].

In order to understand why both ways are in order, let us compare roughly the new and

the old result. First, on the positive side, let us fix r, d1, · · · , ds−1 and let d := ds go

to infinity. For d sufficiently large, our inequality forces n to be large enough so that

QCHr+1(Y ′) is trivial. We thus get rid of this assumption and we obtain the desired

triviality for a value of n which can be estimated as dr+1

(r+1)(r+1)!
. While if one uses [EsLV],

the best value of n is estimated as dr+1

(r+1)!
. Hence in this context of a large ds, we roughly

divide by r + 1 the range where the conjecture is still open. On the other hand, our

bound is still polynomial of degree r + 1 while the conjecture expects a linear bound.

Now on the negative side, let us consider the type (d, d+1) and let d go to infinity (fixing

r). Our ”new” result gives a bound for n which is roughly a polynomial of degree r + 2

in d, while [EsLV] gives a polynomial of degree r+1 in d. Thus we understand here that

for many triples (d1, d2, d3), the combination of the two results will be the best choice.

Finally, we check that our result may also improve [EsLV] for small types: for instance

for pairs of type (2, 3) and r = 1, [EsLV] gives the bound n ≥ 9 while we obtain n ≥ 8,

which is the conjectured sharp bound.

The proof of Theorem 1.4 is essentially copied from [EsLV]. Their angle is slightly

different: on one hand they need the stronger condition that all r-planes contained in

Y are strong in some sense, and on the other hand, they compare directly the Chow

groups of Y to those of the ambient projective space, a comparison which our point of

view do not allow (yet?).

Our proof of Theorem 1.6 relies on the study of the Hilbert schemes of fat r-planes

contained in a general complete intersection. We show in §5 that they have the expected

dimension; but we need a more accurate result saying that, when this expected dimension

is nonnegative, these Hilbert schemes are nonempty. We conjecture that this is true in

most cases (despite the notable exception of double lines on quadric surfaces), and prove

it in the case we need for our application to Chow groups. For such a result, as illustrated

in [De-Ma], two approaches are available: through intersection computations or through
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maximal rank problems. We follow the latter approach, using a method that can be

tracked back at least to [EH, EHM].

We work over an algebraically closed field of characteristic zero. The closedness as-

sumption could be removed, thanks to the fact that the kernel of CHr(Yk) → CHr(Yk̄)

is torsion [Bl2], while the characteristic zero assumption is used in the proofs of §4.

Acknowledgements: This work was initiated during the second author’s stay at MPI, Bonn in 2003

and partly done during her visit to Nice in Dec 2004 and at IAS, Princeton in 2007. The support and

hospitality of these institutions is gratefully acknowledged.

2. Strong planes

Throughout this section, we consider a subvariety Y ′ in a projective space equipped

with a Cartier divisor Y , and we fix an integer r. We are interested in the restriction

map QCHr+1(Y ′)→ QCHr(Y ), where we write QCHr(W ) for the rational Chow group

of r-dimensional cycles on W .

Recall that an r-plane L in Y is said strong (with respect to Y ′) if there exists an

(r + 1)-plane L′ in Y ′ containing L such that the set-theoretic intersection L′ ∩ Y is

either L or L′.

In this section, we prove our first main result :

Theorem 2.1. If, in the subvariety Y ′ ⊂ Pn, the Cartier divisor Y ∈ |OY ′(d)| is covered

by strong r-planes, then the restriction map QCHr+1(Y ′)→ QCHr(Y ) is onto.

For the proof, we generalize our notion of strongness and define a notion of strong

s-plane in Y ′ for s ≤ r + 1. A (r + 1)-plane H in Y ′ is said strong (with respect to

the pair (Y, Y ′)) if it is contained in Y , or if its set-theoretic intersection with Y is a

r-plane. Then, for s ≤ r, a s-plane in Y ′ is said to be r-strong, or simply strong (when

r is clear from the context), if it is contained in a strong (r+ 1)-plane. As usual, we say

that a closed subvariety W of Y is spanned or covered by strong s-planes if it is a union

of strong s-planes contained in W .

Now we denote by QCH(s)
r (Y ) the subgroup of QCHr(Y ) which is generated by r-

dimensional subvarieties of Y which are spanned by strong s-planes. Note that any

subvariety in Y is spanned at least by strong 0-planes: since Y is covered by strong

r-planes, it is also covered by strong 0-planes. Thus we have QCH(0)
r (Y ) = QCHr(Y ).

For s ≥ 1, if Z is spanned by strong s-planes it is spanned by strong (s− 1)-planes as

well. Hence one has QCH(s)
r (Y ) ⊆ QCH(s−1)

r (Y ). For s > r one has QCH(s)
r (Y ) = {0}.
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We prove by descending induction on s that QCH(s)
r (Y ) is in the image of QCHr+1(Y ′).

The initial case is with s := r + 1 and follows since QCH(r+1)
r (Y ) is reduced to 0.

Before stating the induction step as a lemma, we introduce the following notation. Let

Γ ⊂ Y ′ be an (r + 1)-dimensional closed subvariety or, more generally, an (r + 1)-cycle.

By [Fu, 8.1], the intersection product Γ · Y is a class in CHr(|Γ| ∩ Y ). By abuse of

notation we will also write Γ · Y for its image in QCHr(Y ).

Lemma 2.2. Let s be an integer with 0 ≤ s ≤ r, and W be an r-dimensional irreducible

subvariety of Y , spanned by strong s-planes but not by strong (s+ 1)-planes. Then there

exist an (r + 1)-dimensional cycle Γ in Y ′ and a positive integer α with

Γ · Y ≡ αW mod QCH(s+1)
r (Y ).

