
THE ABEL-JACOBI ISOMORPHISM ON ONE CYCLES ON THE
MODULI SPACE OF VECTOR BUNDLES WITH TRIVIAL

DETERMINANT ON A CURVE

JAYA NN IYER

Abstract. We consider the moduli space SUsC(r,OC) of rank r stable vector bundles
with trivial determinant on a smooth projective curve C of genus g. We show that the
Abel-Jacobi map on the rational Chow group CH1(SUsC(r,OC))hom ⊗ Q of one cycles
which are homologous to zero, is an isomorphism onto the intermediate Jacobian of the
compactly supported cohomology, which is identified with the Jacobian Jac(C) ⊗ Q.
This holds whenever r ≥ 2 and g ≥ 4.
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1. Introduction

Suppose C is a smooth connected complex projective curve of genus g. For a line

bundle L on C consider the moduli space SUC(r, L) of semi-stable vector bundles of rank

r and of fixed determinant L on C. In this paper we assume that either L := OC or

L := OC(x) for some point x ∈ C. When L = OC the moduli space SUC(r,OC) is a

(singular) normal projective variety and when L = OC(x) the moduli space SUC(r,O(x))

is a smooth projective variety. The space of stable bundles SU sC(r,OC) ⊂ SUC(r,OC)

forms a smooth quasi-projective variety. Both the moduli spaces have dimension equal to

(r2 − 1)(g − 1).
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It is known that these moduli spaces are unirational [Se3]. In fact, the moduli spaces

SUC(r,O(−x)) and SU sC(r,OC) are Fano manifolds [Ra], [Be]. This implies that the

rational Chow group of zero cycles is trivial, i.e., CH0(SUC(r, L)) ⊗ Q ' Q. More

generally, when X is any smooth unirational variety of dimension equal to n then it is

well-known that the Hodge groups Hp(X,Ωq
X) = 0 whenever p = 0. In this case the

intermediate Jacobian IJp(X) := H2p−1(X,C)
F p+H2p−1(X,Z)

for p = 2, n− 1 is an abelian variety. It is

of interest to show the weak representability via the Abel-Jacobi map

CHp(X)hom
AJp

−→ IJp(X)

for p = 2, n − 1 and also determine the abelian variety in terms of the geometry of X.

Some examples of Fano threefolds F were shown to have weakly representable CH1(F ) by

Bloch and Murre [Bl-Mr]. When X = SUC(2,O(x)), we have

CH1(SUC(r,O(x)))⊗Q ' Q [Ra]

CH2(SUC(2,O(x)))⊗Q ' CH0(C)⊗Q, g = 2

' CH0(C)⊗Q⊕Q, g > 2 [Ba-Kg-Ne]

CH1(SUC(2,O(x)))⊗Q ' CH0(C)⊗Q [Ch-Hw].

Set n := (r2 − 1)(g − 1), AJ1 := AJn−1 and suppose X = SUC(r,OC). Since the

moduli space SUC(r,OC) is a singular variety, we do not have good Abel-Jacobi maps

and perhaps other Chow/cohomology theories should be considered. We do not look at

these theories in this paper. Instead we consider the smooth variety SU sC(r,OC) and

whose cohomology groups are known to have a mixed Hodge structure. We consider

the Abel-Jacobi maps which take values in the intermediate Jacobian of the (pure Hodge

structure) compactly supported cohomologies. Using the results of Arapura-Sastry [Ar-Sa]

in the trivial determinant case, we know that the degree 3 rational cohomology group has

a pure Hodge structure of weight 3 and the intermediate Jacobian IJ2 is identified with

the Jacobian variety Jac(C)⊗Q. In order to study the Abel-Jacobi map AJ1, we firstly

need to identify the appropriate target group. This is done by applying Poincaré duality

to obtain an isomorphism Jac(C)⊗Q ' IJ(H2n−3
c (SU sC(r,OC))).

With notations as above, we show:

Theorem 1.1. Suppose g ≥ 3, r ≥ 2 and fix any point x ∈ C. Then the Abel-Jacobi map

on the rational Chow group of one cycles homologous to zero

(1) CH1(SUC(r,O(x)))hom ⊗Q AJ1−→ Jac(C)⊗Q

is always surjective. The same assertion is true on the non-compact smooth variety

SU sC(r,OC), whenever g ≥ 4. Furthermore, in this case, the Abel-Jacobi map extends

to isomorphisms

CH1(SU sC(r,OC))hom ⊗Q ' Jac(C)⊗Q,
CH1(SUC(r,OC))hom ⊗Q ' Jac(C)⊗Q.
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The proof of Theorem 1.1 is by combining the methods of [Ch-Hw] and the Hecke cor-

respondence employed in [Ar-Sa]. The first assertion uses the correspondence cycle c2(U)

(where U is a universal Poincaré bundle [Na-Ra]) between the Chow groups of 0-cycles

on C and the codimension 2 cycles on SUC(r,O(x)). Together with the isomorphism of

the Lefschetz operator on H3(SUC(r,O(x)),Q), we conclude the surjectivity of the Abel-

Jacobi map on one cycles. In the case of the non compact smooth variety SU sC(r,OC),

a Hecke correspondence was used in [Ar-Sa] for computing the low degree cohomology

groups in terms of the cohomology of SUC(r,O(−x)). We use this correspondence to

relate the Chow group of one cycles of these two spaces, for any r ≥ 2 and g ≥ 4.

To conclude the theorem, we need to find a minimal generating set of one cycles on

SUC(r,OC). The Hecke curves [Na-Ra2] are minimal rational curves on the moduli space

SUC(r,OC). A variant of a theorem of Kollar [Ko, Proposition 3.13.3] on Chow gen-

eration, is proved by J-M. Hwang and he observed that the Hecke curves generate the

rational Chow group of one cycles on SUC(r,OC), see Proposition 5.1, Corollary 5.2. This

gives a surjective map

Jac(C)⊗Q→ CH1(SU sC(r,OC))hom ⊗Q.

Together with the Abel-Jacobi surjectivity, we conclude our main theorem.

When r = 2, we investigate further properties of the Chow groups and the cohomology

of the moduli space SUC(2,OC), in §3. We look at the codimension two cycles on the

variety SU sC(2,OC) and prove the isomorphism

CH2(SU sC(2,OC))hom ⊗Q ' Jac(C)⊗Q

whenever g ≥ 3, see Lemma 3.14. This isomorphism helps us in giving another proof of

the surjectivity of the Abel-Jacobi map, via compatibility of the Lefschetz operator with

respect to its action on the Chow groups and the cohomology groups. This proof works

for g ≥ 3 and r = 2.

