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Abstract. In this paper, we prove a generalization of Reznikov’s theorem which says
that the Chern-Simons classes and in particular the Deligne Chern classes (in degrees
> 1) are torsion, of a flat vector bundle on a smooth complex projective variety. We
consider the case of a smooth quasi–projective variety with an irreducible smooth divisor
at infinity. We define the Chern-Simons classes of the Deligne’s canonical extension of
a flat vector bundle with unipotent monodromy at infinity, which lift the Deligne Chern
classes and prove that these classes are torsion.
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1. Introduction

Chern, Simons [Cn-Sm] and Cheeger [Ch-Sm] introduced a theory of differential coho-

mology on smooth manifolds. For complex vector bundles with connection, they defined

classes or the secondary invariants in the ring of differential characters. These classes lift

the closed Chern form defined by the curvature of the given connection. In particular

when the connection is flat, the secondary invariants yield classes in the cohomology with

R/Z-coefficients. These are the Chern-Simons classes of flat connections.

0Mathematics Classification Number: 14C25, 14D05, 14D20, 14D21
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The following question was raised in [Ch-Sm, p.70-71] (see also [Bl, p.104]) by Cheeger

and Simons:

Question 1.1. Suppose X is a smooth manifold and (E,∇) is a flat connection on X.

Are the Chern-Simons classes ĉp(E,∇) of (E,∇) torsion in H2p−1(X,R/Z), for p ≥ 2 ?

Suppose X is a smooth projective variety defined over the complex numbers. Let

(E,∇) be a vector bundle with a flat connection ∇. S. Bloch [Bl] showed that for a

unitary connection the Chern-Simons classes are mapped to the Chern classes of E in the

Deligne cohomology. The above Question 1.1 together with his observation led him to

conjecture that the Chern classes of flat bundles are torsion in the Deligne cohomology of

X, in degrees at least two.

A. Beilinson defined universal secondary classes and H. Esnault [Es] constructed sec-

ondary classes using a modified splitting principle in the C/Z-cohomology. These classes

are shown to be lifting of the Chern classes in the Deligne cohomology. These classes also

have an interpretation in terms of differential characters, and the original R/Z classes of

Chern-Simons are obtained by the projection C/Z → R/Z. The imaginary parts of the

C/Z classes are Borel’s volume regulators V ol2p−1(E,∇) ∈ H2p−1(X,R). All the con-

structions give the same class in odd degrees, called as the secondary classes on X (see

[DHZ], [Es3] for a discussion on this).

Reznikov [Re], [Re2] showed that the secondary classes of (E,∇) are torsion in the co-

homology H2p−1(X,C/Z) of X, when p ≥ 2. In particular, he proved the above mentioned

conjecture of Bloch.

Our aim here is to extend this result when X is smooth and quasi–projective with

an irreducible smooth divisor D at infinity. We consider a flat bundle on X which has

unipotent monodromy around the divisor D. We define secondary classes on X which

extend the classes on X−D of the flat connection and which lift the Deligne Chern classes

of the canonical extension [De] on X.

Our main theorem is

Theorem 1.2. Suppose X is a smooth quasi–projective variety defined over C. Let (E,∇)

be a flat connection on U := X −D associated to a representation ρ : π1(U) → GLr(C).

Assume that D is a smooth and irreducible divisor and (E,∇) be the Deligne canonical

extension on X with unipotent monodromy around D. Then the secondary classes

ĉp(ρ/X) ∈ H2p−1(X,C/Z)

of (E,∇) are torsion, for p > 1. If, furthermore, X is projective then the Chern classes

of E are torsion in the Deligne cohomology of X, in degrees > 1.

What we do here can easily be generalized to the case when D is smooth and has

several disjoint irreducible components. On the other hand, the generalization to a normal
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crossings divisor presents significant new difficulties which we don’t yet know how to

handle, so this will be left for the future.

The main constructions in this paper are as follows. We will consider the following

situation. Suppose X is a smooth manifold, and D ⊂ X is a connected smooth closed

subset of real codimension 2. Let U := X − D and suppose we can choose a reasonable

tubular neighborhood B of D. Let B∗ := B∩U = B−D. It follows that π1(B
∗)→ π1(B)

is surjective. The diagram

(1)
B∗ → B
↓ ↓
U → X

is a homotopy pushout diagram. Note also that B retracts to D, and B∗ has a tubular

structure:

B∗ ∼= S × (0, 1)

where S ∼= ∂B is a circle bundle over D.

We say that (X,D) is complex algebraic if X is a smooth complex quasiprojective

variety and D an irreducible smooth divisor.

Suppose we are given a representation ρ : π1(U) → GLr(C), corresponding to a local

system L over U , or equivalently to a vector bundle with flat connection (E,∇). Let

γ be a loop going out from the basepoint to a point near D, once around, and back.

Then π1(B) is obtained from π1(B
∗) by adding the relation γ ∼ 1. We assume that the

monodromy of ρ at infinity is unipotent, by which we mean that ρ(γ) should be unipotent.

The logarithm is a nilpotent transformation

N := log ρ(γ) := (ρ(γ)− I)− 1

2
(ρ(γ)− I)2 +

1

3
(ρ(γ)− I)3 − ...,

where the series stops after a finite number of terms.

In this situation, there is a canonical and natural way to extend the bundle E to a bundle

E over X, known as the Deligne canonical extension [De]. The connection ∇ extends to

a meromorphic connection ∇ whose polar terms involved look locally like 1
2πi
N.dz

z
, for z a

local equation for D. In an appropriate frame the singularities of ∇ are only in the strict

upper triangular region of the connection matrix. In the complex algebraic case, (E,∇)

are holomorphic, and indeed algebraic with algebraic structure uniquely determined by

the requirement that ∇ have regular singularities. The extended bundle E is algebraic

on X and ∇ becomes a logarithmic connection [De].

We will define extended regulator classes

ĉp(ρ/X) ∈ H2p−1(X,C/Z)

which restrict to the usual regulator classes on U . Their imaginary parts define extended

volume regulators which we write as V ol2p−1(ρ/X) ∈ H2p−1(X,R).
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The technique for defining the extended regulator classes is to construct a patched

connection ∇# over X. This will be a smooth connection, however it is not flat. Still,

the curvature comes from the singularities of ∇ which have been smoothed out, so the

curvature is upper-triangular. In particular, the Chern forms for ∇# are still identically

zero. The Cheeger-Simons theory of differential characters provides a class of ∇# in the

group of differential characters, mapping to the group of closed forms. Since the image,

which is the Chern form, vanishes, the differential character lies in the kernel of this

map which is exactly H2p−1(X,C/Z) [Ch-Sm, Cor. 2.4]. This is the construction of the

regulator class.

The proof of Dupont-Hain-Zucker that the regulator class lifts the Deligne Chern class,

goes through word for word here to show that this extended regulator class lifts the

Deligne Chern class of the canonical extension E in the complex algebraic case. For this

part, we need X projective.

We also give a different construction of the regulator classes, using the deformation the-

orem in K-theory. The filtration which we will use to define the patched connection, also

leads to a polynomial deformation on B∗ between the representation ρ and its associated-

graded. Then, using the fact that BGL(F [t])+ is homotopy-equivalent to BGL(F )+ and

the fact that the square (1) is a homotopy pushout, this allows us to construct a map from

X to BGL(F )+ and hence pull back the universal regulator classes. Corollary 7.5 below

says that these are the same as the extended regulators defined by the patched connec-

tion. On the other hand, the counterpart of the deformation construction in hermitian

K-theory allows us to conclude that the extended volume regulator is zero whenever ρ

underlies a complex variation of Hodge structure in the complex algebraic case.

A rigidity statement for the patched connections is discussed and proved in more gen-

erality in §6. All of the ingredients of Reznikov’s original proof [Re2] are now present for

the extended classes, including Mochizuki’s theorem that any representation can be de-

formed to a complex variation of Hodge structure [Mo]. Thus we show the generalization

of Reznikov’s result.

Acknowledgements: We thank P. Deligne for having useful discussions and for his comments. His

suggestion to consider a gluing construction of the secondary classes (see §2.3) and his letter [De3],

motivated some of the main constructions, and we are thankful to him. We also thank H. Esnault for

explaining some of her constructions in [Es]. The first named author is supported by the National Science

Foundation (NSF) under agreement No. DMS-0111298.

2. Idea for the construction of secondary classes

We begin by recalling the differential cohomology introduced by Chern, Cheeger and

Simons [Ch-Sm],[Cn-Sm]. Since we want to look at logarithmic connections, we consider

these cohomologies on complex analytic varieties and on their smooth compactifications.

Our aim is to define secondary classes in the C/Z-cohomology for logarithmic connections
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which have unipotent monodromy along a smooth boundary divisor. A gluing construc-

tion was suggested by Deligne, which uses gluing of secondary classes on the open variety

and on a tubular neighborhood of the boundary divisor. In §4 this will be made precise

using a patched connection.

Let X be a nonsingular variety defined over the complex numbers. In the following

discussion we will interchangeably use the notation X for the algebraic variety or the

underlying complex analytic space.

Conventions. Denote by Z(p) the subgroup of C generated by (2πi)p. For each

subgroup L of C, set

L(p) = L⊗ � Z(p).

The isomorphism Z→ Z(p) that takes 1 to (2πi)p induces a canonical isomorphism

(2) H•(X,Z)→ H•(X,Z(p)).

The Chern classes of complex vector bundles lie in H•(X,Z(p)) which is the image of the

usual topological Chern classes, under the isomorphism given by (2).

2.1. Analytic differential characters on X [Ch-Sm]. Let Sk(X) denote the group of

k-dimensional smooth singular chains on X, with integer coefficients. Let Zk(X) denote

the subgroup of cycles. Let us denote

S•(X,Z) := Hom � (S•(X),Z)

the complex of Z -valued smooth singular cochains, whose boundary operator is denoted

by δ. The group of smooth differential k-forms on X with complex coefficients is denoted

by Ak(X) and the subgroup of closed forms by Ak
cl(X). Then A•(X) is canonically em-

bedded in S•(X), by integrating forms against the smooth singular chains. In fact, we

have an embedding

i � : A•(X) ↪→ S•(X,C/Z).

The group of differential characters of degree k is defined as

Ĥk(X,C/Z) := {(f, α) ∈ Hom � (Zk−1(X),C/Z)⊕ Ak(X) : δ(f) = i � (α) and dα = 0}.

There is a canonical and functorial exact sequence:

(3) 0 −→ Hk−1(X,C/Z) −→ Ĥk(X,C/Z) −→ Ak
cl(X,Z) −→ 0.

Here Ak
cl(X,Z) := ker(Ak

cl(X) −→ Hk(X,C/Z)). Similarly, one defines the group of

differential characters Ĥk(X,R/Z) with R/Z-coefficients.

For the study of infinitesimal variations of differential characters, we have the following

remark about the tangent space.

Lemma 2.1. The group of differential characters has the structure of infinite dimensional

abelian Lie group. Its tangent space at the origin (or by translation, at any point) is
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naturally identified as

T0

(
Ĥk(X,C/Z)

)
=

Ak−1(X,C)

dAk−2(X,C)
.

Proof. A tangent vector corresponds to a path (ft, αt). An element β ∈ Ak−1(X,C) maps

to the path given by ft(z) := t
∫

z
β and αt := td(β). Looking at the above exact sequence

(3), we see that this map induces an isomorphism from Ak−1(X,C)/dAk−2(X,C) to the

tangent space of Ĥk(X,C/Z). �

2.2. Secondary classes and the Cheeger-Chern-Simons classes. Suppose (E,∇)

is a vector bundle with a connection on X. Then the Chern forms

ck(E,∇) ∈ A2k
cl (X,Z)

for 0 ≤ k ≤ rank (E), are defined using the universal Weil homomorphism [Cn-Sm].

There is an GLr-invariant, symmetric, homogeneous and multilinear polynomial Pk of

degree k in k variables on the Lie algebra glr such that if Ω is the curvature of ∇ then

ck(E,∇) = Pk(
−1
2πi

Ω, . . . , −1
2πi

Ω). Here Pk are defined as follows;

det(Ir +X) = 1 + P1(X) + P2(X) + ... + Pr(X), X ∈ glr(C).