Proof. We start with the case s := r which means that W is a strong r-plane. This gives

us a strong (r + 1)-plane in Y ′ which we take for Γ. Indeed, we have Γ · Y = dW.

Now we suppose s < r. In order to define Γ, we start by choosing carefully an algebraic

family (Hz)z∈Z of strong s-planes covering W . Note that by our assumption on s, each

strong s-plane in Y is contained in a strong (s + 1)-plane also contained in Y , thus we

may choose more precisely an algebraic family (Hz ⊂ H ′z)z∈Z where (H ′z) is a strong

(s+ 1)-plane in Y , Hz is a hyperplane in H ′z and W is covered by (Hz)z∈Z . By standard

arguments, we may suppose that Z is projective smooth connected of dimension r − s.
We denote by HZ ⊂ H ′Z the two corresponding projective bundles over Z.

Since W is not covered by strong (s + 1)-planes, the projection of H ′Z into Y is not

contained in W , thus it is a positive (r + 1)-cycle. We take for Γ this Chow-theoretic

projection of H ′Z in Y ′.

Let us now compute Γ · Y in QCHr(Y ) (remind that we consider Γ as a cycle in Y ′).

We start by applying the projection formula [Fu, 8.1.7] to pr2 : Z × Y ′ → Y ′:

Γ · Y = pr2∗(H
′
Z) · Y = pr2∗(H

′
Z · (Z × Y )).

So now we compute H ′Z · (Z×Y ). This is the divisor class in H ′Z defined by the linear

system |pr∗2OY ′(Y )|. Now H ′Z is a projective bundle and this linear system has degree d

along the fibers of this bundle. Thus we have

H ′Z · (Z × Y ) = dHZ + ψ−1(D)

where D is a divisor in Z and ψ : H ′Z → Z is the bundle projection. We get
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Γ · Y = dpr2∗(HZ) + pr2∗ψ
−1(D)

in QCHr(Y ∩ pr2(H ′Z)). Since HZ is generically finite over the subvariety W and since

pr2∗(ψ
−1(D)) lies in QCH(s+1)

r (Y ), one obtains, for some positive multiple α of d, the

relation

Γ · Y ≡ αW mod QCH(s+1)
r (Y ).

�

Now we check the following statement, already mentioned in our introduction:

Proposition 2.3. Suppose Y is in the linear system |OY ′(t)|. Then any strong r-plane

in Y is the support of a t-fat r-plane contained in Y . Conversely, if furthermore Y ′ is

(set-theoretically) defined by equations of degree (strictly) less than t, then the support

of any t-fat r-plane contained in Y is strong.

Proof. For the first statement, our strong r-plane L is contained in a strong (r+1)-plane

L′ ⊂ Y ′. If L′ is contained in Y , then so is the t-th infinitesimal neighborhood of L in

L′. If not, then, since the set-theoretic intersection of Y and L′ is L, and the degree of

the restriction of |OY ′(t)| to L′ is t, the scheme-theoretic intersection Y ∩ L′ has to be

the t-th infinitesimal neighborhood of L in L′. Thus in both cases, this is the desired

t-fat r-plane.

For the second statement, let L ⊂ Pn be a t-fat r-plane contained in the (r+ 1)-plane

L′. The equations defining Y ′ vanish on L. Since these equations can be chosen of degree

strictly less than t, they vanish identically on L′, which means that L′ is contained in

Y ′, hence that L is strong.

�

3. Restricted flag-Hilbert schemes

In this section, we collect some technical material concerning the infinitesimal theory

of restricted flag-Hilbert schemes. Here by a full Hilbert scheme (for a given projective

variety), we mean any open subscheme of the Hilbert scheme associated to a Hilbert

polynomial, while by a Hilbert scheme, we mean any locally closed subscheme of a full

Hilbert scheme.

Given two full Hilbert schemes H1 and H2 of subschemes of the same ambient pro-

jective scheme P , we have the corresponding flag-Hilbert scheme D of pairs (X ↪→ Y )

in H1×H2. Two subschemes H′1 ⊂ H1 and H′2 ⊂ H2 being given, by the corresponding
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restricted flag-Hilbert scheme, we mean the scheme-theoretic intersection D′ of D with

H′1 ×H′2.

In the example we have in mind, P is a projective space, H′1 is a variety of fat planes,

and H′2 = H2 is a full Hilbert scheme of complete intersections.

We write i : X → Y for a given pair, IX and IY for the two ideal sheaves on P ,

NX := Hom(IX ,OX) and NY := Hom(IY ,OY ) for the corresponding normal bundles.

We denote by NY |X the restriction i∗(NY ) of NY to X. We also have i∗ : NX → i∗NY

and i∗ : NY → i∗NY |X . Note that the two codomains have the same space of sections

H0(NY |X). Putting together, we have a morphism

(i∗, i
∗) : H0(NX)⊕H0(NY )→ H0(NY |X).

The domain of this morphism is the tangent space to the product of our two Hilbert

schemes, and the tangent space to the flag-Hilbert scheme is identified as the kernel of

the above map (i∗, i
∗) (see [Kl], [Se, Remark 4.5.4 ii]). Hence the differentials of the two

projections are the restrictions to this kernel of the projections.