In general, the Hard Lefschetz isomorphism is not true for the rational cohomology of

open smooth varieties. In our situation, we show that the Hard Lefschetz isomorphism

holds for the bottom weight cohomologies of SU sC(2,OC) in any odd degree, see Lemma

3.7. This part could be of independent interest also.

Proposition 1.2. Suppose Ls is an ample class on the moduli space SU sC(2,OC). Let

WiH
i(SU sC(2,OC)) denote the bottom weight cohomology group of SU sC(2,OC), for any

i. Then the Lefschetz operator Lis gives an isomorphism

Lis : Wn−iH
n−i(SU sC(2,OC),Q)

'→ Wn+iH
n+i(SU sC(2,OC),Q)

whenever n− i is odd and g ≥ 3.

This is proved using the desingularisation S of SUC(2,OC) constructed by Seshadri

([Se2]) and using the description of the exceptional locus. The exceptional locus has a

stratification given by the rank of a conic bundle [Ba], [Ba-Se]. The computation of the low
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degree cohomology of S in [Ba-Se] used the Thom-Gysin sequences for the stratification.

We also use similar long exact seqences of Borel-Moore homologies for the stratification of

S. A closer analysis reveals that the bottom weight Borel-Moore homologies W−n+iHn−i in

odd degree of the exceptional divisor are zero. This suffices to conclude the Hard Lefschetz

isomorphism on the bottom weight odd degree cohomologies of SU sC(2,OC). In particular

we identify the target group of AJs1 to be IJ(W2n−3H
2n−3(SUC(2,OC))) ' Jac(C)⊗Q.

It was pointed out by D. Arapura that at least for the degree 3 rational cohomology

group, the Hard Lefschetz isomorphism can also be proved, using the Hard Lefschetz

isomorphism for the intersection cohomology of SUC(2,OC). This gives another way of

identifying the target group of the Abel-Jacobi map AJs1 .

In the higher rank r > 2 case, we pose the question of proving the Hard Lefschetz

theorem for appropriate even/odd degree cohomology groups and this could deserve some

attention in the future.

Acknowledgements: This work was initiated at KIAS, Seoul, on an invitation by Jun-Muk Hwang

during Feb 2009. We are grateful to him for asking this question and for all the discussions and commu-

nications we had on the subject and also for extending support and hospitality. In particular he provided

the crucial results in §5. He graciously allowed this to be a single authored work, inspite of his contri-

butions. We also thank D. Arapura for communicating to us the application of intersection cohomology.

This also provided a hint to apply Poincaré duality in higher rank case.

2. Abel-Jacobi surjectivity for one cycles on SUC(r,O(x))

Suppose C is a smooth connected projective curve defined over the complex numbers

of genus g. Fix a point x ∈ C and consider the moduli space SUC(r,O(x)) of stable

vector bundles of rank r and fixed determinant O(x) on C. Atiyah and Bott [At-Bo]

have described the generators of the cohomology ring H∗(SUC(r,O(x)),Q) in terms of

the characteristic classes of the Poincaré bundle. Since we are concerned only with certain

cohomologies in low degree, we will recall the generators in low degrees. We also note

that the moduli space SUC(r,O(x)) is isomorphic to SUC(r,O(−x)) given by E 7→ E∗,

the dual of E. In the next section we will consider the moduli space SUC(r,O(−x)) and

relate it with the results from this section.

Fix a Poincaré bundle U → C ×SUC(r,O(x)) and denote the i-th Chern class of U by

ci(U) ∈ H2i(C × SUC(r,O(x)),Q). Denote the two projections by

p1 : C × SUC(r,O(x))→ C, p2 : C × SUC(r,O(x))→ SUC(r,O(x)).

The cycle ci(U) acts as a correspondence between the cohomology of C and the cohomol-

ogy of SUC(r,O(x)). More precisely, there are homomorphisms:

Hk(C,Q)
p∗1−→ Hk(C × SUC(r,O(x)),Q)

∪ci(U)−→ Hk+2i(C × SUC(r,O(x)),Q)

Hk+2i(C × SUC(r,O(x)),Q)
p2∗−→ Hk+2i−2(SUC(r,O(x)),Q).
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The composition Γci(U) := p2∗ ◦ ∪ci(U) ◦ p∗1 is called the correspondence defined by the

cycle ci(U).

Theorem 2.1. The correspondence

Γc2(U) : H1(C,Q) −→ H3(SUC(r,O(x)),Q)

is an isomorphism, for r ≥ 2, g ≥ 3.

Proof. See [Na-Ra, Theorem 3] together with [Ra, Section 4 and Lemma 2.1]. The iso-

morphism is actually with integral coefficients. �

Fix an ample line bundle O(1) on the moduli space SUC(r,O(x)). Denote its class

H := c1(O(1) ∈ H2(SUC(r,O(x),Q). Set n := dimSUC(r,O(x)).

Corollary 2.2. The composition

H1(C,Q)
Γc2(U)−→ H3(SUC(r,O(x)),Q)

∪Hn−3

−→ H2n−3(SUC(r,O(x)),Q)

is an isomorphism of pure Hodge structures.

Proof. This follows from Theorem 2.1 and the Hard Lefschetz theorem. �

Corollary 2.3. There is an isomorphism of the intermediate Jacobians

Jac(C) −→ IJ1 :=
H2n−3(SUC(r,O(x)),C)

F 3 +H2n−3(SUC(r,O(x)),Z)

induced by the composed morphism Hn−3 ◦ Γc2(U).

We now want to show that the isomorphisms on the intermediate Jacobians are com-

patible with intersections and correspondences on the rational Chow groups. More pre-

cisely, consider the classes c2(U) ∈ CH2(SUC(O(x))) and H ∈ CH1(SUC(r,O(x))). Set

ΓCHci(U) := p2∗ ◦ ∩ci(U) ◦ p∗1, where

CH1(C)⊗Q
p∗1−→ CH1(C × SUC(r,O(x)))⊗Q ∩c2(U)−→ CH3(C × SUC(r,O(x)))⊗Q

CH3(C × SUC(r,O(x)))⊗Q p2∗−→ CH2(SUC(r,O(x)))⊗Q.

We consider the correspondence

ΓCHc2(U) : CH1(C)⊗Q −→ CH2(SUC(r,O(x)))⊗Q.

This restricts to a correspondence on the subgroup of cycles homologous to zero:

ΓCHc2(U) : CH1(C)hom ⊗Q −→ CH2(SUC(r,O(x)))hom ⊗Q.

Furthermore, there is a composition of morphisms:

(2) CH1(C)hom⊗Q
ΓCH

c2(U)−→ CH2(SUC(r,O(x)))hom⊗Q ∩Hn−3

−→ CH1(SUC(r,O(x)))hom⊗Q.