When Xi = X for each i, then Pk(X, ..., X) = trace(∧kX) (see [Gri-Ha, p.403]), however

the wedge product here is taken in the variable Cr, not the wedge of forms on the base. If

X is a diagonal matrix with eigenvalues λ1, . . . , λr then Pk(X, ..., X) =
∑

I λi1 · · ·λik . We

can also express Pk in terms of the traces of products of matrices. In this expression, the

highest order term of Pk is the symmetrization of Tr(X1 · · ·Xk) multiplied by a constant,

the lower order terms are symmetrization’s of Tr(X1 · · ·Xi1)Tr(· · · ) · · ·Tr(Xia+1 · · ·Xk),

with suitable constant coefficients.

The characteristic classes

ĉk(E,∇) ∈ Ĥ2k(X,C/Z)

are defined in [Ch-Sm] using a factorization of the universal Weil homomorphism and look-

ing at the universal connections [Na-Ra]. These classes are functorial lifting of ck(E,∇).

One of the key properties of these classes is the variational formula in case of a family

of connections. If {∇t} is a C∞ family of connections on E, then—referring to Lemma

2.1 for the tangent space of the space of differential characters—we have the formula

(4)
d

dt
ĉk(E,∇t) = kP(

d

dt
∇t,Ωt, . . . ,Ωt),

see [Ch-Sm, Proposition 2.9].

If E is topologically trivial, then any connection is connected by a path to the trivial

connection for which the characteristic class is defined to be zero. The variational formula

thus serves to characterize ĉk(E,∇t) for all t.
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Remark 2.2. If the form ck(E,∇) is zero, then the class ĉk(E,∇) lies in H2k−1(X,C/Z).

If (E,∇) is a flat bundle, then ck(E,∇) = 0 and the classes ĉk(E,∇) are called the

secondary classes or regulators of (E,∇). Notice that the class depends on the choice of

∇. We will also refer to these classes as the Chern-Simons classes in C/Z-cohomology.

In the case of a flat bundle, after going to a finite cover the bundle is topologically

trivial by the result of Deligne-Sullivan which will be discussed in §3 below. Thus, at

least the pullback to the finite cover of ĉk(E,∇) can be understood using the variational

methods described above.

Beilinson’s theory of universal secondary classes yield classes for a flat connection

(E,∇),

(5) ĉk(E,∇) ∈ H2k−1(X,C/Z), k ≥ 1

which are functorial and additive over exact sequences. Furthermore, Esnault [Es] using a

modified splitting principle, Karoubi [Ka2] using K-theory have defined secondary classes.

These classes are functorial and additive. These classes then agree with the universally

defined class in (5) (see [Es, p.323]).

When X is a smooth projective variety, Dupont-Hain-Zucker [Zu], [DHZ] and Brylinski

[Br] have shown that the Chern–Simons classes are lifting of the Deligne Chern class

cDk (E) under the map obtained by dividing out by the Hodge filtered piece F k,

H2k−1(X,C/Z) −→ H2k−1(X,C/Z(k)) −→ H2k
D (X,Z(k)).

By functoriality and additive properties, the classes in (5) lift the Chern-Simons classes

defined above using differential characters, via the projection

C/Z→ R/Z.

In fact, Cheeger-Simons explicitly took the real part in their formula at the start of

[Ch-Sm, §4]. See also [Bl] for unitary connections, [So], [Gi-So] when X is smooth and

projective; for a discussion on this see [Es3].

2.3. Secondary classes of logarithmic connections. Suppose X is a nonsingular

variety and D ⊂ X an irreducible smooth divisor. Let U := X − D. Choose a tubular

neighborhood B of D and let B∗ := B ∩ U = B −D.

Let (E,∇) be a complex analytic vector bundle on U with an integrable connection

∇. Consider a logarithmic extension (E,∇) (see [De]) on X of the connection (E,∇).

Assuming that the residues are nilpotent, we want to show that the classes ĉk(E,∇) ∈
H2i−1(U,C/Z) extend on X to give classes in the cohomology with C/Z-coefficients which

map to the Deligne Chern class of E.

We want to use the Mayer-Vietoris sequence (a suggestion from Deligne) to motivate

a construction of secondary classes in this situation. The precise construction will be

carried out in §4.
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Consider the residue transformation

η : E −→ E ⊗ ΩX(logD)
res−→ E ⊗OD.

By assumption η is nilpotent and let r be the order of η.

Consider the Kernel filtration of ED induced by the kernels of the operator η:

0 = W0,D ⊂ W1,D ⊂ W2,D ⊂ ... ⊂ Wr,D = ED.

Here

Wj,D := kernel(η◦ j : ED −→ ED).

Denote the graded pieces

Grj(ED) := Wj,D/Wj+1,D

and the associated graded

Gr(ED) := ⊕r−1
j=0 Grj(ED).

Lemma 2.3. Each graded piece Gr
j(ED) (for 0 ≤ j < r) is endowed with a flat con-

nection along D. Furthermore, the filtration of ED by Wj,D extends to a filtration of E

by holomorphic subbundles Wr defined in a tubular neighborhood B of the divisor D. On

B∗ these subbundles are preserved by the connection ∇, and ∇ induces on each graded

piece Grj(EB∗) a connection which extends to a flat connection over B, and induces the

connection mentioned in the first phrase, on Gr
j(ED).

Proof. Suppose n is the dimension of the variety X. Consider a product of n-open disks

∆n with coordinates (t1, t2, ..., tn) around a point of the divisor D so that D is locally

defined by t1 = 0. Let γ be the generator of the fundamental group of the punctured disk

∆n−{t1 = 0}. Then γ is the monodromy operator acting on a fiber Et, for t ∈ ∆n−{t1 =

0}. The operator

N = log γ = (γ − I)− 1

2
(γ − I)2 +

1

3
(γ − I)3 − ...

is nilpotent since by assumption the local monodromy γ is unipotent. Further, the order

of unipotency of γ coincides with the order of nilpotency of N . Consider the filtration on

the fiber Et induced by the operator N :

0 = W 0(t) ⊂ W 1(t) ⊂ ... ⊂ W r(t) = Et.

such that

W j(t) := kernel(N j : Et −→ Et).

Denote the graded pieces

gr
j
t := W j(t)/W j+1(t).

Then we notice that the operator N acts trivially on the graded pieces gr
j
t . This means

that γ acts as identity on gr
j
t . In other words, gr

j
t (for t ∈ ∆n) forms a local system on

∆n and extends as a local system grj in a tubular neighborhood B of D in X.
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The operation of γ around D can be extended to the boundary (see [De] or [Es-Vi,

c) Proposition]). More precisely, the operation γ (resp. N) extends to the sheaf E and

defines an endomorphism γ (resp.N) of ED such that

exp(−2πi.η) = γD.

This implies that the kernels defined by the residue transformation η and N are the same

over D. The graded piece Grj is the bundle associated to the local system grj in a tubular

neighborhood B of D in X. �

Corollary 2.4. If (EB,∇B) denotes the restriction of (E,∇) on the tubular neighborhood

B, then in the K0-group Kan(B) of analytic vector bundles, we have the equality

EB = Gr(EB) = ⊕jGr
j(EB).

�

Corollary 2.5. We can define the secondary classes of the restriction (EB,∇B) to be

ĉi(EB,∇B) := ĉi(Gr(EB))

in H2i−1(B,C/Z).

�

For the above construction, we could have replaced the kernel filtration by Deligne’s

monodromy weight filtration

0 = W−r−1 ⊂ . . . ⊂ Wr = E

or indeed by any filtration of the flat bundle (EB∗ ,∇B∗) satisfying the following condition:

we say that W· is graded-extendable if it is a filtration by flat subbundles or equivalently by

sub-local systems, and if each associated-graded piece GrW
j corresponds to a local system

which extends from B∗ to B.

Consider a tubular neighborhood B ofD, as obtained in Lemma 2.3, and B∗ := B∩U =
B −D. Associate the Mayer-Vietoris sequence for the pair (U,B):

H2i−2(B∗, C/Z)→ H2i−1(X, C/Z)→ H2i−1(B, C/Z)⊕H2i−1(U, C/Z)

→ H2i−1(B∗, C/Z)→ .

Consider the restrictions (EB,∇B) on B and (E,∇) on U . Then we have the secondary

classes, defined in Corollary 2.5,

(6) ĉi(EB,∇B) ∈ H2i−1(B,C/Z)

and

(7) ĉi(E,∇) ∈ H2i−1(U,C/Z)

such that

ĉi(EB,∇B)|B∗ = ĉi(E,∇)|B∗ ∈ H2i−1(B∗,C/Z).
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The above Mayer-Vietoris sequence yields a class

(8) ĉi(E,∇) ∈ H2i−1(X,C/Z)

which is obtained by gluing the classes in (6) and (7).

As such, the Mayer-Vietoris sequence doesn’t uniquely determine the class: there is

a possible indeterminacy by the image of H2i−2(B∗,C/Z) under the connecting map.

Nonetheless, we will show in §4, using a patched connection, that there is a canonically

determined class ĉi(E,∇) as above which is functorial and additive (§6) and moreover it

lifts the Deligne Chern class (§5).

3. The C∞-trivialization of canonical extensions

To further motivate the construction of regulator classes, we digress for a moment to

give a generalization of the result of Deligne and Sullivan on topological triviality of flat

bundles, to the case of the canonical extension. The topological model of the canonical

extension we obtain in this section, on an idea communicated to us by Deligne [De3],

motivates the construction of a filtration triple in §7.3 which is required to define regulator

classes using K-theory.

SupposeX is a proper C∞-manifold of dimension d. Let E be a complex vector bundle of

rank n. It is well-known that if N ≥ d
2
, then the Grassmanian manifold Grass(n,Cn+N) of

n-dimensional subspaces of C
n+N , classifies complex vector bundles of rank n on manifolds

of dimension ≤ d. In other words, given a complex vector bundle E on X, there exists a

morphism

f : X −→ Grass(n,Cn+N)

such that the pullback f ∗U of the tautological bundle U on Grass(n,Cn+N) is E. If the

morphism f is homotopic to a constant map then E is trivial as a C∞-bundle. This

observation is used to obtain an upper bound for the order of torsion of Betti Chern

classes of flat bundles.

3.1. C∞-trivialization of flat bundles. Suppose E is equipped with a flat connection

∇. Then the Chern-Weil theory implies that the Betti Chern classes cB
i (E) ∈ H2i(X,Z)

are torsion. An upper bound for the order of torsion was given by Grothendieck [Gk]. An

explanation of the torsion-property is given by the following theorem due to Deligne and

Sullivan:

Theorem 3.1. [De-Su] Let V be a complex local system of dimension n on a compact

polyhedron X and V = V ⊗ OX be the corresponding flat vector bundle. There exists a

finite surjective covering π : X̃ −→ X of X such that the pullback vector bundle π∗V is

trivial as a C∞-bundle.

An upper bound for the order of torsion is also prescribed in their proof which depends

on the field of definition of the monodromy representation.
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3.2. C∞-trivialization of canonical extensions. Suppose X is a complex analytic va-

riety D ⊂ X a smooth irreducible divisor, and put U := X −D. Consider a flat vector

bundle (E,∇) on U and its canonical extension (E,∇) on X. Assume that the residues

of ∇ are nilpotent. Then a computation of the de Rham Chern classes by Esnault [Es-Vi,

Appendix B] shows that these classes are zero. This implies that the Betti Chern classes

of E are torsion. We want to extend the Deligne-Sullivan theorem in this case, reflecting

the torsion property of the Betti Chern classes.

Proposition 3.2. Let E be a flat vector bundle on U = X−D, with unipotent monodromy

around D. There is a finite covering Ũ −→ U such that if X̃ is the normalization of X

in Ũ , then the canonical extension of π∗E to X̃ is trivial as a C∞-bundle.

Note, in this statement, that the normalization X̃ is smooth, and the ramification of

the map X̃ → X is topologically constant along D.

The following proof of this proposition is due to Deligne and we reproduce it from [De3].

Given a flat connection (E,∇) on U with unipotent monodromy along D, by Lemma

2.3, there is a vector bundle F r with a filtration on a tubular neighborhood B of D:

(0) = F0 ⊂ F1 ⊂ ... ⊂ F r = E|B
such that the graded pieces are flat connections associated to local systems Vi.