We first state in our way the standard result in the unrestricted case:

Proposition 3.1. We suppose that H1, H2 are smooth connected and that D has codi-

mension c at O := (X, Y ). We also suppose that i∗ : H0(NY ) → H0(NY |X) has rank c.

Then

(i) D is smooth at O;

(ii) The image of i∗ : H0(NX) → H0(NY |X) is contained in the image of i∗ :

H0(NY )→ H0(NY |X);

(iii) The first projection D → H1 is smooth at (X, Y );

(iv) The second projection D → H2 is smooth at (X, Y ) if (and only if) the rank of

i∗ : H0(NX)→ H0(NY |X) is c.

Proof. (i) Since i∗ has rank c, the pair (i∗, i
∗) has rank at least c. It follows that, in the

tangent space of H1×H2 at O, the tangent space to D is at least c-codimensional. Since

D is c-codimensional, this implies that D is smooth at O.

(ii) By the previous argument, we see that the rank of the pair (i∗, i
∗) is exactly c,

which means the stated inclusion.

(iii) Using the previous item and an easy diagram-chasing, we see that the differential

of D → H1 at O is onto.

(iv) This follows by a similar diagram chasing.

�
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Now we turn to the restricted case. Here we write K0(NX) ⊂ H0(NX) for the tangent

space to H′1 at X, and K0(NY ) ⊂ H0(NY ) for the tangent space to H′2 at Y .

Proposition 3.2. We suppose that H′1, H′2 are smooth connected and that D′ has codi-

mension c at O := (X, Y ). We also suppose that i∗ : K0(NY ) → H0(NY |X) has rank c.

Then

(i) D′ is smooth at O;

(ii) The image of i∗ : K0(NX) → H0(NY |X) is contained in the image of i∗ :

K0(NY )→ H0(NY |X);

(iii) The first projection D′ → H′1 is smooth at (X, Y );

(iv) The second projection D′ → H′2 is smooth at (X, Y ) if (and only if) the rank of

i∗ : K0(NX)→ H0(NY |X) is c.

Proof. The main point is the identification of the tangent space to D′: a pair (t1, t2)

of vectors in K0(NX) × K0(NY ) is tangent to D′ if the subscheme (over Spec k[ε])

corresponding to t1 is included in the one corresponding to t2. This means exactly that

(t1, t2) is tangent to D. Hence the tangent space to D′ is the kernel of the restriction

(i∗, i
∗) : K0(NX) ⊕ K0(NY ) → H0(NY |X). The rest of the proof is identical to the

previous one.

�

4. Fat planes in complete intersections

In this section, we consider

• a projective space Pn,

• an integer r with 0 ≤ r < n, which is the dimension of our (fat) planes,

• an integer s with 1 ≤ s ≤ n − r − 1, which is the codimension of our complete

intersections (or the number of their equations),

• a sequence d := (d1, · · · , ds) of s positive integers, which is the multidegree of

our complete intersections,

• an integer t, with 2 ≤ t ≤ max d, which is the multiplicity of our fat r-planes.

We keep the notations of the previous section for our case where H′1 is the (smooth)

Hilbert scheme parametrizing t-fat r-planes in Pn and H′2 = H2 is the (smooth) Hilbert

scheme of complete intersections of type d. We write δ′i for the dimension of H′i. The

dimension δ′1 of H′1 does not depend on t (thanks to the assumption t ≥ 2), it is the

dimension of the corresponding flag variety, namely (r + 2)(n− r − 1) + r + 1, in other

words (r + 2)(n− r)− 1.
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We set ρ := (r+2)(n−r)−1−Σs
i=1

(
di+r+1
r+1

)
+Σdi≥t

(
di−t+r+1

r+1

)
. We will see that ρ is the

expected dimension for the Hilbert scheme of t-fat r-planes in a complete intersection of

type d in Pn. Recall that by a t-fat r-plane, we mean the t-th infinitesimal neighborhood

of an r-plane in an (r + 1)-plane. Finally, we set c := δ′1 − ρ. Hence we have ρ = δ′1 − c
which means that c is the (expected) number of conditions imposed to a t-fat r-plane

for being contained in a given complete intersection of type d. The first result of this

section confirms this expectation.

Proposition 4.1. (i) The codimension of the restricted flag-Hilbert scheme D′ in H′1×
H′2 is c;

(ii) For the generic complete intersection Y of type d in Pn the dimension of the

Hilbert scheme of t-fat r-planes in Y is everywhere ρ. In particular this Hilbert scheme

is empty if ρ is negative.

Proof. (i) We consider a variety V parameterizing our complete intersections, namely

the open subset of the vector space V̂ of s-tuples of homogeneous polynomials (in n+ 1

variables) of the given multidegree defining an s-codimensional subscheme in Pn. We

write dV for the dimension of V . The variety V comes equipped with the tautological

subscheme T ⊂ V × Pn. The corresponding morphism V → H2 is surjective and it is

easily checked to be smooth. Similarly, H′1 comes equipped (thanks to t ≥ 2) with a

tautological flag L ⊂ L′ ⊂ H′1 × Pn, where L is the tautological t-fat r-plane, while L′

is its linear span: its fibers over H′1 are (r+ 1)-planes. Next, we introduce the incidence

subscheme D := D′ ×H2 V ⊂ H′1 × V . Since V → H2 is surjective and smooth, it is

enough to prove that the codimension of D in H′1 × V is c.

The dimension dD of D is understood through the projection on H′1. Indeed the

fibers of the projection D → H′1 are traces on V of sub-vectorspaces in V̂ . So we

have to compute the codimension in V̂ of tuples vanishing on a fixed t-fat r-plane L.