Set ψ := ∩Hn−3 ◦ ΓCHc2(U).
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We recall the exact sequence which relates the intermediate Jacobian with the Deligne

cohomology group [Es-Vi]:

(3) 0 −→ IJ1 → H2n−2
D (SUC(r,O(x)),Z(n− 1)) −→ Hodgen−1 −→ 0.

HereHodgen−1 := Image(H2n−2(SUC(r,O(x)),Z)→ H2n−2(SUC(r,O(x)),C)∩Hn−1,n−1.

Recall the Abel-Jacobi maps:

CH1(C)hom
AJC−→ Jac(C),

CH1(SUC(r,O(x)))hom
AJ1−→ IJ1.

Lemma 2.4. The map ψ defined in (2) is compatible with the Abel-Jacobi maps AJC and

AJ1. In other words, the following diagram commutes:

CH1(C)hom ⊗Q ψ−→ CH1(SUC(r,O(x)))hom ⊗Q
↓ AJC ↓ AJ1

Jac(C)⊗Q '−→ IJ1 ⊗Q.

Proof. There are cycle class maps

CH1(SUC(r,O(x)))→ H2n−2
D (SUC(r,O(x)),Z(n− 1))

CH1(C)→ H2
D(C,Z(1))

which induces the Abel -Jacobi map on the subgroups of cycles which are homologous to

zero (see [Es-Vi]). In other words, using the exact sequence (3), we note that the Deligne

cycle class map on the subgroup of cycles homologous to zero factors via the intermediate

Jacobian and this map is the same as the Abel-Jacobi map. Furthermore, the cycle class

map into the Deligne cohomology is compatible with correspondences and intersection

products on the Chow groups. This implies that the above diagram in the statement of

the lemma is commutative. The isomorphism on the last row of the commutative diagram

is given by Corollary 2.3. �

Corollary 2.5. The Abel-Jacobi map

AJ1 : CH1(SUC(r,O(x))hom ⊗Q −→ IJ1 ⊗Q

is surjective and is a splitting, i.e., the inverse AJ−1
1 is well-defined and is injective.

Proof. Use the isomorphism in the last row of the commutative diagram of Lemma 2.4 to

obtain the surjectivity of AJ1 and a splitting. �

We know by Corollary 2.5 that the Abel-Jacobi map AJ1 is surjective and a splitting.

To show that the Abel-Jacobi map is actually an isomorphism, it suffices to show that the

the one-cycles on the moduli space is generated by cycles parametrised by the Jacobian

Jac(C). In other words there should be a surjective map

(4) Jac(C))⊗Q→ CH1(SUC(r,O(x)))hom ⊗Q.
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We will see in §5 that the assumption (4) is fulfilled for SUC(r,OC), whenever r ≥ 2

and g ≥ 4. This will help us to conclude the desired Abel-Jacobi isomorphism.

3. Hard Lefschetz isomorphism for the bottom weight odd degree

rational cohomology of SU sC(2,OC)

In this section, we investigate the Chow/cohomology properties of the moduli space

SUC(2,OC). The main result is a proof of the Hard Lefschetz isomorphism for the bottom

weight odd degree rational cohomology of the moduli space SUC(2,OC). Along the way,

we also obtain an isomorphism of the codimension two Chow group of SUC(2,OC) with

the Jacobian Jac(C), with Q-coefficients. The Lefschetz operator acts compatibly on

the Chow groups and on the cohomology groups. This enables us to give a proof of the

surjectivity of the Abel-Jacobi map on one cycles, when g ≥ 3. In the next section, we

investigate the Abel-Jacobi map surjectivity for the higher rank r ≥ 2 case, under the

assumption g ≥ 4.

The main tool is the Hecke correspondence which relates the Chow groups and the

cohomology groups of the moduli space SUC(2,O(−x)) with those of the moduli space

SUC(2,OC). We recall the Hecke correspondence used by Arapura-Sastry [Ar-Sa] to study

the cohomology of the moduli space SU sC(r,OC) for any r ≥ 2, since this correspondence

will also be used in the next section.

As in the previous section, fix a point x ∈ C. Consider the moduli space SUC(r,O(−x))

which is a smooth projective variety. Then there exist a Poincaré bundle P −→ C ×
SUC(r,O(−x)) and let Px denote the restriction of P to {x} × SUC(r,O(−x)). Denote

the projectivisation P := P(Px) and π : P −→ SUC(r,O(−x)) be the projection. There

is a universal exact sequence on C × P:

(5) 0 −→ (1× π)∗P −→ V −→ T0 −→ 0

of coherent sheaves on C × P such that V is a vector bundle and T0 is a sheaf supported

on {x}×P, which is a line bundle on P. This means that P parametrises exact sequences

0 −→ W −→ V −→ OZ −→ 0

of coherent sheaves on C such that W ∈ SUC(r,O(−x)) and V is a vector bundle of rank

r and of trivial determinant. Here Z denotes the reduced scheme supported on x ∈ C.

It is shown in [Ar-Sa, §5] that the space P is a fine moduli space of quasi-parabolic

bundles and parametrises quasi-parabolic structures V −→ OZ whose kernel is semi-

stable. In particular there is a parabolic datum ∆ which attaches weights 0 < α1 < α2 < 1

(which are assumed to be small). Then we have

Theorem 3.1. For every parabolic stable bundle V −→ OZ, the kernel W is semi-stable.

Furthermore P is the moduli space of parabolic stable (which is same as stable) bundles

SUC(r,OC ,∆) and the surjection V −→ T0 is the universal family of parabolic bundles.

Furthermore if W ∈ SUC(r,O(−x)) then V is a semi-stable vector bundle.
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Proof. See [Ar-Sa, Theorem 5.0.3, Corollary 5.0.3]. �

In particular there is a Hecke diagram relating the moduli spaces SUC(r,O(−x)) and

SUC(r,OC):

P f−→ SUC(r,OC)

↓ π
SUC(r,O(−x)).

Furthermore, there is an open set U := f−1SU sC(2,OC) ⊂ P such that f−1V ' P(V ∗x )

for V ∈ SU sC(r,OC). In particular f restricts to a projection

(6) fU : U −→ SU sC(r,OC)

which is a Pr−1-bundle, see [Ar-Sa, Remark 5.0.2]. The diagram

(7) SUC(r,O(−x))
π← P ⊃ U

fU→ SU sC(r,OC)

together with Hodge theory, projective bundle formulas and codimension estimates en-

abled Arapura-Sastry to compare the cohomologies of the two moduli spaces in (7) at

least in low degrees. For our purpose, we recall the codimension estimate [Ar-Sa, p.17];

(8) codim(P− U) ≥ 3

whenever g ≥ 3. Altogether, the cohomology H3(SU sC(r,OC),Q) has a pure Hodge struc-

ture of weight 3 and there is an isomorphism of pure Hodge structures [Ar-Sa, Theorem

8.3.1]:

(9) H3(SUC(r,O(−x)),Q) ' H3(SU sC(r,OC),Q).