Suppose the monodromy representation of (E,∇) is given by

ρ : π1(X) −→ GL(A)

where A ⊂ C is of finite type over Z. The filtration of the previous paragraph is also

a filtration of local systems of A-modules over B∗. Then the canonical extension itself

should be trivial as soon as for two maximal ideals q1, q2 of A having distinct residue field

characteristic, ρ is trivial mod q1 and q2. Consider a finite étale cover

(9) π′ : U ′ −→ U

corresponding to the subgroup of π1(U, u) formed of elements g such that ρ(g) ≡ 1, mod

q1 and mod q2. The index of this subgroup divides the order of GLr(A/q1)×GLr(A/q2)

(see [De-Su]). Construct a further cover

π : Ũ −→ U ′ −→ U

such that the filtration and local systems Vi are constant mod q1 and mod q2.

The proof of Proposition 3.2 now follows from a topological result which we formulate

as follows. Suppose a polytope X is the union of polytopes U and B, intersecting along

B∗. Suppose we are given:

(1) On U , there is a flat vector bundle V coming from a local system VA of free A-modules

of rank n.

(2) a filtration F of VA on B∗ such that the graded piece gri
F is a local system of free
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A-modules of rank ni.

(3) local systems V i
A on B extending the gri

F on B∗.

Suppose these data are trivial mod q1, q2, i.e., we have constant VA, constant filtration

and constant extensions.

From (VA, F, V
i
A) we get using the embedding A ⊂ C a flat vector bundle V, a filtration

F and extensions V i. One can use these to construct a vector bundle on X (no longer flat),

unique up to non-unique isomorphisms as follows: on B∗ pick a vector bundle splitting

of the filtration and use it to glue to form a vector bundle V on X. This should be the

topological translation of “canonical extension”.

Lemma 3.3. In the above situation, the vector bundle V is trivial.

Proof. As in [De-Su], one constructs algebraic varieties

U1 ∩ B1 ↪→ U1, U1 ∩B1 ↪→ B1

over Spec (Z), which are unions of affine spaces, with the homotopy of

U ∩ B ↪→ U, U ∩ B ↪→ B.

In (U1 ∪B1)× A
1, let us take the closed subscheme

(U1 × {1}) ∪ ((U1 ∩ B1)× A
1) ∪ (B1 × {0}).

This is a scheme over Spec Z.

Over Spec A, our data gives a vector bundle Ṽ: on U1, given by VA, on B1 by ⊕V i
A, on

(U1∩B1)×A1 by an interpolation of them: given by the subcoherent sheaves
∑
ti.F i of the

pullback of VA (deformation of a filtration to a grading). More precisely, on (U1∩B1)×A1,

we consider the coherent subsheaf
∑

i

ti · Fi ⊂ A[t]⊗ VA.

It is locally free over (U1 ∩ B1) × A1, so it corresponds to a vector bundle. When t = 1,

on U1 × {1}, this yields the vector bundle given by VA. When t = 0, on B1 × {0}, we get

the associated graded vector bundle of the filtration F on B1 × {0}.
If we extend scalars to C, we obtain yet another model Ṽ � of the canonical extension.

Now mod q1, q2, we obtain a trivial bundle and the arguments in [De-Su] apply. Indeed,

consider the classifying map

f : X → Grass(n,Cn+N)

such that the universal bundle on the Grassmanian pulls back to the vector bundle Ṽ
on X. Here dimX = d and N ≥ d

2
. Consider the fiber space X ′ → X whose fiber at

x ∈ X is the space of linear embeddings of the vector space Ṽx in Cn+N . The problem

is reduced to showing that the classifying map f ′ : X ′ → Grass(n,Cn+N) composed with

the projection to the d-th coskeleton of the Grassmanian is homotopically trivial. Since

the Grassmanian is simply connected, by Hasse principle for morphisms [Su], it follows
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that the above composed map is homotopically trivial if and only if for all l the l-adic

completions

f ′
l̂
: X ′

l̂
→ cosqd(Grass(n,Cn+N))l̂ = cosqd((Grass(n,Cn+N)l̂)

are homotopically trivial. Since, there is a maximal ideal q of A whose residue field

characteristic is different from l and such that ρ and the local systems Vi and filtrations

are trivial mod q, the bundle Ṽ is trivial mod q. The lemma from [De-Su, Lemme] applies

directly to conclude that f ′
l̂

is homotopically trivial. This concludes the lemma. �

4. Patched connection on the canonical extension

The basic idea for making canonical the lifting in (8) is to patch together connections

sharing the same block-diagonal part, then apply the Chern-Simons construction to obtain

a class in the group of differential characters. The projection to closed forms is zero

because the Chern forms of a connection with strictly upper-triangular curvature are

zero. Then, the resulting secondary class is in the kernel in the exact sequence (3).

In this section we will consider a somewhat general open covering situation. However,

much of this generality is not really used in our main construction of §4.4 where X will be

covered by only two open sets and the filtration is trivial on one of them. We hope that

the more general formalism, or something similar, will be useful for the normal-crossings

case in the future.

4.1. Locally nil-flat connections. Suppose we have a manifold X and a bundle E

over X, provided with the following data of local filtrations and connections: we are

given a covering of X by open sets Vi, and for each i an increasing filtration W i of the

restricted bundle E|Vi
by strict subbundles; and furthermore on the associated-graded

bundles GrW i

(E|Vi
) we are given flat connections ∇i,Gr. We don’t for the moment assume

any compatibility between these for different neighborhoods. Call (X,E, {(Vi,W
i,∇i,Gr)})

a pre-patching collection.

We say that a connection ∇ on E is compatible with the pre-patching collection if

on each Vi, ∇ preserves the filtration W i and induces the flat connection ∇i,Gr on the

associated-graded GrW i

(E|Vi
).

Proposition 4.1. Suppose (X,E,∇) is a connection compatible with a pre-patching col-

lection (X,E, {(Vi,W
i,∇i,Gr)}). Then:

(a) The curvature form Ω of ∇ is strictly upper triangular with respect to the filtration

W i over each neighborhood Vi;

(b) In particular if P is any invariant polynomial of degree k then P(Ω, . . . ,Ω) = 0, for

example Tr(Ω ∧ · · · ∧ Ω) = 0; and

(b) The Chern-Simons class of ∇ defines a class ĉp(E,∇) ∈ H2p−1(X,C/Z).
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Proof. (a): On Vi the connection preserves Wi and induces a flat connection on the graded

pieces. This implies exactly that Ω is strictly upper-triangular with respect to Wi, that

is to say that as an End(E)-valued 2-form we have Ω : W i
k → A2(X,W i

k−1).

(b): It follows immediately that Tr(Ω∧ · · ·∧Ω) = 0, and the other invariant polynomials

are deduced from these by polynomial operations so they vanish too.

(c): The Chern-Simons class of ∇ projects to zero in Ak
cl(X,Z) by (b), so by the basic

exact sequence (3) it defines a class in H2p−1(X,C/Z). �

A fundamental observation about this construction is that the class ĉp(E,∇) depends

only on the pre-patching collection and not on the choice of ∇.

Lemma 4.2. Suppose (X,E, {(Vi,W
i,∇i,Gr)}) is a given pre-patching collection, and

suppose ∇0 and ∇1 are connections compatible with this collection. Then the Chern-

Simons classes are equal:

ĉp(E,∇0) = ĉp(E,∇1) in H2p−1(X,C/Z).

Proof. Choose any affine path ∇t of compatible connections between ∇0 and ∇1. For

t = 0, 1 this coincides with the previous ones. Let Ωt denote the curvature form of ∇t

and let ∇′
t denote the derivative with respect to t.

By Lemma 2.1, note that the tangent space to the group of differential characters (at

any point) is given by

T (Ĥ2p(X,C/Z)) =
A2p−1(X)

dA2p−2
.

With respect to this description of the tangent spaces, the derivative of the Chern-Simons

class is given by

pP(∇′
t,Ωt, . . . ,Ωt) = pTr(∇′

t ∧ Ωp−1
t ) + . . . .

See §2.2, also [Ch-Sm, Proposition 2.9].

On any local neighborhood Vi, note that ∇t preserves the filtration W i, and induces the

original flat connection on GrWi; hence for all t, Ωt and ∇′
t are strictly upper triangular.

It follows that Tr(∇′
t ∧ Ωa−1

t ) = 0 and Tr(Ωb
t) = 0 so all the terms in pP(∇′

t,Ωt, . . . ,Ωt)

vanish (see [Gri-Ha, p.403] for the explicit formula of P). By the variational formula (4),

the class in Ĥ2p(X,C/Z) defined by ∇t is independent of t. In other words, the ∇t all

define the same class in H2p−1(X,C/Z). �

Say that a bundle with connection (X,E,∇) is locally nil-flat if there exists a pre-

patching collection for which ∇ is compatible. On the other hand, say that a pre-patching

collection (X,E, {(Vi,W
i,∇i,Gr)}) is a patching collection if there exists at least one com-

patible connection. Any compatible connection will be called a patched connection.

The above Proposition 4.1 and Lemma 4.2 say that if (X,E,∇) is a locally nil-flat

connection, then we get a Chern-Simons class ĉp(E,∇), and similarly given a patching

collection we get a class defined as the class associated to any compatible connection; and
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these classes are all the same so they only depend on the patching collection so they could

be denoted by

ĉp(X,E, {(Vi,W
i,∇i,Gr)}) ∈ H2p−1(X,C/Z).

4.2. Refinements. If we are given a filtration Wk of a bundle E by strict subbundles, a

refinement W ′
m is another filtration by strict subbundles such that for any k there is an

m(k) such that Wk = W ′
m(k). In this case, W ′ induces a filtration GrW (W ′) on GrW (E).

It will be useful to have a criterion for when two filtrations admit a common refinement.

Lemma 4.3. Suppose E is a C∞ vector bundle over a manifold, and {Uk}k∈K is a finite

collection of strict subbundles containing 0 and E. Then it is the collection of bundles in

a filtration of E, if and only if the following criterion is satisfied: for all j, k ∈ K either

Uk ⊂ Uj or Uj ⊂ Uk. Suppose {Wi}i∈I and {Uk}k∈K are two filtrations of E. Then they

admit a common refinement if and only if the following criterion is satisfied: for any i ∈ I
and any k ∈ K, either Wi ⊂ Uk or else Uk ⊂ Wi.

Proof. We prove the first part. If the collection corresponds to a filtration then it obvi-

ously satisfies the criterion. Suppose given a collection of strict subbundles satisfying the

criterion. The relation i ≤ j ⇔ Ui ⊂ Uj induces a total order on K, and with respect to

this total order the collection is a filtration.

Now the second part of the lemma follows immediately from the first: the two filtrations

admit a common refinement if and only if the union of the two collections satisfies the

criterion of the first part. Given that {Wi}i∈I and {Uk}k∈K are already supposed to be

filtrations, they already satisfy the criterion separately. The only other case is when i ∈ I
and k ∈ K which is precisely the criterion of this part. �

Corollary 4.4. Suppose E is a bundle with N filtrations, every two of which admit a

common refinement. Then the N filtrations admit a common refinement. Furthermore

there exists a common refinement in which each component bundle comes from at least

one of the original filtrations.

Proof. The union of the three collections satisfies the criterion of the first part of Lemma

4.3, since that criterion only makes reference to two indices at at time. This union satisfies

the condition in the last sentence. �

A refinement of a pre-patching collection is a refinement Ṽj of the open covering, with

index set J mapping to the original index set I by a map denoted j 7→ i(j), and open

subsets Ṽj ⊂ Vi(j) such that the Ṽj still cover X. Plus, on each Ṽj a filtration W̃ j of

E|Ṽj
which is a refinement of the restriction of W i(j) to Ṽj. Finally we assume that

over Ṽj the connection ∇i(j),Gr on GrW i

(E) preserves the induced filtration GrW i(j)

(W̃ j
· )

and the refined connection ∇̃j,Gr is the connection which is induced by ∇i(j),Gr on the

associated-graded GrW̃j(E).
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Lemma 4.5. Suppose ∇ is a patched connection compatible with a pre-patching collection

(X,E, {(Vi,W
i,∇i,Gr)}), and suppose (X,E, {(Ṽj, W̃

j, ∇̃j,Gr)}) is a refinement for j 7→
i(j). Then ∇ is also a patched connection compatible with (X,E, {(Ṽj, W̃

j, ∇̃j,Gr)}).

