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FOR SOME FAMILIES OF MODULI SPACES

INDRANIL BISWAS AND JAYA NN IYER

Abstract. Given a family of nonsingular complex projective surfaces, there is a corre-
sponding family of Hilbert schemes of zero dimensional subschemes. We prove that the
Chern classes, with values in the rational Chow groups, of the de Rham bundles for such
a family of Hilbert schemes vanish. A similar result is proved for any relative moduli
space of rank one sheaves over any family of complex projective surfaces.

1. Introduction

Let π : X −→ T be a smooth algebraic family of complex projective manifolds of

dimension d such that the parameter space T is a nonsingular variety. Consider the local

systems Rkπ∗C, 0 ≤ k ≤ 2d, and the associated vector bundles Hk := (Rkπ∗C)
⊗

C OT

over T . These vector bundles are equipped with the Gauss–Manin connection. The

Gauss–Manin connection, which we will denote by ∇, is flat. This flat vector bundle

(Hk ,∇) is an algebraic bundle and it is called the de Rham bundle of weight k.

By the Chern–Weil theory, the de Rham Chern classes

cdR
i (Hk) ∈ H2i

dR(T )

vanish. Let

cCh
i (Hk) ∈ CH i(T ) ⊗Z Q =: CH i(T )Q

be the Chern classes in the rational Chow groups. A question posed in [Es] asks whether

cCh
i (Hk) vanishes for each i ≥ 1 (see [Es, pp. 22, 3.1(1)]).

The known cases where the above question has an affirmative answer are as follows.

In [Mu], Mumford proved this for any family of stable curves. In [vdG], van der Geer

proved that cCh
i (H1) is trivial when X −→ T is a family of principally polarized abelian

varieties. For any family of principally polarized abelian varieties of dimension g, the

rational Chern classes (in the Chow group) on a good compactification of the parameter

space were proved to be trivial by Iyer under the assumption that g ≤ 5, [Iy], and by

Esnault and Viehweg for all g > 0 [EV].

Our aim here is to check the vanishing of cCh
i (Hk), where i, k ≥ 1, for two types of

families that are described below.
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Let

(1) S −→ T

be a family of smooth surfaces. For any integer n ≥ 1, we have the relative Hilbert

scheme

X := S [n] −→ T

of zero dimensional subschemes of length n. We prove that cCh
i (Hk) vanishes for all i and

k > 0 (Theorem 2.3).

Let

X := MS −→ T

be a relative moduli space of rank one stable sheaves over the family of surfaces S in (1).

We prove that cCh
i (Hk) vanishes for all i and k (see Proposition 3.1).
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2. Hilbert scheme of points on surfaces

Let S be a nonsingular projective surface defined over the field of complex numbers. Let

S[n] denote the Hilbert scheme of zero dimensional subschemes of S of length n. We know

that S[n] is a nonsingular projective variety [Fo, pp. 517, Theorem 2.4]. Furthermore, the

map to the symmetric product

(2) ρ : S[n] −→ S(n) := Sn/σn ,

where σn is the symmetric group of n letters, is a resolution of singularities [Fo, Proposition

2.3, Corollary 2.6].

Let P (n) denote the set of all partitions of {1, · · · , n}; so any α ∈ P (n) is of the form

(n1, · · · , nl) with 1 ≤ ni ≤ n and
∑l

i=1 ni = n. Given a partition

(3) α = (n1, · · · , nl) ∈ P (n) ,

the corresponding locally closed stratum S
(n)
α of S(n) is the locus defined by elements

n1[x1] + · · · + nl[xl], with x1, · · · , xl distinct points of S. We put |α| := l.

Consider a smooth algebraic family of projective surfaces

(4) πS : S −→ T ,

where the parameter space T is nonsingular.

For any r ∈ N, we have the fiber product

(5) πr
S : Sr :=

r−times
︷ ︸︸ ︷

S ×T · · · ×T S −→ T ,
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and also have the relative symmetric product

(6) πr
s : S(r) −→ T

which is the quotient of Sr for the natural action of the symmetric group σr of r letters.

For any α = (n1, · · · , nl) ∈ P (n), let

(7) πα
S : S(α) := S(n1) ×T S(n2) ×T · · · ×T S(nl) −→ T

be the fiber product constructed from (6).

There is a relative Hilbert scheme

(8) πH : S [n] −→ T

whose fiber π−1
H (t) over any rational point t ∈ T is the Hilbert scheme parametrizing zero

dimensional subschemes of length n on the complex projective surface π−1
S

(t). Let

Hk
H := (RkπH∗C) ⊗C OT ,

Hk
Sr := (Rkπr

S∗C) ⊗C OT ,

Hk
Sr, s := (Rkπr

s ∗C) ⊗C OT ,

Hk
α := (Rkπα

S∗C) ⊗C OT

be the de Rham bundles of weight k over T , where α ∈ P (n), and the projections πH ,

πr
S , πr

s and πα
S are defined in (8), (5), (6) and (7) respectively.

For any α ∈ P (n) and t ∈ T , there is a canonical morphism

(9) κα : S
(α)
t −→ (S

(n)
α )t

to the closure (S
(n)
α )t of the stratum (S

(n)
α )t ⊂ S

(n)
t , and hence there is a map

S
(α)
t −→ (S

(n)
α )t ↪→ S

(n)
t

(see [GS, §3, pp. 236] for the details). This defines a morphism over T of the relative

universal schemes

(10) ∆α : S(α) −→ S
(n)
α .

Here S
(n)
α is the normalization of the subscheme obtained after taking closure of the fibers

(S
(n)
α )t.