Together with the isomorphism in Theorem 2.1, there is an isomorphism of Hodge

structures:

(10) H1(C,Q)(−1) ' H3(SU sC(r,OC),Q).

We would like to extend this isomorphism to the cohomology H2n−3(SU sC(r,OC),Q) as

an isomorphism of Hodge structures, via the Lefschetz operator. Since SU sC(r,OC) is a

non-compact smooth variety, the Hard Lefschetz theorem is not immediate. In general,

this theorem does not hold for non-compact smooth varieties. Hence, we investigate the

action of the Lefschetz operator on suitable sub-structures of the rational cohomology

group, where the isomorphism may hold.

For this purpose, we look at the resolution S of SUC(r,OC) constructed by Seshadri

[Se2] together with an understanding of the exceptional loci of the resolution

(11) g : S −→ SUC(r,OC).

This map restricts to an isomorphism g−1SU sC(r,OC) ' SU sC(r,OC). The variety S
is constructed as a moduli space of semi-stable vector bundles of rank r2 and trivial

determinant whose endomorphism algebra is a specialisation of the matrix algebra. In
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general, the moduli space S is a normal projective variety and it is proved to be a smooth

variety only when the rank r = 2. Hence we assume r = 2 in the further discussion. See

also other resolutions by Narasimhan-Ramanan [Na-Ra2] and Kirwan [Ki].

3.1. Stratification of S when r = 2. We will recall the description of the exceptional

loci of Seshadri’s desingularisation given in [Ba, §3], [Ba-Se]. Recall that the singular locus

of SUC(2,OC) is parametrised by semi-stable bundles of the type L⊕L−1 for L ∈ Jac(C).

The inverse map i on Jac(C) is given by L 7→ L−1. In other words, the Kummer variety

K(C) := Jac(C)
<i>

is precisely the singular locus. Denote the image of the set of 22g fixed

points by K(C)fix ⊂ K(C). There is a stratification

(12) SUC(2,OC) = SU sC(2,OC) t (K(C)−K(C)fix) tK(C)fix.

The desingularisation S is stratified by the rank of a natural conic bundle on S [Ba,

§3] and there is a filtration by closed subvarieties

(13) S = S0 ⊃ S1 ⊃ S2 ⊃ S3

such that S − S1 = g−1(SU sC(2,OC)) and Si+1 is the singular locus of Si.
The strata are described by the following:

Proposition 3.2. 1) The image g(S1−S2) is precisely the middle stratum. In fact S1−S2

is a Pg−2 × Pg−2 bundle over K(C)−K(C)fix.

2) The image of S2 is precisely the deepest strata K(C)fix and S2 − S3 is the disjoint

union of 22g copies of a vector bundle of rank g − 2 over the Grassmanian G(2, g). The

stratum S3 is the disjoint union of 22g copies of the Grassmanian G(3, g).

Proof. See [Ba-Se, section 2]. �

We now note that the strata S1,S2 in the stratification S ⊃ S1 ⊃ S2 ⊃ S3 are singular

varieties. Moreover S2 ⊂ S1 and S3 ⊂ S2 are the singular loci respectively. Hence for our

purpose, we look at the Borel-Moore homology theory (for example see [Pe-St, Chapter

V, §6] for properties and the notion of weights) in the below discussion.

Before proving our main result, we recall the projective bundle formula of mixed Hodge

structures:

Lemma 3.3. Suppose p : M → N is a d-fold fibre product of Pr−1-bundles (which need

not be locally trivial in the Zariski topology) over a smooth quasi-projective variety N .

Then, we have an equality of the mixed Hodge structures;

WiH
i(M,Q) = ⊕j≥0Wi−2jH

i−2j(N,Q)⊗H2j((Pr−1)d,Q).

The dual statement gives the equality of the Borel-Moore homologies of M and N ;

W−iHi(M,Q) = ⊕j≥0W2j−iHi−2j(N,Q)⊗H2j((Pr−1)d,Q).
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Proof. The proof is basically given in [Ar-Sa, Proposition 6.3.1]. Their proof is stated

in terms of the ’full’ cohomology H i(N,Q) and H i(M,Q), whereas for our purpose we

restrict their formula to the bottom weight cohomology of M , which gives the formula as

stated. Here we use the fact that the product of projective spaces have only pure Hodge

structures and that the category of Q-mixed Hodge structures is semi-simple. In fact the

same proof also holds for the compactly supported cohomologies H i
c(M,Q) and H i

c(N,Q)

and we can restrict it on the weight i-piece, to get the formula;

WiH
i
c(M,Q) = ⊕j≥0Wi−2jH

i−2j
c (N,Q)⊗H2j((Pr−1)d,Q).

The dual statement follows from the definition (see [Pe-St, Definition-Lemma 6.11]) of

weights on the Borel-Moore homology of a variety R;

Hk(R,Q) = HomQ(Hk
c (R,Q),Q).

This has weights in the interval [−k, 0]. In particular, we have the equalityW−kHk(R,Q) :=

HomQ(WkH
k
c (R,Q),Q).

�

We also recall the following standard facts for the convenience of the reader:

Lemma 3.4. Let X be a compact smooth variety of pure dimension n and T ⊂ X be a

closed subvariety.

a) Then for all k we have a nonsingular pairing of mixed Hodge structures

Hk
T (X)⊗H2n−k(T )→ H2n

T (X)→ Q(−n).

Here Hk
T (X) denotes the cohomology supported on T .

b) There is a long exact sequence

→ Hk
T (X)→ Hk(X)→ Hk(X − T )→ .

The group Hk
T (X) has only weights ≥ k and the image of this group in Hk(X) has weight

k. In other words, the image is identified with the image of the group WkH
k
T (X).

c) (Poincaré duality) There is an isomorphism

H2n−k
T (X) ' Hk(T )(−n)

of Q-mixed Hodge structures.

Proof. a) See the discussion above [Pe-St, Corollary 6.14].

b) See [Pe-St, Corollary 6.14] and noting that Hk(X) has a pure Hodge structure of

weight k.

c) See [Ja, p.82, h) and p.92, Example 6.9].

�

Corollary 3.5. The weight (−i) piece W−iHi(S1,Q) of the homology Hi(S1,Q) of S1 is

zero, whenever i is odd.
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Proof. We firstly note that the involution i acts as (−1) on the odd homology (respectively

(+1) on the even homology) of the Jacobian J(C). The i-fixed homology classes precisely

correspond to the homology classes on the quotient variety K(C). This means that the

homology of the Kummer variety K(C) is zero in odd degrees. Look at the long exact

homology sequence for the triple (K(C), K(C)−K(C)fix, K(C)fix) (see [Ja, p.81,§6, f)]):

→ Hi(K(C)fix,Q)→ Hi(K(C),Q)→ Hi(K(C)−K(C)fix,Q)→ .