Proof. The connection ∇ induces on GrW i

(E) the given connection ∇i,Gr. By the defini-

tion of refinement, this connection in turn preserves the induced filtration GrW i(j)

(W̃ j
· ).

It follows that ∇ preserves W̃ j. Furthermore, ∇i,Gr induces on GrW̃j(E) the connection

∇̃j,Gr in the data of the refinement, and since ∇ induced ∇i,Gr it follows that ∇ induces

∇̃j,Gr on GrW̃j (E). �

Corollary 4.6. If two patching collections

(X,E, {(Vi,W
i,∇i,Gr)}) and (X,E, {(Ṽj, W̃

j, ∇̃j,Gr)})
admit a common refinement, then

ĉp(X,E, {(Vi,W
i,∇i,Gr)}) = ĉp(X,E, {(Ṽj, W̃

j, ∇̃j,Gr)}).

Proof. Let ∇ and ∇̃ denote compatible connections for the two patching collections.

By the previous lemma, they are both compatible with the common refined patch-

ing collection. By Lemma 4.2 applied to the refinement, ĉp(E,∇) = ĉp(E, ∇̃). But

ĉp(E,∇) and ĉp(E, ∇̃) are respectively ways of calculating ĉp(X,E, {(Vi,W
i,∇i,Gr)}) and

ĉp(X,E, {(Ṽj, W̃
j, ∇̃j,Gr)}), so these last two are equal. �

4.3. Construction of a patched connection. Suppose we have a pre-patching collec-

tion (X,E, {(Vi,W
i,∇i,Gr)}). In order to construct a compatible connection, we need the

following compatibility condition on the intersections Vi ∩ Vj.

Condition 4.7. We say that the pre-patching collection satisfies the patching compati-

bility condition if for any point x ∈ Vi∩Vj there is a neighborhood V ′
x of x and a common

refinement W̃ x of both filtrations W i and W j on V ′
x, consisting of bundles coming from

these filtrations, such that the connections ∇i,Gr and ∇j,Gr both preserve the filtrations

induced by W̃ x on the respective associated graded bundles GrW i

(E|V ′

x
) and GrW j

(E|V ′

x
).

Furthermore we require that the induced connections on GrW̃ x

(E|V ′

x
) be the same.

Lemma 4.8. Suppose (X,E, {(Vi,W
i,∇i,Gr)}) is a pre-patching collection which satisfies

the criterion 4.7. Then for any point x lying in several open sets Vi1 , . . . , ViN , there is

a smaller neighborhood x ∈ V ′′
x ⊂ Vi1 ∩ · · · ∩ ViN and a common refinement Ux of all

of the filtrations W ij , j = 1, . . . , N on E|V ′′

x
, such that the induced filtrations on any

of the associated graded pieces GrW ij

(E|V ′′

x
) are preserved by the connections ∇ij ,Gr, and

the connections all induce the same connection on the associated graded of the common

refined filtration Ux.

Proof. Fix x ∈ Vi1 ∩ · · · ∩ ViN . Choose any neighborhood of x contained in the intersec-

tion. The filtrations W ij , j = 1, . . . , N admit pairwise common refinements by Condition

4.7. Therefore by Corollary 4.4, they admit a single refinement U x common to all, and
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furthermore the component bundles Ux
a are taken from among the component bundles of

the different W ij .

Now, on an associated-graded piece GrW ij

(E|V ′′

x
) consider one of the bundles in the

induced filtration GrW ij

(Ux
a ). This comes from another filtration, so it is equal to some

GrW ij

(W i`
b ). Then Condition 4.7 says that this bundle is preserved by the connection

∇ij ,Gr. This shows the next to last phrase.

Finally, choose some associated-graded piece Ux
a /U

x
a−1, and two other indices ij and i`.

There is an index b such that

W
ij
b−1 ⊂ Ux

a−1 ⊂ Ux
a ⊂ W

ij
b .

Similarly there is an index c such that

W i`
c−1 ⊂ Ux

a−1 ⊂ Ux
a ⊂ W i`

c .

Now Ux
a /U

x
a−1 is a subquotient of one of the terms G in the associated-graded for the

common refinement of W ij and W i`. The connections ∇ij ,Gr and ∇i`,Gr define the same

connection on G, and both of them preserve the subbundles of G corresponding to U x
a−1

and Ux
a . Hence they induce the same connection on Ux

a /U
x
a−1. This proves the last

phrase. �

Theorem 4.9. Suppose (X,E, {(Vi,W
i,∇i,Gr)}) is a pre-patching collection which satis-

fies the above patching compatibility condition 4.7. Then it has a refinement which is a

patching collection, that is to say there exists a compatible patched connection for a refined

pre-patching collection.

Proof. To begin, we can choose over each Vi a connection∇i on E|Vi
such that∇i preserves

the filtration W i and induces the connection ∇i,Gr on the associated-graded. One way to

do this for example is to choose a C∞ hermitian metric on E which induces a splitting

GrWi(E|Vi
) ∼= E|Vi

,

and use this isomorphism to transport the connection ∇i,Gr.

Choose a partition of unity 1 =
∑

i ζi with Supp(ζi) relatively compact in Ui. Consider

the patched connection

∇# :=
∑

i

ζi∇i.

It is well-defined as a C∞ operator E → A1(E) (where A· denotes the differential forms

on X), because the ζi are compactly supported in the open set Ui of definition of ∇i.

Furthermore, it is a connection operator, that is it satisfies Leibniz’ rule:

∇#(ae) =
∑

i

ζi∇i(ae) =
∑

i

aζi∇i(e) + (
∑

i

ζid(a))e = a∇#(e) + d(a)e

using
∑

i ζi = 1.

We would now like to consider compatibility of ∇# with the filtrations. Choose x ∈ X.

Let i1, . . . , iN be the indices for which x is contained in Supp(ζij). Choose a neighborhood
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V ′′
x as in the situation of Lemma 4.6, contained in Vi1 ∩ · · · ∩ ViN but not meeting the

support of any ζj for j not in {i1, . . . , iN}. Let Ux be the common refinement of the

filtrations W ij given by Lemma 4.6.

Each of the connections ∇ij preserves every Ux
a . Indeed, Ux

a is sandwiched between

W
ij
b−1 and W

ij
b , and ∇ij induces the connection ∇ij ,Gr on W

ij
b /W

ij
b−1. By hypothesis, and

Lemma 4.6, the connection ∇ij ,Gr preserves the image of Ux
a in W

ij
b /W

ij
b−1, therefore ∇ij

preserves Ux
a .

Furthermore, the connections ∇ij all induce the same connection on Ux
a /U

x
a−1, as follows

from the same statement for the connections ∇ij ,Gr in Lemma 4.6.

The neighborhoods V ′′
x cover X. Together with the filtrations Ux and the connections

induced by any of the ∇ij on GrUx

(E|V ′′

x
) this gives a pre-patching collection refining the

original one.

The connection ∇# is compatible with this new pre-patching collection. Indeed, it is a

sum of terms ∇i and on any open set V ′′
x the only terms which come into play are the ∇ij

which preserve the filtration Ux and induce the given connections on GrUx

(E|V ′′

x
). This

∇# preserves the filtration Ux. By the partition of unity condition
∑
ζij = 1 on V ′′

x , the

patched connection ∇# induces the given connection on each GrUx

(E|V ′′

x
). �

4.4. The patched connection for a representation unipotent along a smooth

divisor. If we have tried to be somewhat general in the previous presentation, we only

use the construction of the patched connection in the simplest case. Suppose X is a

smooth variety and D ⊂ X is a closed smooth irreducible divisor. Choose the basepoint

x ∈ X −D and suppose we have a representation ρ : π1(X −D, x)→ GLr(C).

Let γ denote the path going from x out to a point nearD, once around counterclockwise,

then back to x. We assume that ρ is unipotent at infinity, that is to say that the ρ(γ) is

a unipotent matrix.

As usual, fix the following two neighborhoods covering X. First, U := X − D is the

complement of D. Then B is a tubular neighborhood of D. Let B∗ := U ∩ B, it is the

complement of D in B otherwise known as the punctured tubular neighborhood. We have a

projection B → D, making B into a disc bundle and B∗ into a punctured-disk bundle over

D. In terms of the previous notations, the index set is I = {0, 1} and U0 = U, U1 = B

with U0 ∩ U1 = B∗.

Let E denote the holomorphic vector bundle on X which is the Deligne canonical

extension of the flat bundle associated to ρ. Let ∇ denote the flat connection on E. In

particular, (E,∇) is the flat bundle over U associated to ρ.

Fix the trivial filtration W 0
0 := E and W 0

−1 = 0 over the open set U = U0. The

associated-graded is the whole bundle E and we take ∇0,Gr := ∇.
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Recall that a graded-extendable filtration on E|B∗ is a filtration {Wk} by strict ∇-flat

subbundles, such that the induced connection ∇Gr on GrW (E|B∗) extends to a connec-

tion over B. Note that the Wk extend to strict subbundles of E|B, indeed we take the

canonical extension of Wk with respect to the connection induced by ∇. Hence we are

given natural bundles GrW (E|B) and the graded-extendability condition says that the

connection induced by ∇ on these graded bundles, should be nonsingular along D.

Examples of such filtrations include the kernel filtration (see Lemma 2.3) or the mon-

odromy weight filtration along D, using the hypothesis that ρ is unipotent at infinity.

On U1 = B let W 1 = {Wk} denote some choice of graded-extendable filtration.

Let ∇1,Gr be the connection induced by ∇ over B∗, projected to the associated-graded

GrW i

(E|B∗) and then extended from B∗ to a connection on E|B, well-defined over all of

B.

The resulting collection of neighborhoods, filtrations and connections on the associated-

graded’s, is a pre-patching collection on X.

Lemma 4.10. Suppose ρ is a representation of π1(U) which is unipotent at infinity,

and choose a graded-extendable filtration W on the corresponding flat bundle restricted

to B∗. The pre-patching collection associated to (ρ,W ) by the above discussion satisfies

the compatibility condition 4.7, hence by Theorem 4.9 it admits a compatible patched

connection denoted ∇#.

Proof. This is obvious, since the filtration on U is the trivial filtration so over the inter-

section B∗ it clearly admits a common refinement with the filtration {Wk} on B. �

Since there are only two open sets and a single intersection, it is easy to write down

explicitly the patched connection ∇# here. Furthermore, there is no need to refine the

pre-patching collection in this case.

The partition of unity consists of a single function ζ supported on B with 1−ζ supported

on U . We choose a C∞ trivialization of the filtration over B, E|B ∼= GrW (E|B). Thus

∇1,Gr = GrW (∇) gets transported to a connection ∇B on E|B. Then

∇# = (1− ζ)∇+ ζ∇B

is a C∞ connection on E over X. Over B it preserves the filtration W and on GrW (E|B)

it induces the given connection ∇1,Gr which is flat. Thus, ∇# is locally nil-flat in the

easy sense that, over the open set U ′ ⊂ U which is the complement of the support of ζ,

it is flat (equal to the original ∇), while over B it is upper triangular with strictly upper

triangular curvature, with respect to the filtration W . We have X = U ′ ∪ B.

Corollary 4.11. We obtain secondary classes

ĉp(ρ,W ) := ĉp(∇#) ∈ H2p−1(X,C/Z)
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from the patched connection. These are independent of the choices of neighborhoods and

partitions of unity used to define ∇#.

Proof. It follows directly from Proposition 4.1 and Lemma 4.2: the Chern forms of ∇#

vanish identically everywhere, because the curvature is everywhere strictly upper trian-

gular in some frame. Thus, the Cheeger-Simons class in differential characters, lies in

the subgroup H2p−1(X,C/Z). This argument was mentioned in Corollary 2.4 of Cheeger-

Simons [Ch-Sm]. Independence of choices follows from Lemma 4.2. �

Using the extension of Deligne-Sullivan [De-Su] given by Proposition 3.2, eventually

after going to a finite cover of X ramified only over D, we can assume that the canonical

extension E is trivial. Thus, we can apply the variational way of understanding the

Chern-Simons class of ∇# in differential characters.