This codimension is Σs
i=1ci, where ci is the codimension of homogeneous polynomials of

degree di vanishing on L. We easily check ci =
(
di+r+1
r+1

)
−
(
di−t+r+1

r+1

)
, where we adopt the

convention that
(
p
q

)
is zero whenever p < q. Hence we end up with the desired result

dD = dV + ρ.

(ii) This is an immediate consequence of the first item.

�

We need a complementary statement which is a particular case of the following con-

jecture:
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Conjecture 4.2. Apart from the exception below, for the generic complete intersection

Y of type d in Pn, when ρ is nonnegative, the Hilbert scheme of t-fat r-planes in Y is

nonempty.

Here is the known exception :

Example 4.3. For double lines on the generic quadric in P3, we have ρ = 0 while the

corresponding Hilbert scheme is empty.

In the rest of this section, we reduce the above conjecture to a maximal rank problem.

This maximal rank problem for the particular case we need will be handled in the next

section.

We want to apply the result of the previous section. So we start from a flag H ⊂ L ⊂
L′ ⊂ Pn where L is a t-fat r-plane with support H and linear span L′. Our first task is

to identify the tangent space TLH′1 at L to the variety H′1 of fat planes. Recall that the

tangent space at L to the full Hilbert scheme is H0(L,NL), where NL := Hom(IL,OL)

is the normal bundle. Hence we look for a subspace of that vector space. We choose

coordinates xi where L is defined by the equations xt0 = x1 = · · · = xn−r−1 = 0 so that

we may identify NL as the direct sum OL(1)n−r−1 ⊕ OL(t) and accordingly H0(NL) as

the direct sum H0(OL(1))n−r−1 ⊕H0(OL(t)).

For the following lemma, we will introduce again a notation K0. The reader should

be aware that, in the present section, this notation is introduced in such a way that K0

differs from H0 only in the special case where r is zero. For each integer a, we denote by

K0(OL(a)) the image of the restriction H0(OPn(a))→ H0(OL(a)). We also extend this

notation to sequences in the natural way: by OL(d) we mean ⊕iOL(di), and K0(OL(d))

stands for ⊕iK0(OL(di)). Finally we set p := n− r − 1.

Lemma 4.4. (i) The image of the natural morphism j : TPn → NL from the tangent

sheaf of Pn to the normal sheaf NL is a subsheaf N ′L isomorphic to OL(1)p ⊕OH(1) as

an OL-module.

(ii) More precisely, we may choose an isomorphism between NL and OL(1)p ⊕OL(t)

so that the corresponding injection OL(1)p ⊕ OH(1) → OL(1)p ⊕ OL(t) decomposes as

ι ⊕ µ, where ι is the identity on the first summand and µ is the multiplication by xt−1
0

on the second one.

(iii) The tangent space TLH′1 at L to the variety H′1 of fat planes is the image of

H0(TPn) (or H0(OPn(1)n+1)) into H0(N ′L) (or H0(NL)). We write K0(N ′L) for this

image.
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(iv) Under the identification in (i), K0(N ′L) appears as K0(OL(1))p ⊕H0(OH(1)).

Proof. Let us start with the third statement. Since H′1 is the orbit in the full Hilbert

scheme of L under the projective linear group, TLH′1 has to be the image of the natural

map H0(j) : H0(TPn)→ H0(NL).

Now we turn to (i) and (ii). Using our coordinates, our morphism j, viewed from

OPn(1)n+1 to OL(1)p ⊕OL(t) is given by the partial derivatives or our n− r equations,

which gives essentially the announced matrix: just note that, thanks to the characteristic

zero assumption, the image of the multiplication by the partial derivative txt−1
0 from

OL(1) to OL(t) is the same as the image of the multiplication by xt−1
0 , and this image

is isomorphic to OH(1).

Now we turn to (iv). We just note that by i), H0(N ′L) is equal to H0(OL(1))p ⊕
H0(OH(1)). By definition, K0(N ′L) is the image of H0(OPn(1)n+1) into H0(N ′L), which

can now be identified as the space K0(OL(1))p ⊕H0(OH(1)).

�

Now we consider a flag i : L→ Y of complete intersection subschemes in Pn where Y is

the general complete intersection of type d containing L. The tangent space at Y to the

corresponding Hilbert scheme is H0(Y,NY ) which can be computed as H0(Y,OY (d)).

It follows that H0(L,NY |L) is isomorphic to H0(L,OL(d)). Thus it is sound to write

K0(L,NY |L) or simply K0(NY |L) for the image of H0(NY ) into H0(L,NY |L).

Lemma 4.5. (i) For r > 0, K0(NY |L) is the whole of H0(L,NY |L);

(ii) In any case, the dimension of K0(NY |L) is c;

(iii) In any case, the natural map K0(N ′L)→ H0(L,NY |L) factors through K0(NY |L);

(iv) If the induced map K0(N ′L) → K0(NY |L) is onto, then D′ → H′2 is smooth at

(L, Y ).

Proof. (i) We know that NY is the direct sum OY (d) and a standard cohomological

argument shows that all its sections come from the ambient projective space. Hence

what we have to prove is that any section of OL(d) comes from the ambient projective

space, which follows from the standard cohomological argument: the cohomology of line

bundles on projective spaces of dimension at least two is trivial (here we use r ≥ 1).