Since K(C)fix is a finite set of points, we conclude that the homology of the open variety

K(C)−K(C)fix is also zero in odd degrees, except in degree i = 1. In this case, we obtain

an injectivity H1(K(C) − K(C)fix,Q) ↪→ H0(K(C)fix,Q). Since H0(K(C)fix,Q) has

weight 0, we conclude that H1(K(C)−K(C)fix,Q) also has only weight 0. In particular,

we have the vanishing W−1H1(K(C)−K(C)fix,Q) = 0.

Now we look at the homology of the triple (S2,S2 − S3,S3): the long exact homology

sequence for this triple is

→ Hi(S3,Q)→ Hi(S2,Q)→ Hi(S2 − S3,Q)→ .

Note that the Grassmanian and vector bundles over Grassmanians have only algebraic

homology, i.e., have homology only in even degrees. By Proposition 3.2 2), we know that

S2 − S3 and S3 is made of such objects. Hence we conclude that S2 has all of its odd

degree cohomology as zero.

Now look at the long exact homology sequence for the triple (S1,S1 − S2,S2): here

we note that the homology of the projective bundles or more generally flag varieties over

a variety are generated by the homology of the base variety and the standard homology

classes of powers of O(1) on these bundles. In particular these standard classes contribute

only in the even homology of the total space. Since we have noticed above that K(C)−
K(C)fix has vanishing odd degree homology in degrees > 1, and in degree one case we

have W−1H1(K(C) − K(C)fix,Q) = 0, it follows that S1 − S2 has in odd degree i, the

vanishing of the bottom weight cohomology W−iHi(S1 − S2,Q) = 0, by Lemma 3.3. We

use the long exact homology sequence for the triple (S1,S1 − S2,S2) and since S2 has

vanishing odd degree homology we conclude, for an odd degree i, the vanishing of the

bottom weight cohomology W−iH
i(S1,Q) = 0. �

3.2. Hard Lefschetz isomorphism for WoddH
odd(SU sC(2,OC),Q). Fix an ample class

L on the moduli space S which restricts to an ample class Ls on SU sC(2,OC). Let n :=

dimS. Now we look at the long exact cohomology sequence for the triple (S,SU sC(2,OC),S1)

which is compatible with the Lefschetz operators:

→ Hn−i
S1 (S,Q)

g→ Hn−i(S,Q)
h→ Hn−i(SU sC(r,OC),Q)→

↓ ∪Li ↓ ∪Lis
→ Hn+i

S1 (S,Q)
g′→ Hn+i(S,Q)

h′→ Hn+i(SU sC(r,OC),Q)→ .

Here Hn−i
S1 (S,Q) and Hn+i

S1 (S,Q) denotes the cohomology supported on S1.
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Lemma 3.6. The image of the cohomology Hn−i
S1 (S,Q) (respectively Hn+i

S1 (S,Q)) under

g (respectively g′) is zero, whenever n− i is odd. In particular the maps h, h′ in the above

long exact sequences are injective whenever n− i is odd.

Proof. Since S1 ⊂ S is a divisor, we can identify the group Hn−i
S1 (S,Q) with the Borel–

Moore homologyHn+i(S1,Q(n)), which is actually the groupHn+i(S1,Q)(−n), see Lemma

3.4 c). This group has weights 2(n) − (n + i) = n − i and higher, and the image of

Hn+i(S1,Q(n)) coincides with the image of Wn−i(Hn+i(S1,Q)(−n)), see Lemma 3.4 b).

Now we notice that since Q(−n) has weight (2n), the group Wn−i(Hn+i(S1,Q)(−n))

is identified with the group (W−n−iHn+i(S1,Q))(−n). Since n − i, n + i are odd, by

Corollary 3.5, we know that W−n−iHn+i(S1,Q) = 0. Hence we conclude that the image of

the cohomology Hn−i
S1 (S,Q) under g is zero. A similar computation shows that the group

Hn+i
S1 (S,Q) is identified with the group W−n+iHn−i(S1,Q)(−n) and hence its image under

g′ is also zero. �

Since the images of h and h′ correspond to the bottom weight cohomology of SU sC(2,OC)

(see [De, p.39, Corollaire 3.2.17]), we can rewrite the above sequences as the following

commutative diagram of exact sequences;

→ Hn−i
S1 (S,Q)

g→ Hn−i(S,Q)
h→ Wn−iH

n−i(SU sC(r,OC),Q)→ 0

↓ ∪LiS1 ↓ ∪Li ↓ ∪(Lis)W

→ Hn+i
S1 (S,Q)

g′→ Hn+i(S,Q)
h′→ Wn+iH

n+i(SU sC(r,OC),Q)→ 0.

Lemma 3.7. The map ∪(Lis)W between the bottom weight cohomologies in the above

long exact sequences is an isomorphism, whenever n− i is odd, as a morphism of Hodge

structures.

Proof. Since the line bundle L restricts to an ample class on SU sC(2,OC), the Lefschetz

operator ∪Li induces an operator on the cohomology Hn−i
S1 (S,Q). Applying the Hard

Lefschetz isomorphism on S, we have the isomorphism of the operator ∪Li, as morphisms

of Hodge structures. By Lemma 3.6, we deduce that the morphisms h and h′ are injective

and onto the bottom weight cohomologies. Since ∪Li is an isomorphism we obtain that

∪(Lis)W is also an isomorphism. �

Lemma 3.8. The Lefschetz operator

∪Ln−3
s : H3(SU sC(2,OC),Q)→ H2n−3(SU sC(2,OC),Q)

is injective as a morphism of Hodge structures.

Proof. Consider the above long exact sequences when n − i = 3, n + i = 2n − 3. Using

Lemma 3.7, we know that the maps h, h′ in the above long exact cohomology sequence

on the cohomology are injective. Since the Hard Lefschetz isomorphism holds on S,

the operator ∪Ln−3 is an isomorphism. Furthermore, by [Ar-Sa, Theorem 8.3.1], the
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cohomology H3(SU sC(2,OC),Q) has a pure Hodge structure and hence the map h is an

isomorphism onto H3(SU sC(2,OC),Q). This implies that ∪Ln−3
s is injective. Moreover,

the maps in the above long exact sequence are morphisms of mixed Hodge structures and

since ∪Ln−3 is an isomorphism of Hodge structure, we obtain the last assertion.

�

Corollary 3.9. There is an injectivity

H1(C,Q) ↪→ H2n−3(SU sC(2,OC),Q)

of Hodge structures. In particular the intermediate Jacobian

IJ1(W2n−3)⊗Q :=
W2n−3H

2n−3(SU sC(2,OC ,C)

F n−1 +W2n−3H2n−3(SU sC(2,OC),Q)

is isomorphic to the Jacobian Jac(C)⊗Q.