We will see in §6 below (Corollary 6.2) that the class ĉp(ρ,W ) is also independent of

the choice of graded-extendable filtration W , so it can also be denoted ĉp(ρ/X).

In the more general normal-crossings case, one would like to apply the general consid-

erations of the previous subsections to obtain a construction. However, we found that it

is not immediately obvious how to produce a covering and appropriate filtrations such

that the filtrations admit a common refinement on the intersections (Condition 4.7). The

structure of the commuting nilpotent logarithms of monodromy transformations is com-

plicated. Some structure results are known, for example the monodromy weight filtrations

of
∑
aiNi are the same whenever ai > 0, a result which is now generalized from the case

of variations of Hodge structure to any harmonic bundle by Mochizuki [Mo]. However,

this doesn’t provide an immediate answer for patching the connection. This is one of the

main reasons why, in the present paper, we are treating the case of a smooth divisor only.

See also Remark 7.6 below for a somewhat different difficulty in the normal crossings

case.

5. Compatibility with the Deligne Chern class

Suppose X is a smooth complex projective variety. Consider the following situation:

E is a holomorphic vector bundle on X with holomorphic structure operator ∂. Suppose

∇1 is a connection obtained by the patching construction. We assume that in a standard

neighborhood Vx of any point x, the local filtrations W x are by holomorphic subbundles of

(E, ∂), and that the holomorphic structure on the graded pieces GrWx

k (E) coincides with

the (0, 1) part of the flat connections induced by ∇1 on these pieces. In this situation, we

claim that the Chern-Simons class in H2p−1(X,C/Z) defined by the patched connection

∇1, projects to the Deligne Chern class of (E, ∂) in H2p
D (X,Z(p)).

For this we use the formalism of F 1-connections introduced by Dupont, Hain and

Zucker. Their method fully works only when X is compact. Recall that this is a variant

of the differential character construction. Let DHZk,k+1 denote the group of analogues
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of differential characters used by Dupont, Hain and Zucker. We have an exact sequence,

by quotienting the exact sequence in (3) by the Hodge piece F p;

0→ H2p
D (X,Z(p))→ DHZ2p−1,2p → A2p

cl (X,Z)

(Ap,p + · · ·+ A2p,0) ∩ A2p
cl (X,Z)

→ 0.

Here DHZ2p−1,2p := Ĥ2p(X,C/Z(p))/F p.

Suppose we have a connection ∇0 compatible with ∂; this means that ∇0,1
0 = ∂. In

[DHZ], it is shown that the differential character defined by the connection ∇0 projects

from Ĥ2p(X,C/Z) to DHZ2p−1,2p, to a class which goes to zero in the term “closed forms

modulo the Hodge filtration” on the right, and which thus comes from a class in the

Deligne cohomology on the left; and that this is the same as the Deligne class of (E, ∂).

In our case, we construct ∇0 as follows: take

∇0,1
0 := ∂, ∇1,0

0 := ∇1,0
1 .

This is by definition compatible with ∂, so its class in Ĥ2p(X,C/Z) projects to the Deligne

Chern class by Dupont-Hain-Zucker [DHZ].

On the other hand, notice that ∇0 defines a connection which preserves the filtration

W x on the neighborhood of any x ∈ X, and which induces the original flat connection on

the associated graded pieces. Preserving the filtration is because ∂ and ∇1 both preserve

the filtration. On the graded pieces, recall that ∇1 induces the flat connection, and also

the flat connection has the same operator ∂ as comes from E. In particular ∇0,1
0 = ∇0,1

1

on the graded pieces, so ∇0 induces the same connection as ∇1 here.

From this we get that∇0 also has strictly upper triangular curvature form Ω0, so its class

in Ĥ2p(X,C/Z) projects to zero in A2p
cl (X,Z). Thus, ∇0 defines a class in H2p−1(X,C/Z).

This class projects to the Deligne Chern class, by the result of [DHZ].

To finish the proof of compatibility, we will show that ∇0 and ∇1 define the same class

in H2p−1(X,C/Z).

Lemma 5.1. The Chern-Simon classes ĉp(E,∇0) and ĉp(E,∇1) are equal.

Proof. For this, connect the connection ∇1 to ∇0 by an affine path of connections

∇t = t∇1 + (1− t)∇0.

For t = 0, 1 this coincides with the previous ones. Let Ωt denote the curvature form of

∇t and let ∇′
t denote the derivative with respect to t. The rest of the proof is the same

as in Lemma 4.2. �

Denote this class by ĉp(E,∇), for p ≥ 1. We have thus shown, together with Lemma

5.1 and Corollary 4.11:

Proposition 5.2. Suppose X is a smooth complex projective variety, with a logarithmic

connection (E,∇) on X with nilpotent residues along a smooth and irreducible divisor
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D. It restricts to a flat connection (EU ,∇U) on the complement U := X −D. Let B be

a tubular neighborhood of the divisor D as obtained in Lemma 2.3 and (EB,∇B) be the

restriction of (E,∇) on B. Then the secondary classes ĉp(EB,∇B) and ĉp(EU ,∇U) glue

together to give a canonically determined class ĉp(E,∇) ∈ H2p−1(X,C/Z), for p ≥ 1. The

classes ĉp(E,∇) lift the Deligne Chern classes cDp (E) under the projection

H2p−1(X,C/Z) −→ H2p−1(X,C/Z(p)) −→ H2p
D (X,Z(p)).

6. Rigidity of the secondary classes

In this section we would like to show that the secondary classes are invariant under

deformations of the representation. In the flat case this is a consequence of a well-known

formula for the variation of the secondary class. In our case we need to be somewhat

careful about the local filtrations.

Before getting to the rigidity result we look at the construction from a somewhat more

general point of view. We are given an open covering of X by neighborhoods U and B. In

our situation B and even B∗ := B ∩ U are connected, and π1(B
∗)→ π1(B) is surjective.

We have a representation ρ of π1(U), corresponding to a flat bundle (E,∇) and to a

local system L = E∇ on U . Denote by LB∗ the restriction of L to a local system on B∗.

Suppose we are given a filtration W of LB∗ such that the graded pieces GrW
k extend to

local systems over B.

The patching construction with trivial filtration over U gives a patched connection and

a secondary class which we denote here by

ĉp(E,∇,W ) ∈ H2p−1(X,C/Z)

to emphasize dependence on the filtration.

Recall from Corollary 4.6: if W̃ is a different filtration such that W and W̃ admit a

common refinement, then

ĉp(E,∇,W ) = ĉp(E,∇, W̃ ).

Lemma 6.1. Suppose W and W̃ are two filtrations of LB∗ by sub-local systems, such that

the associated graded pieces extend as local systems on B. Then these are connected by a

string of filtrations

W (0) = W,W (1), . . . ,W (a1) = W̃

such that W (a) satisfies the same conditions for any 0 ≤ a ≤ a1: it is a filtration of

LB∗ by sub-local systems, such that the associated graded pieces extend as local systems

on B. Furthermore, any adjacent ones W (a− 1) and W (a) admit a common refinement

for 0 < a ≤ a1.

Proof. The proof is by induction on the rank r of E. It is easy for r = 1, so we assume

r > 1 and that it is known for representations of rank r′ < r.
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Recall that we have the canonical Jordan-Hölder filtration W JH of Li. The first step

W JH
0 is socle or largest semisimple subobject of LB∗ , and the remainder of the filtration is

determined inductively by the condition that it should induce the canonical Jordan-Hölder

filtration of LB∗/W JH
0 . We note that this filtration has the property that the associated

graded pieces extend as local systems on B. Indeed, the associated-graded of W (JH) is

the semisimplification of LB∗ , but since LB∗ has at least one filtration W whose graded

pieces extend to B, it follows that the pieces of the semisimplification all extend to B. In

this argument we are using surjectivity of π1(B
∗) → π1(B) so that an extension to B is

unique if it exists.

Denote by Wb the first nontrivial piece in the filtration W . Then the socle of Wb is a

nontrivial sub-local system V ⊂ LB∗ , so by the universal property of the socle of LB∗ this

is contained in W JH
0 . Now V is a subsystem of the first elements of both filtrations W and

W JH. Hence, W and W JH induce filtrations on LB∗/V . By the inductive hypothesis, these

two filtrations are connected by a sequence as in the conclusion of the lemma. Lifting and

including V as the first element, we obtain a sequence of filtrations connecting W ∪ {V }
to W JH ∪ {V }. We can then add on W and W JH to the ends of this sequence, so we

obtain a sequence connecting W to W JH. Similarly there is a sequence connecting W̃ to

W JH. Putting them together we obtain a sequence connecting W to W̃ . This completes

the proof. �

Corollary 6.2. Suppose W and W̃ are two filtrations of LB∗ by sub-local systems, such

that the associated graded pieces extend as local systems on B. Then

ĉp(E,∇,W ) = ĉp(E,∇, W̃ ).

Proof. Use the sequence of filtrations W (a) constructed in the previous lemma. The

secondary classes of adjacent elements are the same:

ĉp(E,∇,W (a− 1)) = ĉp(E,∇,W (a)),

because the adjacent elements admit a common refinement. Therefore

ĉp(E,∇,W ) = ĉp(E,∇,W (0)) = ĉp(E,∇,W (a1)) = ĉp(E,∇, W̃ ).

�

This corollary says that, while we used the monodromy weight filtrations as a canonical

way of defining the secondary classes, we could have used any filtrations compatible with

the flat connection and having associated-graded which extend as flat bundles on B. In

view of this corollary, we now denote the secondary classes by

ĉp(ρ/X) ∈ H2p−1(X,C/Z).

Corollary 6.3. These classes are additive in ρ and contravariantly functorial in (X,D).

Proof. Suppose ρ1 and ρ2 are representations on U = X−D unipotent around D. Choose

graded-extendable filtrations W 1 for ρ1|B∗ and W 2 for ρ2|B∗. Then (W 1 ⊕ W 2)i :=
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W 1
i ⊕W 2

i is a graded-extendable filtration for ρ1 ⊕ ρ2. From our construction of patched

connections ∇#
1 for (ρ1,W

1) and ∇#
2 for (ρ2,W

2), we get a patched connection ∇#
1 ⊕∇#

2

for (ρ1 ⊕ ρ2,W
1 ⊕W 2). The associated differential Chern character is the sum, because

the differential Chern characters are additive on direct sums of connections with vanishing

Chern forms—the terms of the form Tr(. . .)Tr(. . .) . . . don’t contribute in the variational

formula (4). Thus

ĉp((ρ1 ⊕ ρ2)/X) =
∑

r+s=p

ĉr(ρ1/X).ĉs(ρ2/X).

Suppose f : (X ′, D′) → (X,D) is a morphism of smooth quasiprojective varieties with

smooth divisors inducing a map f : X ′−D′ → X −D, and suppose ρ is a representation

of π1(X − D) unipotent along D. Then f ∗ is unipotent along D′. We can choose a

tubular neighborhood B ′ of D′ mapping into the tubular neighborhood B of D. If W is

a graded-compatible filtration for ρ over B∗ then f ∗ is a graded-compatible filtration for

f ∗(ρ), and again by the formula for the patched connection ∇∗ for (ρ,W ), we get that

f ∗∇# is a patched connection for (f ∗(ρ), f ∗W ). Hence

ĉp(f
∗(ρ)/X ′) = f ∗ĉp(ρ/X).

�

Turn now to the question of rigidity: if we deform the representation then the secondary

classes stay the same.

Lemma 6.4. Suppose we are given a C∞ family of representations ρ(t) of π1(U), for

t ∈ [0, 1]. Suppose we are given a C∞ family of filtrations W (t) by sub-local systems of

LB∗(t), having the property that the associated-graded pieces extend across B. Then the

secondary classes are constant:

ĉp(ρ(t)/X) = ĉp(ρ(t
′)/X), t, t′ ∈ [0, 1],

for p ≥ 2.