(ii) As we have just seen, K0(NY |L) is the image of H0(OPn(d)) in H0(OL(d)), so this

is just a count of monomials which we leave to the reader.
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(iii) and (iv) Now we apply Prop.3.2 : in our case, we have K0(NY ) = H0(NY ) and,

according to Lemma 4.4, the assumption in Prop.3.2 is precisely the previous item. The

statements (iii) and (iv) here are exactly the conclusions (ii) and (iv) there.

�

We turn to the final result of the present section where, for sake of clarity, we han-

dle separately the case r = 0. We will write 1,2 and t respectively for the sequence

(1, · · · , 1), (2, · · · , 2) and (t, · · · , t), hence accordingly d − 1, d − 2, d − t respectively

for (d1 − 1, · · · , ds − 1), (d1 − 2, · · · , ds − 2), (d1 − t, · · · , ds − t).

Proposition 4.6. (i) For r ≥ 1, we consider the generic morphism

m : OL(1)p ⊕OH(1)→ OL(d) of coherent OL-modules. If

H0(m) : H0(OL(1)p)⊕H0(OH(1))→ H0(OL(d))

is onto then D′ → H′2 is onto too.

(ii) For r = 0, we denote by K0(OL(1)p ⊕ OH(1),OL(d)) the image of the natural

map

K0(OL(d− 1))⊕K0(OL(d− t))→ Hom(OL(1)p ⊕OH(1),OL(d)).

We consider the generic morphism m in K0(OL(1)p ⊕ OH(1),OL(d)). If the image by

H0(m) of K0(OL(1)p) ⊕ H0(OH(1)) into H0(OL(d)) is K0(OL(d)), then D′ → H′2 is

onto.

Proof. (i) Since our morphism D′ → H′2 is projective and the codomain is irreducible,

it is sufficient to prove that it is dominant. We apply Lemma 4.5 (iv), hence we have

to prove that the map mY : H0(N ′L) → H0(L,NY |L) is onto. This map depends upon

our complete intersection Y . We express it in terms of the system of equations b :=

(b1, · · · , bs) ∈ H0(IL(d)) of Y , rather than in terms of Y itself. This allows us to describe

the associated morphism mY : N ′L → NY |L or, via the identifications of Lemma 4.4,

mb : OL(1)p ⊕OH(1)→ OL(d) as follows:

- for the first factor, the j-th component (1 ≤ j ≤ p), from OL(1) to OL(d), is the

derivative of b with respect to xj;

-for the second factor, from OH(1) to OL(d), we have the derivative of b with respect

to x0 (note that indeed this derivative factors through OH(1)).

What we have to prove is that, for b sufficiently general, H0(mb) is onto. For this,

thanks to our surjectivity assumption, it is enough to prove that b 7→ mb is dominant

(or onto).
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We prove that b 7→ mb is onto. For this we take m := (m1, · · · ,mp,m0) : OL(1)p ⊕
OH(1) → OL(d) and search for b with m = mb. By the standard cohomological ar-

gument, we may lift m1, · · · ,mp and consider we are given (m1, · · · ,mp) : OPn(1)p →
OPn(d). Now for m0, we see it as a section of Hom(OH ,OL(d−1)) hence as a section of

OL(d−1) annihilated by x0, thus of the form txt−1
0 f with f a section of OL(d−t), using

the characteristic zero assumption. As above, we may lift f as a section, still denoted f

of OPn(d − t). At this point we may set b := x1m1 + · · · + xpmp + xt0f and check that

it has the desired property.

(ii) The proof is almost the same: we apply Lemma 4.5 (iv). This time, we have

to prove that the map mY : H0(N ′L) → H0(L,NY |L) sends K0(N ′L) onto K0(L,NY |L).

As above we introduce a system of equations b := (b1, · · · , bs) ∈ H0(IL(d)) of Y . Via

the identifications of Lemma 4.4, we are concerned, for b sufficiently general, by the

sheaf morphism mb : OL(1)p ⊕OH(1)→ OL(d) defined by the same formulas as in the

previous case.

Since our identifications send K0(N ′L) to K0(OL(1))p⊕H0(OH(1)) and K0(L,NY |L) to

K0(OL(d)), it is enough to prove that the image of b 7→ mb isK0(OL(1)p⊕OH(1),OL(d)).

For this we take m := (m1, · · · ,mp,m0) in K0(OL(1)p⊕OH(1),OL(d)). This means that

m1, · · · ,mp come from sections still denoted m1, · · · ,mp in H0(Pn,O(d− 1)), while m0

is of the form xt−1
0 f , or better of the form txt−1

0 f , with f a section of H0(Pn,O(d− t)).

And we search for b with m = mb. Again we may set b := x1m1 + · · ·+ xpmp + xt0f and

check that it has the desired property.

�

5. Nonemptiness

In this section, we prove our conjecture 4.2 in the case we need. We restrict to the

very special case where t is the greatest number in our sequence d, and we assume

furthermore that t is at least 3, and that it occurs only once in d. We will prove:

Proposition 5.1. Under the above restrictions, when ρ is nonnegative, for any complete

intersection Y of type d in Pn, the Hilbert scheme of t-fat r-planes in Y is nonempty.

We keep the notations of the previous section. Furthermore, we denote by h0(u, e)

the number of monomials of degree e in u variables, and accordingly, for any sequence

e := (e1, · · · , es) of integers, we set h0(u, e) := h0(u, e1) + · · ·+ h0(u, es).