Proof. Use (10) together with Lemma 3.8 to conclude that H1(C,Q) is a sub-Hodge

structure of the mixed Hodge structure on H2n−3(SU sC(2,OC),Q). Using Lemma 3.7, we

deduce the last assertion. �

It was communicated to us by D. Arapura [Ar] that it may be possible to apply the Hard

Lefschetz isomorphism on the intersection cohomology of the moduli space SUC(r,OC),

at least in low degrees, to get the desired isomorphism. Indeed, we check this in the fol-

lowing discussion. We firstly recall some facts/notations on the intersection (co)homology

[Go-Ma], [Go-Ma2]. Suppose X is a complex algebraic variety which is not necessarily

compact and l := dimX. Let Z ⊂ X be a closed subvariety of pure dimension d and

U := X − Z be the open complementary subset of X. Denote

IHk
c (X) = IH2l−k(X)

IHk(X) = IHBM
2l−k(X).

Here IHk(X) denotes the middle-perversity intersection homology group ofX and IHBM
k (X)

denotes the middle-perversity Borel-Moore homology group of X.

Lemma 3.10. Let X be a compact algebraic variety of dimension l and Z ⊂ X is a closed

subvariety of dimension d with U := X − Z. Then with Q-coefficients, we have

IHk(X) ' Hk(U) for k < l − d
' Hk

c (U) for k > l − d.

These are isomorphisms of Q-mixed Hodge structures.

Proof. See [Du, p.991, Proposition 3]. �

We also recall the famous theorem of Beilinson-Bernstein-Deligne-Gabber:

Theorem 3.11. [BBDe] The Hard Lefschetz isomorphism holds for the intersection co-

homology.
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This can be applied to our moduli space SUC(r,OC) to obtain the Hard Lefschetz

isomorphism at least in the degree 3 rational cohomology group;

Corollary 3.12. Suppose L is an ample class on the moduli space SUC(r,OC), for r ≥ 3

and g ≥ 4. Then there is a Hard Lefschetz isomorphism

H3(SU sC(r,OC),Q)
∪Ln−3

' H2n−3
c (SUC(r,OC),Q).

In particular, we have an isomorphism of the intermediate Jacobians:

Jac(C)⊗Q ' IJ(H3(SU sC(r,OC),Q)) ' IJ(H2n−3
c (SUC(r,OC),Q)).

Proof. By Theorem 3.11, we have an isomorphism of the intersection cohomology groups

of SUC(r,OC):

IH3(SUC(r,OC))
∪Ln−3

' IH2n−3(SUC(r,OC))

given by the Lefschetz operator. Recall the codimension estimate [Ar-Sa, Remark 5.1.1]:

codim(SUC(r,OC)− SU sC(r,OC)) > 5

whenever r ≥ 3 and g ≥ 4. Then, by Lemma 3.10, we have the isomorphisms

IH3(SUC(r,OC)) ' H3(SU sC(r,OC),Q)

and

IH2n−3(SUC(r,OC)) ' H2n−3
c (SUC(r,OC),Q).

This gives the Hard Lefschetz isomorphism in the degree 3 rational cohomology group of

SUC(r,OC). The last claim follows because all the above isomorphisms are isomorphisms

of Q-mixed Hodge structures and using the identification in (10). �

In the following subsection, we show the surjectivity of the Abel-Jacobi map when

r = 2 and g ≥ 3. We will firstly determine the codimension two rational Chow group

CH2(SUC(2,OC))hom ⊗ Q. Then we will apply the Hard Lefschetz isomorphism proved

above and the compatibility of the Lefschetz operator acting on the Chow groups and the

cohomology. In §4, we will show that the Abel-Jacobi map is surjective for any r ≥ 2 and

g ≥ 4, by another method.

3.3. Surjectivity of the Abel–Jacobi map AJs1 onto Jac(C), r = 2. Consider the

Abel–Jacobi map

AJs1 : CH1(SU sC(2,OC))hom ⊗Q→ IJ1(W2n−3)⊗Q ' Jac(C)⊗Q.

using the identifications in Corollary 3.9 or Corollary 3.12.

We will prove that the map AJs1 is surjective.

Recall the Hecke diagram from the previous subsection:

P f−→ SUC(2,OC)

↓ π
SUC(2,O(−x)).
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Denote the intermediate Jacobians of a smooth projective variety Y of dimension l by

IJ2(Y ) :=
H3(Y,C)

F 2 +H3(Y,Z)
, IJ1(Y ) :=

H2l−3(Y,C)

F l +H2l−3(Y,Z)
.

We will use these notations for the spaces SUC(2,O(−x)) and the P1-bundle P.

Lemma 3.13. a) We have the following isomorphisms of the intermediate Jacobians

IJ1(P) ' IJ1(SUC(2,O(−x)))

IJ2(SUC(2,O(−x))) ' Jac(C)⊗Q.

b) Similar isomorphisms hold for the Chow groups:

CH1(P)hom ' α.π∗CH1(SUC(2,O(−x)))hom,

CH2(P)hom ' CH2(SUC(2,O(−x)))hom,

CH2(U)hom ⊗Q '← CH2(SU sC(2,OC))hom ⊗Q.

Here α := c1(OP(1)).

Proof. a) There is a decomposition

H2n−1(P,Q) = π∗H2n−1(SUC(2,O(−x)),Q)⊕ α.π∗H2n−3(SUC(2,O(−x)),Q).

The first cohomology piece is zero since it is dual to H1(SUC(2,O(−x)),Q) which is zero.

This implies that there is an isomorphism of the intermediate Jacobians

IJ1(SUC(2,O(−x)) ' IJ1(P).

Again, by Hard Lefschetz isomorphism, we have the isomorphism

IJ2(SUC(2,O(−x))) ' Jac(C)⊗Q.

b) Using the projective bundle formula [Fu, p.64], similar statements hold on the Chow

groups of cycles homologous to zero, as asserted. Indeed, we note that

CH2(P)⊗Q = CHn−1(P)⊗Q
= π∗CHn−2(SUC(2,O(−x)))⊗Q + α.π∗CHn−1(SUC(2,O(−x)))⊗Q.

Since CHn−1(SUC(2,O(−x)))⊗Q = Q ([Ra, Proposition 3.4]), we conclude the equality

CH2(P)hom ⊗Q = CH2(SUC(2,O(−x)))hom ⊗Q.

Also, since CH0(SUC(2,O(−x)))⊗Q = Q, the projective bundle formula gives the equal-

ity

CH1(P)hom ⊗Q = α.π∗CH1(SUC(2,O(−x)))hom ⊗Q.