Proof. We may localize in t to smaller intervals if necessary. Let E be the C∞-bundle un-

derlying the canonical extension of ρ(0). Then we may identify the bundles corresponding

to ρ(t) with E, in such a way that the filtrations all correspond to the same filtration by

strict subbundles. This is because the elements of the filtrations have the same ranks for

all t, and as t varies we can redress the subbundles back onto the same original one by a

Gramm-Schmidt process which is locally unique. Here we might cut the interval up into

smaller pieces, but still a finite number by a compactness argument.

Now, ρ(t) corresponds to a connection ∇(t) on E|U , and E|B has a filtration by strict

subbundles W which corresponds to the filtration of local systems W (t) for each t. We

obtain a C∞ family of patched connections ∇#(t). These are all locally nil-flat, with

respect to a constant filtration on each open set.
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Now we apply the usual proof of rigidity of Chern-Simons classes, see Cheeger-Simons

[Ch-Sm, Proposition 2.9]. They show that the difference between the Chern-Simons classes

is given by

ĉp(∇#(1))− ĉp(∇#(0)) = i.

∫ 1

0

P (
d

dt
∇#(t) ∧ Ωp−1

t )dt|Z2i−1

Here P is the trace form defining the p-th Chern form and the integral is taken with

endpoints 0 and 1. In our case, d
dt
∇#(t) are upper-triangular and Ωp−1

t are strictly upper-

triangular. Hence, as long as p− 1 > 0 the trace vanishes. �

Finally, we obtain the rigidity in general.

Proposition 6.5. Suppose X is covered by a Zariski open dense subset U and a tubular

neighborhood B of the irreducible smooth divisor D, with B∗ := B ∩ U . Suppose we are

given a continuous family of representations ρ(t) of π1(U) for t ∈ [0, 1], whose monodromy

transformations around the divisor ρ(t)(γ) are unipotent. Then the secondary classes are

constant:

ĉp(ρ(0)/X) = ĉp(ρ(1)/X),

for p ≥ 2.

Proof. There is an affine modular variety for representations ρ of π1(U) such that ρ(γ)

has trivial characteristic polynomial. In view of this, we may replace our continuous

family of representations by a piecewise algebraic family. Then, the interval of definition

can be divided up into sub-intervals of the form [ai, ai+1] such that for t ∈ (ai, ai+1)

the monodromy weight filtrations (or more easily, the kernel filtrations) of the N(t) :=

log ρ(t)(γ) vary in an algebraic manner with the same ranks. Then at the endpoints of

these intervals, the limits of these filtrations are again filtrations by sub-local systems,

such that the associated graded pieces extend across B. Note however that the limiting

filtrations will not in general be the monodromy weight filtrations or kernel filtrations

of the N(t). Lemma 6.2 shows that the secondary classes defined with these limiting

filtrations, are the same as those defined by the monodromy weight filtrations. Then

Lemma 6.4 applies to give

ĉp(ρ(ai)/X) = ĉp(ρ(ai+1)/X).

Putting these all together, from the first and last intervals we get the statement of the

proposition. �

7. A deformational variant of the patching construction in K-theory

Reznikov’s proof involved an aspect of arithmetical K-theory. Starting with a repre-

sentation ρ defined over a number field F , he considered all embeddings F ↪→ C; for each

embedding the volume piece of the regulator vanished, by differential geometric argu-

ments. Using Borel’s calculation of the rational K-theory of F , this then implied that the

classifying map X → BSL(F ) was trivial on the rational homology. In order to replicate
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this part of the proof here, we need a version of the regulator construction which is related

to K-theory.

Recall that, with our usual notations, the diagram

B∗ → B
↓ ↓
U → X

is a homotopy pushout. Indeed, if we were to replace U by the complement U0 of the

interior of B, consider B0 a smaller closed tubular neighborhood, and let B∗
0 be the closure

of X−U0−B0 then B∗
0 is a cylinder on S which is the boundary of U0 or B0 (they can be

identified by an isomorphism). Then X is exactly the standard cylindrical construction

of the homotopy pushout for the maps S → B0 and S → U0, and the diagram

B∗
0 = S × [0, 1] → B0

↓ ↓
U0 → X

is homotopy equivalent to the previous one.

Suppose we have a representation ρ defined over a field F , that is ρ : π1(U)→ GLr(F ).

Because of the homotopy pushout square, the problem of constructing a map X →
BGL(F )+ is reduced to giving maps on B and U , plus a comparison over B∗. The

representation ρ gives a map U → BGL(F ). With the assumption that ρ is unipotent at

infinity, choice of a compatible filtration W for ρ|B∗ := ρ|π1(B∗) induces a representation

which extends over B to

GrW (ρ|B∗) : π1(B)→ GLr(F )

again giving a map B → BGL(F ).

Deformation from a representation to its associated-graded, is a polynomial deforma-

tion. Thus we can get a map B∗ → BGL(F [t]) linking the maps on U and B. The

deformation theorem in K-theory allows us to interpret this as a gluing datum giving rise

to a map X → BGL(F )+.

7.1. The deformation theorem. Consider the following situation. Let F be a field.

We get two morphisms e0, e1 : F [t]→ F consisting of evaluation of polynomials at 0 and

1 respectively. Inclusion of constants is c : F → F [t], whose composition with ei is the

identity. The deformation theorem in K-theory (Quillen [Qu], see [Sr] or [Ro]) says that

all of these maps induce homotopy equivalences of K-theory spaces

BGL(F )+ → BGL(F [t])+ e0 or e1−→ BGL(F )+.

Define a space BGL(F )+
def to be the homotopy pushout in the diagram

BGL(F [t])+ → BGL(F )+

↓ ↓
BGL(F )+ → BGL(F )+

def

.
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Explicitly, BGL(F )+
def is obtained by gluing the cylinder BGL(F [t])+× [0, 1] to two copies

of BGL(F )+ along the evaluation maps

e0 : BGL(F [t])+ × {0} → BGL(F )+

and

e1 : BGL(F [t])+ × {1} → BGL(F )+.

We can express BGL(F )+
def as a union of two open sets: the first is the gluing of

BGL(F [t])+ × [0, 1) to a copy of BGL(F )+ by e0,

the second is the gluing of

BGL(F [t])+ × (0, 1] to the other copy of BGL(F )+ by e1.

And their intersection is BGL(F [t])+×(0, 1). Each of the open sets retracts to BGL(F )+.

The deformation theorem implies that the top and left maps in the above square are

homotopy equivalences. The Van Kampen theorem plus Mayer-Vietoris implies that the

maps BGL(F )+ → BGL(F )+
def are homotopy equivalences.

Corollary 7.1. There is an isomorphism on cohomology with any coefficients

H∗(BGL(F )+
def , k)

∼= H∗(BGL(F )+, k) = H∗(BGL(F ), k).

7.2. Deformation patching. Now we say that a deformation patching datum for our

diagram of pointed connected spaces

(U, u)
a← (B∗, b∗)

b→ (B, b)

is a triple of representations

ηU : π1(U, u)→ GL(F ),

ηB : π1(B, b)→ GL(F ),

and

ηB∗ : π1(B
∗, b∗)→ GL(F [t])

such that

e1 ◦ ηB∗ = a∗(ηU) and e0 ◦ ηB∗ = b∗(ηB).

In more geometric terms, we require representations on U and B, plus a deformation

between their restrictions to B∗. Typically, the representations will go into a finite-

dimensional subgroup of the form GLr(F ) (resp. GLr(F [t])).

Suppose X is the homotopy pushout of U ← B∗ → B. We can assume for example

that, as in the geometric situation, this diagram is homotopic to U0 ← S → B0 and B∗

is a cylinder S × (0, 1), furthermore U = U0 ∪B∗ and B = B0 ∪B∗ retract to U0 and B0

respectively.

Given a deformation patching datum (ηU , ηB, ηB∗), the representations give maps

U,B → BGL(F ) and B∗ → BGL(F [t]).
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By functoriality of homotopy pushout, this gives a homotopy class of maps

X → BGL(F )+
def ,

in particular using Corollary 7.1 we get a map

H∗(BGL(F ), k)→ H∗(X, k).

If F ⊂ C then we can apply this to the universal regulator class inH2p−1(BGL(F ),C/Z)

to get a deformation regulator class denoted

ĉdef
p (ηU , ηB, ηB∗) ∈ H2p−1(X,C/Z).

Its imaginary part will be called the deformation volume regulator denoted

V oldef
2p−1(ηU , ηB, ηB∗) ∈ H2p−1(X,R).

7.3. The deformation associated to a filtration. We now point out that we get a

deformation patching in our standard canonical-extension situation. Assume here that

the map π1(B
∗)→ π1(B) is surjective, as is the case if B is the tubular neighborhood of

a divisor D and B∗ = B −D.

Say that a filtration patching datum consists of a representation

ρ : π1(U)→ GL(V )

for a finite dimensional vector space V , plus a filtration W of V such that W is invariant

under the action of π1(B
∗), and the induced action of π1(B

∗) on GrW (V ) factors through

a representation

GrW (ρ/B) : π1(B)→ GL(GrW (V )).

Note that this factorization is unique because of the assumption that π1(B
∗) → π1(B)

is surjective. In the divisor situation, such a filtration will exist if and only if ρ(γ) is

unipotent.

Given a filtration patching datum (ρ,W ) we can define a deformation patching datum

as follows. Choose a splitting for the filtration V =
⊕

i Vi which yields V ∼= GrW (V ), and

furthermore choose a compatible basis for V which gives

GL(V ) ∼= GLr(F ) ↪→ GL(F ).

Composing with ρ gives ηU : π1(U) → GL(F ). On the other hand, composing with the

representation GrW (ρ/B) gives

ηB : π1(B)
GrW (ρ/B)−→ GL(GrW (V )) ∼= GL(V ) ∼= GLr(F ) ↪→ GL(F ).

For ηB∗ , notice that the matrices preserving W are block upper triangular. Then define a

deformation between ρ|π1(B∗) andGrW (ρ/B)|π1(B∗) as follows (this is the same deformation

as was referred to in the proof of Lemma 3.3 communicated by Deligne [De3]). Using the

decomposition of V we get

End(V ) ∼=
⊕

i,j

Hom(Vi, Vj).
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Let EndW (V ) be the subspace of endomorphisms preserving W , so

EndW (V ) ∼=
⊕

i≥j

Hom(Vi, Vj).

Define a map ψt : EndW (V )→ EndW (V ) by multiplying by tj−i on the piece Hom(Vi, Vj).

At t = 1 this is the identity and at t = 0 this is the projection to the block diagonal pieces.

Note that ψt(MM ′) = ψt(M)ψt(M
′). Thus if p : Γ→ EndW (V ) is a group representation

(whose image lies in the subset of invertible matrices) then the function ψt ◦ p is again a

group representation. This gives a deformation Γ → GLr(F [t]) whose value at 0 is the

original p and whose value at 0 is the associated-graded of p. Apply this to the restriction

ρ|π1(B∗) with Γ = π1(B
∗). This gives a representation

η′ : π1(B
∗)→ GLr(F [t])

such that e1 ◦ η′ is the representation ρ|π1(B∗), and whose value e0 ◦ η′ is the associated-

graded, which is equal to GrW (ρ/B)|π1(B∗). Letting ηB∗ be the composition of η with

the inclusion GLr(F ) ↪→ GL(F ) we have completed our deformation patching datum

(ηU , ηB, ηB∗) associated to the filtration patching datum (ρ,W ).

Corollary 7.2. Suppose we have a filtration patching datum (ρ,W ). Then again sup-

posing X is the homotopy pushout of U ← B∗ → B we get a map X → BGL(F )+ and

classes in H∗(X, k) for any class in H∗(BGL(F ), k). In particular for σ : F → C we get

regulator classes denoted ĉdef
p (ρ,W ) ∈ H2p−1(X,C/Z).

7.4. Comparison with the classes defined by patched connections. We would like

to compare these with the classes defined by the patched connections. As described at

the beginning of this section, consider compact subsets U0 ⊂ U and B0 ⊂ B, retracts of

the bigger subsets, such that U0 is the complement of an open tubular neighborhood of

D and B0 is a smaller closed tubular neighborhood. Consider B∗
0
∼= S × [0, 1], the closure

of X −U0−B0. Thus, X is obtained by gluing together U0 and B0 with the cylinder B∗
0 .

In this way X can be seen as a homotopy pushout.