Thanks to Proposition 4.6, it is enough to prove a maximal rank statement, which

depends on whether r is zero or not. Namely, we have to prove the following two lemmas.
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Lemma 5.2. (the case r ≥ 1) For p satisfying (r + 2)p+ r + 1 ≥ h0(r + 2,d)− 1, and

for the general morphism m : OL(1)p ⊕OH(1)→ OL(d), H0(m) is onto.

Lemma 5.3. (the case r = 0) We suppose 2p+ 1 ≥ h0(2,d)− 1. Then, for the general

morphism m in K0(OL(1)p ⊕ OH(1),OL(d)), the image by H0(m) of K0(OL(1)p) ⊕
H0(OH(1)) into H0(OL(d)) is K0(OL(d)).

Recall that K0(OL(1)p ⊕ OH(1),OL(d)) denotes the image of the natural map from

K0(OL(d− 1))⊕K0(OL(d− t)) to Hom(OL(1)p ⊕OH(1),OL(d)).

The differences between our two lemmas can be erased by switching to the point of

view of graded modules. So, just for the present section, we radically change the meaning

of our notations: from now on, OL denotes the graded ring k[x0, · · · , xr+1]/(xt0) and OH
denotes the quotient graded module k[x1, · · · , xr+1]. For a graded OL-module G with

graduation γ, we write G(a) for the module G equipped with the graduation γa := γ−a.

For a graded-module G, by H0(G) we mean the degree 0 component of G, while for a

morphism m of graded modules, by H0(m) we mean the restriction of m to the degree

0 components. With these conventions, our two lemmas rephrase as the single following

one:

Lemma 5.4. For p satisfying (r + 2)p + r + 1 ≥ h0(r + 2,d) − 1, and for the general

morphism m : OL(1)p ⊕OH(1)→ OL(d), H0(m) is onto.

Proof. Here we use a method which can be tracked back to [EH, EHM], where

similar results were obtained in a different context. We denote by M the vector space

Hom(OL(1)p⊕OH(1),OL(d)), by S the space of nontrivial linear forms on H0(OL(d)),

and by Z the “incidence” subscheme in M × S consisting of pairs (m, `) for which

`◦H0(m) vanishes. We denote by ` the second projection: ` : Z → S. What we want to

prove is that the first projection Z → M is not dominant. This will follow if we prove

the inequality dimZ ≤ dimM , since the fibers of our projection are unions of lines.

We proceed by contradiction and suppose that the projection Z → M is dominant.

To each λ ∈ S we attach the bilinear form λ∗ on H0(OL(d − 1)) ×H0(OL(1)) defined

by λ∗(f, v) = λ(vf). By semi-continuity, we have an open subset Zu ⊂ Z which still

dominates M , and where the rank u of `∗ is constant.

In the first factor H0(OL(d−1)) of our product, we have a distinguished line: the line

D generated (in the summand OL(t)) by xt−1
0 . Our first observation is the following:

Lemma 5.5. For our general point z ∈ Zu, `∗(z) vanishes on D ×H0(OL(1)).
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Proof. In OL(d) we have the summand OL(t). And therein, we have the graded submod-

ule xt−1
0 OL(1) consisting of multiples of xt−1

0 . This submodule may be better denoted

by xt−1
0 OH(1) since the multiplication by xt−1

0 , which sends OL(1) into OL(t), factors

through OH(1). This submodule xt−1
0 OH(1) is easily identified as the submodule of

OL(d) which is annihilated by x0. Hence, any morphism m ∈M has to send the second

summand OH(1) of its domain, which is annihilated by x0, into the summand OL(t) of its

codomain, and more precisely into the submodule xt−1
0 OH(1) mentioned above. Also a

sufficiently general morphism m ∈M sends OH(1) isomorphically onto that submodule.

Accordingly, H0(m) sends H0(OH(1)) isomorphically onto H0(xt−1
0 OH(1)). So, for our

general z ∈ Zu, `(z) has to vanish on H0(xt−1
0 OH(1)) which implies that `∗(z) vanishes

on D ×H0(OL(1)).

�

Our next observation stresses the role of u, which is to control the dimension of the

fiber of Z → S. We denote by Su the projection of Zu in S.

Lemma 5.6. The codimension of the fiber of Zu over a point λ ∈ Su is pu.

Proof: Let m := (m1, · · · ,mp;m0) be a point in M , where (m1, · · · ,mp) are in

H0(OL(d− 1)) while m0 is in H0(OL(d− t)).

Thanks to the previous lemma, we see that λ◦H0(m) vanishes if and only if λ∗(m1) =

· · · = λ∗(mp) = 0. Each one among these p equations imposes u independent conditions

on m, since the rank of λ∗ is u. Since these equations concern different components of

m, their ranks add up to the rank of m 7→ λ ◦H0(m) which turns out to be pu.

�

Our next task consists in estimating the dimension of Su.

Lemma 5.7. The dimension of Su is at most h0(u,d) + (r + 1− u)u.

Proof. For this we have to single out the line E generated by x0 in H0(OL(1)) and to

distinguish two cases according to whether, for our general z ∈ Zu, `∗(z) vanishes or not

on H0(OL(d− 1))× E.

(i) We start with the (slightly simpler) case where `∗(z) does not vanish on

H0(OL(d− 1))× E.