Similarly, since Pic(SU sC(2,OC))⊗Q = Q, we conclude the isomorphism

CH2(U)hom ⊗Q '← CH2(SU sC(2,OC))hom ⊗Q.

�
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Lemma 3.14. There is a commutative diagram

CH2(SUC(2,O(−x)))hom ⊗Q '−→ CH2(SU sC(2,OC))hom ⊗Q
↓ AJ2 ↓ AJ2

s

Jac(C)⊗Q '−→ Jac(C)⊗Q.

Furthermore, the maps AJ2 and AJ2
s are isomorphisms, whenever g ≥ 3.

Proof. Firstly, by Lemma 3.13, we have an isomorphism IJ2(SUC(2,O(−x))) ' Jac(C)⊗
Q and by (10) there is an isomorphism Jac(C)⊗Q ' IJ2(SU sC(2,OC))⊗Q. Hence the

maps AJ2 and AJ2
s are just the Abel-Jacobi maps. Consider the following maps on the

cohomology

(14) H3(SUC(2,O(−x)),Q)
π∗→ H3(P,Q)

s0→ H3(U,Q)
f∗U← H3(SU sC(2,OC),Q).

Then all the above maps are isomorphisms, by [Ar-Sa, Theorem 8.3.1]. These are also

isomorphisms of pure Hodge structures and hence induce isomorphisms of the associated

intermediate Jacobians

(15) IJ2(SUC(2,O(−x))) ' IJ2(P) ' IJ2(U) ' IJ2(SU sC(2,OC)).

Similarly there are maps between the rational Chow groups
(16)

CH2(SUC(2,O(−x)))hom ⊗Q π∗→ CH2(P)hom ⊗Q t0→ CH2(U)hom ⊗Q
f∗U← CH2(SUsC(2,OC))hom ⊗Q.

Using Lemma 3.13, we conclude that π∗ and f ∗U are isomorphisms. Also, there is a

localization exact sequence (see [Fu, Proposition 1.8, p.21])

→ CHn−1(P− U)⊗Q→ CHn−1(P)⊗Q t0→ CHn−1(U)⊗Q→ 0.

Using the codimension estimate (8), we conclude that CHn−1(P−U)⊗Q = 0, i.e., t0 is an

isomorphism, whenever g ≥ 3. This implies that all the maps in (16) are isomorphisms

and compatible with the Abel–Jacobi maps into the objects in (15). This gives the

commutative diagram as in the statement of the lemma. By [Ba-Kg-Ne, p.10], we know

that AJ2 is an isomorphism. This implies that AJ2
s is also an isomorphism.

�

Lemma 3.15. There is a commutative diagram

CH2(SU sC(2,OC))hom ⊗Q Ln−3

→ CH1(SU sC(2,OC))hom ⊗Q
↓ AJ2

s ↓ AJs1
Jac(C)⊗Q Ln−3

s→ IJ1(W2n−3)⊗Q.

such that Ln−3
s maps isomorphically onto Jac(C)⊗Q ' IJ1(W2n−3)⊗Q.
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Proof. We just need to note that the Lefschetz operator acts compatibly on the Chow

groups and on the cohomology as a morphism of Hodge structures. This gives the commu-

tative diagram. Also, by Lemma 3.8 and Corollary 3.9, the map Ln−3
s maps isomorphically

onto Jac(C)⊗Q. �

Consider the Abel–Jacobi map

AJs1 : CH1(SU sC(2,OC))hom ⊗Q
AJs

1−→ IJ1(W2n−3)⊗Q ' Jac(C)⊗Q.

Corollary 3.16. The Abel-Jacobi map AJs1 is surjective.

Proof. We use the commutative diagram in Lemma 3.15 and the isomorphism of Ln−3
s

onto Jac(C)⊗Q. By Lemma 3.14, we know that the map AJ2
s is an isomorphism. Hence

we conclude that the map AJs1 is surjective. �

4. Abel-Jacobi surjectivity for one cycles on SU sC(r,OC), r ≥ 2

In this section, we investigate the Abel-Jacobi map

AJs1 : CH1(SU sC(r,OC))hom ⊗Q→ IJ ⊗Q

for any rank r ≥ 2. The first problem is to find an appropriate identification of the

group IJ ⊗ Q and the second problem is to prove the surjectivity of this map. When

r = 2 and g ≥ 3, the answer to the first problem was given by the Hard Lefschetz

isomorphism (proved via explicit computations which was possible only for the case r =

2). The answer to the second problem essentially required us to prove the isomorphism

CH2(SUC(2,OC))hom⊗Q ' Jac(C)⊗Q (which we know only in the case r = 2) and use

the compatibility of the Lefschetz operator. When r ≥ 2 and g ≥ 4, we will see below

that the answer to the above problems can be given via an application of the Poincaré

duality and using the projective bundle formulas.

Now we consider the Abel-Jacobi map;

AJs1 : CH1(SU sC(r,OC))hom ⊗Q→ IJ(H2n−3
c (SUC(r,OC),Q)).

As shown in the r = 2 case (see Lemma 2.3), we have the following isomorphisms in

the higher rank r ≥ 2 and g ≥ 4 case as well:

Lemma 4.1. a) We have the following isomorphisms of the intermediate Jacobians

1) IJ(H2n−1(P,Q)) ' IJ(H2n−3(SUC(r,O(−x)),Q)),

2) IJ(H2n−1
c (U,Q)) ' IJ(H2n−3

c (SU sC(r,OC),Q)),

3) IJ(H2n−3(SUC(r,O(−x)),Q)) ' IJ(H2n−3
c (SU sC(r,OC),Q))

4) Jac(C)⊗Q ' IJ(H2n−3
c (SU sC(r,OC),Q)).



18 J. N. IYER

b) Similar isomorphisms hold for the Chow groups:

CH1(P)hom ' α.π∗CH1(SUC(r,O(−x)))hom,

CH1(U)hom ' β.f ∗UCH1(SU sC(r,OC))hom.

Here α := c1(OP(1)) and β := c1(OU/SUs
C(r,OC)(1)).

Proof. a) The proof of 1) is the same as in Lemma 2.3 a). Next for 2), we have a

commutative diagram

H3(U,Q)
f∗U' H3(SU sC(r,OC),Q)

↓' ↓'

H2n−1
c (U,Q)

β.f∗U← H2n−3
c (SU sC(r,OC),Q).

The vertical isomorphisms are by Poincaré duality (we have omitted the Tate twists

here). This implies that the map β.f ∗U is an isomorphism of pure Hodge structrures

(since H3(U,Q) has a pure Hodge structure). The isomorphism in 3) is obtained from

the commutative diagram:

H3(P,Q)
j′

' H3(U,Q)

↓' ↓'

H2n−1(P,Q)
j→ H2n−1

c (U,Q).