There is a natural isomorphism

(11) H∗(S
[n]
t , Q) =

⊕

α∈P (n)

H∗(S
(α)
t , Q)

[Go, pp. 613, Theorem 1.1], [GS, pp. 236, Theorem 2]. For any integer k ≥ 0, set

kα ∈ N such that Hk(S
[n]
t , Q) corresponds to Hkα(S

(α)
t , Q) under the above isomorphism.

Lemma 2.1. There is a canonical direct sum decomposition of the vector bundle

Hk
H =

⊕

α∈P (n)

Hkα

α

over T .
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Proof. This follows from [Go, pp. 613, Theorem 1.1]. We note that a similar result is

also proved in [dCM]. The isomorphism is constructed using
∑

α∈P (n)(∆α)∗, where ∆α

is the map in (10); the details of the construction of the isomorphism are given in [Go,

Proposition 3.1]. ¤

Lemma 2.2. Take any α ∈ P (n). The Chern classes ci(H
k
α) ∈ CH∗(T )Q vanish for all

i, k ≥ 1.

Proof. Using the Künneth decomposition we obtain

Hk
Sr =

⊕

Pr
j=1 ij=k

Hi1
S
⊗Hi2

S
⊗ · · · ⊗ Hir

S
,

where Sr is defined in (5).

For any t ∈ T , the cohomology of the fiber S
(r)
t is isomorphic to the space of invariants

H∗(Sr
t , Q)σr ⊂ H∗(Sr

t , Q)

for the action of the symmetric group σr of r letters [Gr, Theorem 5.3.1]; see [Ma, Part I,

§3, pp. 564] for a description of the action of σr. Hence

Hk
Sr, s = (Hk

Sr)σ .

Combining these we conclude that the σr–invariant subbundle (Hk
Sr)σr consists of the

direct summands which are of the type

Symj1Hp1

S
⊗ Symj2Hp2

S
⊗ · · · ⊗ SymjsHps

S
⊗ Λl1Hq1

S
⊗ Λl2Hq2

S
⊗ · · · ⊗ ΛltHqt

S
,

where pi are even integers and qi are odd integers (see [dB, pp. 116, Proposition 3.8]).

Here

Hi
S := (RiπS∗C)

⊗

C

OT ,

where πS is the projection in (4), and Sym (respectively, Λ) denotes the symmetric power

(respectively, exterior power).

The Chern classes of SymjHp
S

and ΛlHq
S

are determined in terms of the Chern classes

of the vector bundles Hp
S

and Hq
S

respectively [Fu, pp. 55]. We also know that ci(H
m
S ) ∈

CH i(T )Q vanishes for each m and i > 0 [BE, pp. 950, Example 7.3]. Consequently, the

Chern classes of Hk
Sr, s = (Hk

Sr)σ in the rational Chow groups of T vanish.

Since S(α) = S(n1) ×T S(n2) ×T · · · ×T S(nl), using the Künneth decomposition, and

the additivity property of the Chern character for a direct sum, we deduce that the

Chern classes of Hk
α vanish in the rational Chow groups. This completes the proof of the

lemma. ¤

Theorem 2.3. The Chern classes ci(H
k
H) ∈ CH∗(T )Q vanish for all i, k ≥ 1.
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Proof. We use the decomposition in Lemma 2.1 together with the additivity property of

the Chern character map to obtain

ch(Hk
H) =

∑

α∈P (n)

ch(Hkα

α ) .

Lemma 2.2 says that ch(Hkα
α ) ∈ CH0(T )Q for all α ∈ P (n). This implies that ch(Hk

H) ∈

CH0(T )Q, and the proof of the theorem is complete. ¤

3. Moduli spaces of rank one sheaves

Let S be a smooth projective surface defined over C. Take any nonnegative integer n.

The moduli space of stable sheaves E over S of rank one and c2(E) = n is Pic0(S)×S[n];

if n = 0, then consider S[n] to be a single point. This identification is constructed by

sending any (L ,Z) ∈ Pic0(S) × S[n] to the rank one sheaf L
⊗

OS
IZ , where IZ ⊂ OS is

the ideal of Z.

As in (4), let

π : S −→ T

be a smooth algebraic family of smooth projective surfaces. Fix a nonnegative integer n.

Let

πM : M −→ T

be the relative moduli space of stable sheaves of rank one and second Chern class n over

S. So for any point t ∈ T , the fiber π−1
M

(t) parametrize all stable sheaves E over π−1(t)

with rank(E) = 1 and c2(E) = n.

Consider the relative Hilbert scheme

πH : S [n] −→ T

and the relative Picard variety πJ : Pic0
T (S) −→ T . Let

πJ,n : Pic0
T (S) ×T S [n] −→ T

be the fiber product over T . We have

(12) M = Pic0
T (S) ×T S [n] .

We have the associated de Rham bundles

Hk
S[n] := (RkπH∗C) ⊗OT ,

Hk
J := (RkπJ∗C) ⊗OT ,

Hk
J,n := (RkπJ,n∗C) ⊗OT ,

Hk
M := (RkπM∗C) ⊗OT

over T .

Proposition 3.1. The Chern classes ci(H
k
M) ∈ CH∗(T )Q vanish, where i, k ≥ 1.
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Proof. Using (12), we have an isomorphism of the de Rham bundles

Hk
M ' Hk

J,n .

Using the Künneth decomposition we have

(13) Hk
J,n =

∑

p+q=k

Hp
J ⊗Hq

S[n] .

Using (13), the Chern classes of Hk
J,n are expressed in terms of the Chern classes of

Hp
J and Hq

S[n] . We recall that Theorem 2.3 says that the Chern classes of Hq

S[n] vanish,

and [vdG] and [EV] say that the Chern classes of Hp
J vanish. Consequently, ci(H

k
M) ∈

CH i(T )Q vanishes for each i, k > 0. This completes the proof of the proposition. ¤
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