In order to bound the dimension of Su at a point λ0, we will define, in a neighborhood

U ⊂ Su of λ0, two algebraic maps f : U → Ab and g : U → Ac so that (f, g) is

injective. This will bound the dimension of Su by b + c. To this effect, we reorder our

basis C := (x0, · · · , xr+1) of H0(OL′(1)) (where x0 remains an equation of H) so that,
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in this basis, the first u rows of the matrix of λ∗0 are linearly independent. This property

will hold in a neighborhood of λ0 which we take as U . We write C ′ for the sub-basis

(x0, · · · , xu−1) and C ′′ for the rest of the basis so that we have C = C ′ q C ′′. Next,

in OL(d), we have the basis consisting of monomials in each summand, which we call

d-monomials. Similarly, we have the basis of (d− 1)-monomials in OL(d− 1).

Associated with these bases, we have the matrix Nλ of λ∗, which is an algebraic

function of λ. Now for each element in C ′′, we have the u coordinates of the corresponding

row (in Nλ) as a combination of the rows in C ′. This defines b := (r+ 2− u)u functions

on U which altogether yield our map f .

Now for g(λ) we take the restriction λ′ of λ to the subspace generated by the following

set T ′ of d-monomials : at first, take the set T of d-monomials depending (at most) on

variables in C ′, then delete those, in the summand OL(t), which are divisible by xt−1
0 .

This deletion corresponds to the fact observed above that λ vanishes there.

What we have to check is that λ is determined by λ′ and f(λ). For this, we claim that

for each integer q with 0 ≤ q ≤ t the values of λ on the set Tq of those d-monomials which

are of degree q with respect to variables in C ′′ are linear combinations (where coefficients

are polynomials in f(λ)) of its values on T ′. We prove the claim by induction on q, the

case q := 0 following from the vanishing mentioned above. For the general case we

consider a d-monomial m := m′xi where m′ is a (d − 1)-monomial and xi is in C ′′. In

the column corresponding to m′ in Nλ, the first u entries are values of λ on elements of

Tq−1, while the entry in the row corresponding to xi is λ(m), which gives us the desired

linear relation.

It remains to check that the number of elements in T ′ is h0(u,d) − u. Indeed, 1 is

subtracted from h0(u,d) because, although d contains t, xt0 is not a d-monomial, and

u− 1 is subtracted due to the difference between T and T ′. Thus the codomain of our

map g is Ac with c := h0(u,d)− u.
(ii) Now we treat the similar case where `∗(z) vanishes on H0(OL(d − 1)) × E. The

method is the same so we just highlight the changes. Thanks to the vanishing as-

sumption, λ∗ is now determined by the bilinear form λ′∗ induced on H0(OL(d − 1)) ×
H0(OH(1)). Our basis C now has the form (x1, · · · , xr+1), and the subbasis C ′ is

(x1, · · · , xu) Accordingly, the number b is now equal to (r + 1 − u)u. On the other

hand, here, there is no deletion, T ′ is equal to T and its number of elements is h0(u,d),

which yields the desired formula. �
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In order to complete the proof of 5.2, it remains to check that the estimates obtained

so far make the dimension of Zu smaller than that of M , namely that the codimension

(in M) obtained for the fiber of Zu → Su is bigger than the dimension of Su. This reads:

Lemma 5.8. For t ≥ 3, p satisfying (r+2)p+r+1 ≥ h0(r+2,d)−1, and 1 ≤ u ≤ r+2

we have h0(u,d) + (r + 1− u)u ≤ pu.

Proof. We argue by convexity (with respect to u) and start by checking the extreme

cases:

(i) For u := r + 2, the desired conclusion is just the assumption.

(ii) For u := 1, we contrapose and prove that p ≤ h0(1,d) + r − 1 implies

(r+ 2)p+ r+ 3 ≤ h0(r+ 2,d). Taking the critical value s+ r− 1 for p we have to prove

s(r + 2) + (r + 1)2 ≤ h0(r + 2,d).

We split this inequality summand by summand, in other words we claim

a) r + 2 + (r + 1)2 ≤ h0(r + 2, t) (for the occurence of t in d) and

b) r + 2 ≤ h0(r + 2, δ) (for each other integer, δ ≥ 2, in d).

For a) it is sufficient to check the first case t := 3. In this case, we have to prove

6(r + 1)2 ≤ (r + 2)[(r + 3)(r + 4)− 6] or, dividing by r + 1, 6r + 6 ≤ (r + 2)(r + 6), or

0 ≤ r2 + 2r + 6, which is evident. While b) is clear since for each variable xi, we have

the monomial xδi .

It remains to check that the function f := u 7→ h0(u,d) + (r + 1 − u)u is convex

on our interval [1, r + 2]. For this, we compute the discrete derivatives f ′ := u 7→
f(u + 1) − f(u) and f ′′. We find f ′(u) = h0(u + 1,d − 1) + r + 1 − 2u − 1 and

f ′′(u) = h0(u+2,d−2)−2. We see that this second derivative is nonnegative for u ≥ 1,

yielding the desired convexity. �

6. Spannedness

This section is devoted to the proof of the desired covering statement :

Proposition 6.1. Let r ≥ 0, 1 ≤ s ≤ n − r − 1 and 2 ≤ d1 ≤ ... ≤ ds−1 < ds be

integers. We set ρ := (r+2)(n−r)−Σs
i=1

(
di+r+1
r+1

)
and assume the (necessary) inequality

ρ+ r ≥ n− s.

If Y ⊂ Y ′ is any pair of type (d1, ..., ds) in Pn, then Y is covered by strong r-planes.

Thanks to Proposition 2.3, this statement is an immediate consequence of the following

one.
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Proposition 6.2. Under the same assumptions, Y is covered by ds-fat r-planes.

We pose t := ds.