The vertical isomorphisms are by Poincaré duality and the isomorphism of j′ is due to

the codimension estimate in [Ar-Sa, p.17]. This shows that j is an isomorphism of pure

Hodge structures. Combining the isomorphisms of 1) and 2), we obtain 3) and 4).

b) The proof is the same as in Lemma 2.3 b). �

Corollary 4.2. There is a commutative diagram of the Abel-Jacobi maps, for r ≥ 3, g ≥
4;

CH1(P)hom ⊗Q h→ CH1(U)hom ⊗Q ' CH1(SUC(r,OC))hom ⊗Q
↓AJP

1 ↓AJU1 ↓AJs1

IJ(H2n−1(P, Q)) '→ IJ(H2n−1
c (U, Q)) ' IJ(H2n−3

c (SUsC(r,OC), Q)).

Moreover the Abel-Jacobi map AJs1 is surjective. Here h denotes the restriction of the

one cycles on U .

Proof. The assertion on the commutativity of the above diagram basically follows from the

isomorphisms in Lemma 4.1. Since AJP
1 is the same as AJ1 : CH1(SUC(r,O(−x)))hom ⊗

Q → IJ(H2n−3(SUC(r,O(−x)))), it follows from Corollary 2.5 that the map AJP
1 is

surjective. This implies that the map AJs1 is also surjective. �
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5. Chow generation of one cycles on SUC(r,OC)

A study of Fano manifolds with Picard number one with respect to the geometry of

the variety of tangent directions to the minimal rational curves, has been studied by J-M.

Hwang and N. Mok in a series of papers (see [Hw-Mo] for a survey). The moduli space

SU sC(2,OC) is a Fano manifold with Picard number one and the minimal rational curves

are the ’Hecke curves’ introduced by Ramanan and Narasimhan [Na-Ra2]. Suppose L is

the ample generator of SUC(2,OC) then the dualizing class K is equal to −4L ([Be]).

Furthermore, a Hecke curve has degree 4 with respect to −K. Hence it has degree one

with respect to L (see also [Hw]). In this section, we include the results of J-M. Hwang

which shows that the Hecke curves generate the Chow group of one cycles on the moduli

space SUC(2,OC).

With notations as in the previous section or [Ar-Sa], there is a fibration

P f→ SUC(r,OC)

↓π
S
↓ψ
C

such that the fibre of the morphism ψ at a point x ∈ C is the moduli space SUC(r,O(−x)).

The variety P is a Pr−1-bundle over S and restricting over a fibre ψ−1(x) gives precisely

the Hecke correspondence used in the previous section. The image under f of the lines in

the fibres of the projection π are the Hecke curves on SUC(r,OC).

Firstly, we look at a variant of a theorem of Kollar [Ko, Proposition 3.13.3], on the

Chow generation of one cycles on a variety, due to H-M. Hwang:

Proposition 5.1. (Hwang) Let X be a normal projective variety. Let M⊂ Chow(X) be

a closed subscheme of the Chow scheme of X such that all members of M are irreducible

and reduced curves on X. For a general point x ∈ X, let Cx ⊂ PTx(X) be the closure of

the union of the tangent vectors to members of M passing through x, which are smooth

at x. Suppose that Cx is non-degenerate in PTx(X). Then the Chow group of 1-cycles

CH1(X)⊗Q is generated by members of M.

Proof. Applying Theorem IV.4.13 of [Ko], we have an open subvariety Xo ⊂ X and a

morphism π : Xo → Zo with connected fibers such that for every z ∈ Zo, any two general

points of π−1(z) can be connected by a connected chain consisting of members of M of

length at most dimX and all members of M through a point x ∈ π−1(z) are contained

in the closure of π−1(z). By the assumption on the non-degeneracy of Cx in PTx(X), this

implies that Zo is a point. It follows that any two general points of X can be connected

chain consisting of members of M of length at most dimX. Let Y ⊂ Chow(X) be the
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closed subscheme parametrizing connected 1-cycles each component of which is a member

of M. In the notation of Lemma IV.3.4 of [Ko], u(2) : U ×Y U → X × X is dominant,

where g : U → Y is the universal family and u : U → X is the cycle map. Since U

is complete, u(2) is surjective as in the proof of Corollary IV.3.5 of [Ko]. Thus we can

apply Proposition 3.13.3 of [Ko] to conclude that CH1(X)⊗Q is generated by members

of M. �

This proposition can now be used to obtain the Chow generation of one cycles on the

moduli space SUC(r,OC).

Corollary 5.2. (Hwang) Let X = SUC(r,OC) for a curve C of genus ≥ 4. Then

CH1(X)⊗Q is generated by Hecke curves. Moreover, there is a surjection

CH0(C)⊗Q −→ CH1(SUC(r,OC))⊗Q.

Proof. By Theorem 3 of [Hw2], the union of the tangent vectors to Hecke curves through

a general point y ∈ X is a non-degenerate subvariety Cy ⊂ PTy(X). Since Hecke curves

have degree one with respect to the generator of Pic(X), they form a closed subscheme

M in Chow(X). Thus Proposition 5.1 applies. This implies that there is a surjection

CH0(S)⊗Q→ CH1(SUC(r,OC))⊗Q.

For any x ∈ C, the moduli space SUC(r,O(−x)) is rationally connected and we have the

triviality CH0(SUC(r,O(−x)))⊗Q = Q. This gives us an isomorphism

CH0(C)⊗Q ' CH0(S)⊗Q.

Altogether, we now get a surjection

CH0(C)⊗Q −→ CH1(SUC(r,OC))⊗Q.

�

Corollary 5.3. The Abel-Jacobi map

AJs1 : CH1(SU sC(r,OC))hom ⊗Q −→ Jac(C)⊗Q

is an isomorphism, whenever r ≥ 2 and g ≥ 4 . This extends to an isomorphism

CH1(SUC(r,OC))hom ⊗Q −→ Jac(C)⊗Q.

Proof. By Corollary 5.2, there is a surjection

Jac(C)⊗Q −→ CH1(SUC(r,OC))hom ⊗Q.

By Corollary 4.2 for r ≥ 2, the Abel-Jacobi map

AJs1 : CH1(SU sC(r,OC))hom ⊗Q→ Jac(C)⊗Q

is surjective. Furthermore, the localization map

CH1(SUC(r,OC))hom ⊗Q→ CH1(SU sC(r,OC))hom ⊗Q
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is also surjective [Fu, p.21]. Putting these facts together, we note that all the maps in the
following sequence

(17) Jac(C)⊗Q→ CH1(SUC(r,OC))hom ⊗Q→ CH1(SUsC(r,OC))hom ⊗Q→ Jac(C)⊗Q

are surjective. Since the composed map Jac(C)⊗Q→ Jac(C)⊗Q is surjective, it is an

isomorphism. Hence all the maps in (17) are isomorphisms. �
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