Recall that S is an S1 bundle over D.

Suppose F = C and we have a deformation patching datum (ηU , ηB, ηB∗). Suppose also

that the representations ηU , ηB (resp. ηB∗) go into a finite rank group GLr(F ) = GLr(C)

(resp. GLr(F [t]) = GLr(C[t])). Then we can define a patched up connection as follows.

Let ηU and ηB correspond to flat connections on U0 and B0. The deformation ηB∗ into

GLr(C[t]) can be evaluated at t ∈ [0, 1], via the evaluation map et : C[t] → C. This

gives a family of representations in GLr(C), which may also be viewed as a family of flat

connections on S parametrized by t ∈ [0, 1]. Taking the connection form to be zero in

the dt direction gives a connection over the cylinder B∗
0 = S × [0, 1], a connection which

on the endpoints glues together with the given flat bundles on U0 or B0. Putting them

together we get a connection ∇def on X. It has the property that in U0 and B0 it is flat,

whereas in B∗
0 = S × [0, 1] it is flat along each t-level set S × {t}.
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Now note that the curvature form Ω = Ω∇def restricts to zero on the t-level sets. Since

these have codimension 1, it follows that in any local coordinates of the form (t, xi) where

xi are local coordinates on S, all terms in Ω have a dt, that is there are no terms of the

form dxi ∧ dxj. It follows that Ω ∧ Ω = 0. In particular the Chern forms of Ω vanish

except maybe for the first one.

The differential character ĉp(∇def) associated to the connection ∇def therefore projects

to zero in the closed 2p-forms whenever p > 1, so it defines a class in H2p−1(X,C/Z) for

any p > 1.

The two things we need to know are resumed in the following lemmas.

Lemma 7.3. The class ĉp(∇def) obtained by using the deformed connection on the cylin-

der, is equal to the regulator class ĉdef
p (ηU , ηB, ηB∗) defined using the deformation theorem

in K-theory.

Proof. It suffices to prove this for the universal case where

U = BGL(F ) ∪BGL(F [t]×{0} (BGL(F [t])× [0, 1)) ,

B = BGL(F ) ∪BGL(F [t]×{1} (BGL(F [t])× (0, 1]) ,

B∗ = BGL(F [t])× (0, 1)

and X = BGL(F )def is the homotopy pushout. In this case we know that the spaces U ,

B and B∗ have the same homology, so the connecting map in Mayer-Vietoris is trivial.

Thus we have an exact sequence

0→ H∗(X,C/Z)→ H∗(U,C/Z)⊕H∗(B,C/Z)→ H∗(B∗,C/Z)→ O.

Now, we the class defined by pullback under the map using the deformation triple in K-

theory, restricts on U and B to the standard class. The same is true for the class defined

by the previous construction. Thus, they are equal in H∗(X,C/Z). �

Lemma 7.4. Starting with (ρ,W ), do the procedure of §7.3 to get ηU , ηB and ηB∗ . The

class ĉp(∇def) defined using this deformation triple, is equal to the class defined in §4.4
using a patched connection ∇# for (ρ,W ).

Proof. The two classes come from connections ∇def and ∇# respectively. Both of these

connections are compatible with the pre-patching collection associated to (ρ,W ) in §4.4.

By Lemma 4.2 the classes are the same. �

With these two lemmas we get that for p > 1 the patched connection class is the same

as the class defined using K-theory as above.

Corollary 7.5. Suppose we are given a filtration triple. Then the regulator classes de-

fined on the one hand using the map X → BGL(F )+
def obtained by using the associated

deformation triple; and on the other hand using the patching construction of Corollary

4.11, coincide.
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Proof. We have

ĉdef
p (ηU , ηB, ηB∗) = ĉp(∇def) = ĉp(∇#) = ĉp(ρ/X).

The first equality is by Lemma 7.3, the second equality by Lemma 7.4, and the third is

the definition of ĉp(ρ/X). �

Remark 7.6. The above argument is another place where it becomes unclear how to

generalize our procedure to the case of a normal crossings divisor. Near the codimension

k pieces of the stratification of D, the “collar” looks like S × [0, 1]k. However, if we

envision a k-variable deformation, then the argument saying that the higher Chern forms

vanish, no longer works. This then is another reason why we are restricting to the case

of a smooth divisor in the present paper.

8. Hermitian K-theory and variations of Hodge structure

In order to prove that the volume invariants vanish in the case of variations of Hodge

structure, Reznikov used a direct calculation of the space of invariant polynomials on a

group of Hodge type. In order to apply this idea to the extended regulators, we use a

variant of the previous deformational construction for hermitian K-theory.

8.1. Hermitian K-theory. Start by recalling some of the basics of hermitian K-theory.

See for example [Ka].

We work with commutative rings A with involution a 7→ a preserving the product. The

basic example is C with the complex conjugation involution. Given an A-module V we

denote by V the same set provided with the conjugate A-module structure. On the other

hand, denote by V ∗ the usual dual module of a projective A-module. Note that we have

a natural isomorphism

(V )∗ ∼= (V ∗)

and these will be indiscriminately noted V
∗
. Either one may be viewed as the module of

antilinear homomorphisms λ : V → A, that is such that λ(av) = aλ(v).

An hermitian pairing is a morphism

h : V → V
∗

which may be interpreted as a form

u, v 7→ 〈u, v〉h = h(u)(v) ∈ A
satisfying the properties

〈au, v〉h = a〈u, v〉h, 〈u, av〉h = a〈u, v〉h.
Fix ε = ±1. An ε-hermitian module over A is a pair (V, h) consisting of a projective

A-module V provided with an hermitian pairing h such that

〈v, u〉h = ε〈u, v〉h.
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If there exists i ∈ A with i2 = 1 and i = −i and h is an ε-hermitian pairing then ih

is a −ε-hermitian pairing. So, in this case the distinction between the two values of ε

disappears. This happens for the rings we consider.

If V is any A-module then the hyperbolic ε-hermitian A-module is defined by H ε(V ) =

V ⊕V ∗
with h interchanging the factors with a sign determined by ε. Put H ε

n,n := Hε(A
n).

Let O(V, h) be the group of automorphisms of the ε-hermitian A-module (V, h). Let

Oε
n,n(A) := O(Hε

n,n) and let Oε
∞,∞(A) be the direct limit of these groups for the natural

inclusion maps as n → ∞. It has a perfect commutator subgroup just as is the case for

GL∞(A), so we can make the plus construction

BOε
∞,∞(A)+.

Karoubi defines the Quillen-Milnor L-groups by

Lε
n(A) := πnBO

ε
∞,∞(A)+.

Recall that

Kn(A) := πnBGL∞(A)+.

The hyperbolic construction gives a map

H : GL∞(A)→ Oε
∞,∞(A), hence H+ : BGL∞(A)+ → BOε

∞,∞(A)+,

and on the other hand forgetting the hermitian form gives a map

F : Oε
∞,∞(A)→ GL∞(A), hence F+ : BOε

∞,∞(A)+ → BGL∞(A)+.

These give maps between the K-groups and the L-groups:

H : Kn(A)→ Lε
n(A),

F : Lε
n(A)→ Kn(A).

Karoubi considers the cokernel

W ε
n(A) := coker (H : Kn(A)→ Lε

n(A)) ,

and on [Ka, page 392, Corollaire 5.8] he defines W
ε

n(A) by inverting the prime 2. The

polynomial ring A[x] has an involution extending that of A, defined by x = x. One of his

main results is the following:

Theorem 8.1 (Karoubi [Ka], Corollaire 5.11). Suppose A is regular. The inclusion A→
A[x] induces isomorphisms W

ε

n(A) ∼= W
ε

n(A[x]).

The following corollary was undoubtedly considered obvious in [Ka] but needs to be

stated.

Corollary 8.2. Suppose A is regular. Letting Z′ := Z[1
2
] the inclusion A→ A[x] induces

isomorphisms on L-theory

Lε
n(A)⊗ Z

′ ∼=→ Lε
n(A[x])⊗ Z

′.
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Proof. Evaluation at 0 gives a splitting A → A[x]
e0→ A, compatible with the hermitian

structure. It follows that the morphism

Lε
n(A)→ Lε

n(A[x])

is a split inclusion. Now we have a diagram with horizontal right exact sequences

Kn(A)⊗ Z
′ → Lε

n(A)⊗ Z
′ → W

ε

n(A) → 0
↓ ↓ ↓

Kn(A[x])⊗ Z′ → Lε
n(A[x])⊗ Z′ → W

ε

n(A[x]) → 0

where the left vertical arrow is an isomorphism by the fundamental homotopy invariance

theorem in K-theory, the middle arrow is a split inclusion, and the right vertical arrow is

an isomorphism by Theorem 8.1. It follows that the middle vertical arrow is surjective,

so it is an isomorphism. �

Corollary 8.3. For any ring with involution A, the map

BOε
∞,∞(A)+ → BOε

∞,∞(A[x])+

induces a homotopy equivalence after localizing away from the prime 2 (in particular, for

rational homotopy theory). The same is true of the evaluation maps

e0, e1 : BOε
∞,∞(A[x])+ → BOε

∞,∞(A)+.

Let BOε
∞,∞(A)+

def denote the homotopy pushout of the evaluation maps e0, e1 appearing

in the previous corollary. Then also the map

BOε
∞,∞(A)+ → BOε

∞,∞(A)+
def

is an equivalence after localizing away from 2 and in particular in rational homotopy

theory.

Note that for each evaluation map ei, i = 0, 1 there is a commutative diagram

BOε
∞,∞(A[x])+ → BGL∞(A[x])+

↓ ↓
BOε

∞,∞(A)+ → BGL∞(A)+

where the vertical maps are the evaluation maps. This gives a commutative diagram of

homotopy pushout squares which we don’t write down, in which the pushout map is

BOε
∞,∞(A)+

def → BGL∞(A)+
def

which is compatible with the rest.

8.2. Hermitian deformation patching. We now apply this to the case A = C with

the involution being complex conjugation. Since i ∈ C by the above remark the choice of

ε doesn’t matter and we now take ε = 1 and drop it from notation.
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The group On,n(C) is more commonly known as U(n, n), the unitary group of the

hermitian form of signature n, n. This is because the natural hermitian form on hyperbolic

space H(Cn) has signature (n, n). Thus

O∞,∞(C) = lim
→
U(n, n).

Note also that for any p, q we have U(p, q) ⊂ U(n, n) for n ≥ max(p, q) so we can also

write

O∞,∞(C) = lim
→
U(p, q).

So, if (X, x) is a path-connected pointed space with a representation ρ : π1(X, x)→ U(p, q)

for some p, q, then we obtain a map

X → BO∞,∞(C)→ BO∞,∞(C)+.

The patching construction as previously done applies in this case too.

For a given p, q let V be the C-vector space with hermitian form h of signature p, q.

Let V [t] := V ⊗ � C[t] be its extension of scalars to C[t]. Let Op,q(C[t]) denote the

group of hermitian automorphisms of V [t]. For p = q = n this coincides with the previous

notationOn,n(C[t]) and For any n ≥ max(p, q) we have an inclusion Op,q(C[t]) ⊂ On,n(C[t])

obtained by direct sum with a form of signature n− p, n− q.
Suppose we have a diagram of pointed path-connected spaces

(U, u)
l← (B∗, b∗)

c→ (B, b)

together with representations

ηU : π1(U, u)→ U(p, q),

ηB : π1(B, b)→ U(p, q),

and

ηB∗ : π1(B
∗, b∗)→ Op,q(C[t])

such that

e1 ◦ ηB∗ = l∗(ηU) and e0 ◦ ηB∗ = c∗(ηB).

In other words, we again have representations on U and B, plus a deformation between

their restrictions to B∗. We call this an hermitian deformation triple.

As before, we suppose given the subsets U0, B0 and B∗
0
∼= S× [0, 1], and X := U0∪S×[0,1]

B0 is the homotopy pushout, so we obtain a map

X → BO∞,∞(C)+
def .

Lemma 8.4. Composing the above representations with the inclusions U(p, q) ⊂ GL(p+

q,C) or Op,q(C[t]) ⊂ GL(p + q,C[t]) we obtain from our hermitian deformation triple a

usual deformation patching datum in the previous sense. This in turn gives a map

X → BGL(C)+
def ,
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which is homotopy equivalent to the composition of

X → BO∞,∞(C)+
def

F→ BGL(C)+
def .