From §4, we have the restricted flag-Hilbert scheme D′ ⊂ H′1 × H2. Over the first

factor H′1, we have the universal t-fat r-plane, say L ⊂ H′1×Pn. Over the second factor

H2, we have the universal complete intersection of type d, say Y ⊂ H2 × Pn, and over

D′, we have the universal flag, say L̂ ⊂ Ŷ ⊂ D′ × Pn. We have a natural projection

e : Ŷ → Y , and what we have to prove is that the restriction e′ : L̂ → Y is onto.

Since e′ is a H2-morphism among varieties which are projective over H2, its image is

also projective over H2. So it is sufficient to prove that e′ is dominant, and, for that, to

find one point in L̂ where the fiber of e′ has the expected dimension ρ+ r − n+ s, and

not more.

So we compute the fiber of e′ at a point (L, Y, p) ∈ L̂, where L is a t-fat r-plane

contained in the complete intersection Y and p is a point on L. This splits into two

cases according to whether r is zero or not.

(i) The case r = 0. This case is known since [Ro]. Hence we just give the idea of the

proof, which is similar but simpler than the other case. The variety of t-fat points at p

contained in Y is identified with a subvariety in the projectivized tangent space of Y at

p with equations depending on the equations of Y . The number of these equations is

easily checked to be Σi(di−1)−1: di−1 is the number of degrees between 2 and di, and

1 is subtracted for the degree t. Thanks to our assumption on ρ, this is at most n−s−1

which is the dimension of this projective space. Hence this variety is nonempty.

(ii) The case r ≥ 1. We consider the subscheme WY,p in the projectivized tangent

space PTY,p of Y at the point p, which parametrizes lines through p contained in Y . It is

defined by the homogeneous components of the Taylor expansions at p of the equations

of Y . For this reason, we set

d′ := (1, 2, · · · , d1, · · · , 1, 2, · · · , ds) and d′′ := (2, · · · , d1, · · · , 2, · · · , ds).
We immediately observe that there is a natural isomorphism between the vector space

of tuples of equations of type d (in n+1 variables) vanishing at p and tuples of equations

of type d′ (in n variables). This yields:

For (Y, p) sufficiently general in Y , WY,p is a sufficiently general complete intersection

of type d′′ in PTY,p.

Next we have the following

Lemma 6.3. For any (Y, p) ∈ Y, the fiber of e′ over (Y, p) is isomorphic with the Hilbert

scheme of t-fat (r − 1)-planes in WY,p.
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First we check how we may complete the proof of Proposition 6.2 using this lemma.

Thanks to Proposition 5.1, we just have to check that the expected dimension ρ′ of the

Hilbert scheme of t-fat (r − 1)-planes in the generic complete intersection of type d′ in

Pn−1 or equivalently of type d′′ in Pn−s−1 is nonnegative. We have

ρ′ = (r + 1)(n− r)− 1− Σs
i=1Σdi

j=1

(
j + r

r

)
= (r + 1)(n− r)− 1− Σs

i=1(

(
di + r + 1

r + 1

)
− 1)

= (r + 2)(n− r)− 1− n+ r + s− Σs
i=1

(
di + r + 1

r + 1

)
= ρ+ r − n+ s.

This is nonnegative by assumption.

Now we prove lemma 6.3. First of all, we have a natural isomorphism g between the

Hilbert scheme of t-fat r-planes in Pn passing through p and the Hilbert scheme of t-fat

(r− 1)-planes in the projectivized tangent space PTPnp : if we identify this projectivized

tangent space with a hyperplane K ⊂ Pn not passing through p, g(L) is the scheme-

theoretic intersection of L with K.

Now we prove that g induces a bijection from the Hilbert scheme H ′ of t-fat r-planes

in Y passing through p to the Hilbert scheme H ′′ of t-fat (r − 1)-planes in WY,p. Let

M be a t-fat (r − 1)-plane in WY,p and M ′ ⊂ Pn be the unique t-fat r-plane through p

corresponding to M (hence g(M ′) = M). Let (fi := Σj≤di
fij)i≤s be a system of equations

of Y . Note that the fi’s vanish at p. Our claim is that the fi’s all vanish on M ′ if and

only if the fij all vanish on M = g(M ′). This follows readily from the particular case of

a single equation f , with n = r + 1, which we state explicitly:

Let f(x0, x
′) := x0f1(x′)+· · ·+xδ0fδ(x′) be a homogeneous polynomial in n+1 variables

x0, · · · , xn where x′ stands for (x1, · · · , xn). Note that f vanishes at p := (1, 0, · · · , 0).

We denote by K the hyperplane defined by x0 = 0, by M the t-fat (n− 1)-plane defined

by xt1 = 0 and by N the t-fat (n − 2)-plane defined in K by the same equation. Since

f is a multiple of xt1 if and only if all the fi’s are, we have that f vanishes on M if and

only if the fi’s vanish on N .

�

7. Conclusion and future work

We have proposed a new “small step” approach to the triviality of Chow groups, where

the Chow groups of a hypersurface in X are compared to the Chow groups of X. This
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does not recover the “big step” approach of [EsLV], where the Chow groups of a complete

intersection are directly compared to the Chow groups of the ambient projective space.

We believe that there is some room for a combination of the two approaches.

Along the way, we have formulated the natural conjecture concerning the nonempti-

ness of Hilbert schemes of fat r-planes in a complete intersection, and we have proved

this conjecture in the case we need. We hope that our method could be pushed forward

to handle the general case. However, this method cannot give information on the degree

of these Hilbert schemes, a question which could also deserve some attention.
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