Proof. This comes from the compatibility of the homotopy pushout squares used to define

BO∞,∞(C)+
def and BGL(C)+

def . �

Now the key part of the present argument comes from Reznikov’s fundamental obser-

vation about the cohomology degrees of generators of the cohomology theories on both

sides. Recall that the Borel volume regulators are classes

rBor
p ∈ H2p−1(BGL(C)+,R).

These correspond to the imaginary parts of the C/Z regulators we are studying.

We can repeat all the constructions in §7 and in the present §8 for the special linear

group SL(C). As in [Re2, p.377, §2.7], we will eventually reduce to the case when we look

at SLr(C)-valued representations. Thus Lemma 8.4 will give us maps

X → BSL(C)+
def ,

homotopy equivalent to the composition of

X → BSO∞,∞(C)+
def

F→ BSL(C)+
def .

Lemma 8.5. For any p > 1 the pullback of rBor
p via the map BSO∞,∞(C)+ → BSL(C)+

is zero.

Proof. It suffices to show this for any finite stage SU(p, q) → SLr(C). Then, Reznikov’s

argument, basically by observing that there are no S(U(p)×U(q))-invariant polynomials

on SU(p, q), gives the statement [Re2]. �

Since BSL(C)+ → BSL(C)+
def induces an isomorphism on rational homology, the vol-

ume invariant extends to an invariant denoted also rBor
p on BSL(C)+

def .

Corollary 8.6. For any p > 1 the pullback of rBor
p via the map BSO∞,∞(C)+

def

F→
BSL(C)+

def is zero.

Proof. The map is the same as in the previous lemma, on rational cohomology. �

Corollary 8.7. Given an hermitian deformation triple, the associated volume invariant

V oldef
2p−1(ηU , ηB, ηB∗) is zero for any p > 1.

Proof. Recall that V ol2p−1(ηU , ηB, ηB∗) is, by definition, the pullback of rBor
p via the map

X → BGL(C)+
def obtained by deformation patching. This map is shown in Lemma 8.4 to

factor through BO∞,∞(C)+
def . Then apply Corollary 8.6, using the reduction to SL and

SO∞,∞ mentioned above, from [Re2, p.377, §2.7]. �
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8.3. An hermitian deformation triple associated to a VHS. Consider a represen-

tation ρ underlying a complex variation of Hodge structure, with unipotent monodromy

along an irreducible smooth divisor D. In this case there is a VMHS (V,W, F, F̃ , 〈·, ·〉) on

the divisor component. We don’t need to know about the Hodge filtrations F and F̃ . The

basic information we need to know about the weight filtration and the hermitian form

is what is given by the 1-variable nilpotent and SL2–orbit theorems (see [Sch]). Look at

the data (V,N, 〈·, ·〉) where V is the vector space, N = log ρ(γ) is the logarithm of the

monodromy around the divisor D, and 〈·, ·〉 is the flat indefinite hermitian form preserved

by ρ. We normalize to suppose that 〈·, ·〉 is hermitian symmetric, rather than hermitian

antisymmetric; by multiplying by i =
√
−1 we can always assume this.

The 1-variable nilpotent and SL2–orbit theorems imply that this triple (V,N, 〈·, ·〉) is

a direct sum of standard objects. The standard objects are symmetric powers of the

standard 2–dimensional case where V has basis e1, e2, with Ne1 = e2 and Ne2 = 0; and

with 〈ei, ei〉 = 0 but 〈e1, e2〉 = 1.

For the standard object of rank 2, the monodromy weight filtration has graded quotients

Gr1 corresponding to e1 and Gr−1 corresponding to e2, and the form

(u, v) 7→ 〈u,Nv〉
is positive definite on Gr1. The zeroth symmetric power is just the case N = 0. The k-th

symmetric power of the standard object has basis vectors e0, ..., ek with Nei = ei+1 and

〈ei, ej〉 = 0 unless i + j = k in which case it is 1. In this case the monodromy weight

filtration puts ei in degree k − 2i, going from e0 in degree k to ek in degree −k.
So in general our V will be a direct sum of these kinds of things, and the full monodromy

representation of the neighborhood of D will preserve the monodromy weight filtration.

Each of the standard objects comes with a splitting of the monodromy weight filtration, so

taking the direct sum of these splittings allows us to choose an isomorphism V ∼= GrW (V )

or equivalently an expression

V =
⊕

Vk

with Vk corresponding to the GrW
k (V ). Then N : Vk → Vk−2, and this polarizes the

hermitian form induced by 〈·, ·〉 on GrW
k (V ) as in [Sch]. The splittings of the standard

objects relate the form 〈·, ·〉 on the original vector space with the induced form on the

associated-graded pairing GrW
k with GrW

−k, so the same is true of our splitting of V :

the form 〈·, ·〉 on V is the same as the induced form on GrW (V ), and in terms of the

decomposition of V it pairs Vk with V−k. The full monodromy representation is upper

triangular for this block decomposition.

Proposition 8.8. With notations as above, given a VHS on U with unipotent monodromy

around D, we can construct an hermitian deformation triple on X.

Proof. The representation ηU is given by ρ, and ηB is given by the associated-graded

GrW (ρ) transported to a representation on V by the splitting. Note that ηB still takes
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values in the unitary group U(p, q) of 〈·, ·〉 on V . Indeed, ηB is a direct sum of representa-

tions which preserve the form on GrW
k obtained by the polarization using N . On anything

of the form GrW
k ⊕GrW

−k the form 〈·, ·〉 is of hyperbolic type using the polarization forms

on the two pieces, so ηB preserves the form 〈·, ·〉 on each piece GrW
k ⊕GrW

−k.

Define the deformation ηB∗ as follows (this is basically the same as in Proposition 3.2

and §7.3 above): for t ∈ R, let Tt be the automorphism of V which acts by multiplication

by tk on Vk. Then conjugation with Tt gives an action on GL(V ) which multiplies the

block diagonal pieces by 1 and the strictly upper triangular pieces by some positive powers

of t. Thus, on an upper triangular monodromy representation ρ|π1(B∗) it extends to the

case t = 0 giving a family of representations ηB∗ := Ad(Tt)(ρ|π1(B∗)) defined even for t = 0

and at t = 0 the image is the associated-graded representation ηB. This gives the required

deformation. Notice that Tt preserves the form 〈·, ·〉, because if vi ∈ Vi and vj ∈ Vj then

〈vi, vj〉 = 0 unless i+ j = 0, and if i+ j = 0 then

〈Ttvi, Ttvj〉 = 〈tivi, t
−ivj〉 = 〈vi, vj〉.

Thus the conjugated representations Ad(Tt)(ρ|π1(B∗)) are all in the unitary group of

(V, 〈·, ·〉) (even for t = 0 by continuity). Hence ηB∗ takes values in Op,q(C[t]). This

completes the construction of the hermitian deformation triple. �

In this situationX is identified with the homotopy pushout U0∪S×[0,1]B0 (with notations

as in §8.2), and we will obtain a map

fρ : X → BO∞,∞(C)+
def .

Corollary 8.9. The pullback of the volume regulator rBor
p by the map F ◦ fρ is the same

as V ol2p−1(ρ/X) and it vanishes.

Proof. Consider the hermitian deformation triple obtained in Proposition 8.8. This gives

the map fρ. The associated deformation patching datum is the same as the one used to

define ĉdef
p (ρ,W ), because the construction in the proof of Proposition 8.8 complexifies to

the same one as in §7.3. Therefore (F ◦ fρ)
∗(rBor

p ) = V ol2p−1(ρ/X). As in Corollary 8.7,

the proof now follows from Lemma 8.4 and Corollary 8.6. �

9. The generalization of Reznikov’s theorem

We can now give the generalization of Reznikov’s theorem for canonical extensions in

the case of a smooth divisor.

Theorem 9.1. Suppose X is a smooth quasiprojective variety, with D ⊂ X an irreducible

closed smooth divisor. Suppose ρ : π1(X − D) → GLr(C) is a representation such that

ρ(γ) is unipotent for γ the loop going around D. Then the extended regulator

ĉp(ρ/X) ∈ H2p−1(X,C/Z), p ≥ 2

defined using the patched connection in Corollary 4.11, is torsion.
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Proof. By the rigidity result 6.5, the regulator doesn’t change if we deform ρ. Thus, we

may assume that ρ is defined over an algebraic number field F . The regulator is a pullback

of a class via the map

ξρ : X → BGL(F )+
def .

Suppose σ : F ↪→ C is any embedding. Composing, we get a map

X → BGL(C)+
def .

The pullback of the volume regulator by this map, is a class V ol2p−1(ρ
σ) ∈ H2p−1(X,R).

This class is independent of deformations of ρσ within representations which are unipotent

along D, by Theorem 6.5. As in [Re2, p.377, §2.7], it suffices to consider the case when

the representation takes values in SLr(C). Indeed, one can look at the representation

ρ′ = ρ ⊕ detρ−1 which is SLr+1-valued. Also note that taking canonical extensions is

compatible with direct sums. Let ĉ(ρ) := 1 + ĉ1(ρ) + ...+ ĉr(ρ). Using the identity

ĉ(ρ1 ⊕ ρ2) = ĉ(ρ1).ĉ(ρ2)

for any two representations ρ1 and ρ2 (see [Ch-Sm, p.64-65]), it follows that if the theorem

is true for the classes of ρ′ then it is also true for the classes of ρ. Also note that the

constructions in §7 and §8 hold verbatim if we look at the special linear subgroups.

Mochizuki proves in [Mo] that ρσ may be deformed to a complex variation of Hodge

structure. When X is smooth and projective with a smooth divisor D, this can also

be obtained using Biquard’s earlier version of the theory for this case [Bi]. This de-

formation preserves the condition of unipotence at infinity, since it preserves the trivial

parabolic structure of the Higgs bundle, and the Higgs field is multiplied by t→ 0 so if the

eigenvalues are zero to begin with, then they are zero in the deformation. On the other

hand, by Corollary 8.9, the extended volume regulator vanishes for a complex variation of

Hodge structure. Thus, V ol2p−1(ρ
σ) = 0. We now apply Reznikov’s argument: by Borel’s

theorem, the classes σ∗(V ol2p−1) generate the real cohomology ring of BSL(F )+ or equiv-

alently BSL(F )+
def . The fact that their pullbacks by ξρ vanish, implies that ξρ induces

the zero map on rational homology. This in turn implies that the pullback by ξρ of the

universal class in H2p−1(BSL(F )+
def ,C/Z), is torsion. By Corollary 7.5, the pullback of

this class is the same as the regulator we have defined using the patched connection. �

Corollary 9.2. Suppose X is a smooth projective variety over C, with D ⊂ X an ir-

reducible closed smooth divisor. Suppose ρ : π1(X − D) → GLr(C) is a representation

such that ρ(γ) is unipotent for γ the loop going around D. Let (E,∇) be the holomorphic

bundle with flat connection on X −D associated to ρ, and let EX be the Deligne canoni-

cal extension to a holomorphic bundle on X with logarithmic connection having nilpotent

residue along D. Then the Deligne Chern class

cDp (EX) ∈ H2p
D (X,Z(p)), p ≥ 2

is torsion.
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Proof. We have shown in Proposition 5.2 that the regulator class ĉp(ρ) lifts the Deligne

Chern class of the canonical extension. Thus, Theorem 9.1 implies that the Deligne Chern

class of the canonical extension is torsion. �

Aside from the obvious problem of generalizing these results to the case of a normal-

crossings divisor, another interesting question is how to generalize Reznikov’s other proof

of his theorem [Re2]. This passed through a direct calculation of Borel’s volume invariants

using the harmonic map, instead of invoking deformation to a variation of Hodge structure.

It would be interesting to see how to do this calculation for the volume invariant over X,

using the harmonic map associated to ρ on X − D. This might lead to a better way of

treating the normal-crossings case.

Another circle of questions clearly raised by Reznikov’s result is to determine the torsion

pieces of these classes, for example is there some arithmetical construction of these? Can

one bound the torsion or construct coverings on which it vanishes?
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