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Abstract. We consider a logic for reasoning about composite strategies in games, where players’ strate-
gies are like programs, composed structurally. These depend not only on conditions that hold at game
positions but also on properties of other players’ strategies. We present an axiomatization for the logic
and prove its completeness.

1 Summary

Extensive form turn-based games are trees whose nodes are game positions and branches represent moves
of players. With each node is associated a player whose turn it is to move at that game position. A player’s
strategy is then simply a subtree which contains a unique successor for every node where it is this player’s
turn to make a move, and contains all successors (from the game tree) for nodes where other players make
moves. Thus a strategy is an advice function that tells a player what move to play when the game reaches
any specific position. In two-player win/loss games, analysis of the game amounts to seeing if either player
has a winning strategy from any starting position, and if possible, synthesize such a winning strategy.

In multi-player games where the outcomes are not merely winning and losing, the situation is less clear.
Every player has a preference for certain outcomes and hence cooperation as well as conflict become strate-
gically relevant. Moreover, each player has some expectations (and assumptions) about strategies adopted
by other players, and fashions her response appropriately. In such situations, game theory tries to explain
what rational players would do.

In so-called small (normal form) games, where the game consists of a small fixed number of moves (often
one move chosen independently by each player), strategies have little structure, and prediction of stable
behaviour (equilibrium strategy profiles) is possible. However, this not only becomes difficult in games with
richer structure and long sequences of moves, it is also less clear how to postulate behaviour of rational
players. Moreover, if we look to game theory not only for existence of equilibria but also advice to players
on how to play, the structure of strategies followed by players becomes relevant.

Even in games of perfect information, if the game structure is sufficiently rich, we need to re-examine
the notion of strategy as a function that determines a player’s move in every game position. Typically, the
game position is itself only partially known, in terms of properties that the player can test for. Viewed in this
light, strategies are like programs, built up systematically from atomic decisions like if b then a where b is a
condition checked by the player to hold (at some game position) and a is a move available to the player at
that position.

There is another dimension to strategies, namely that of responses to other players’ moves. The notion of
each player independently deciding on a strategy needs to be re-examined as well. A player’s chosen strategy
depends on the player’s perception of apparent strategies followed by other players. Even when opponents’
moves are visible, an opponent’s strategy is not known completely as a function. Therefore the player’s
strategy is necessarily partial as well.

The central idea of this paper is to suggest that it helps to study strategies given by their properties. Hence,
assumptions about strategies can be partial, and these assumptions can in turn be structurally built into
the specification of other strategies. This leads us to proposing a logical structure for strategies, where we
can reason with assertions of the form “(partial) strategy σ ensures the (intermediate) condition α”.



This allows us to look for induction principles which can be articulated in the logic. For instance, we
can look at what conditions must be maintained locally (by one move) to influence an outcome eventually.
Moreover, we can compare strategies in terms of what conditions they can enforce.

The main contributions of this paper are:

– We consider non-zero-sum games over finite graphs, and consider best response strategies (rather than
winning strategies).

– The reasoning carried out works explicitly with the structure of strategies rather than existence of
strategies.

– We present a logic with structured strategy specifications and formulas describe how strategies ensure
outcomes.

– We present an axiom system for the logic and prove that it is complete.

1.1 Other work

Recently, the advent of computational tasks on the world-wide web and related security requirements have
thrown up many game theoretic situations. For example, signing contracts on the web requires interaction
between principals who do not know each other and typically distrust each other. Protocols of this kind which
involve selfish agents can be easily viewed as strategic games of imperfect information. These are complex
interactive processes which critically involve players reasoning about each others’ strategies to decide on how
to act.

Game logics are situated in this context, employing modal logics (in the style of logics of programs) to
study logical structure present in games. Parikh’s work on propositional game logic ([Par85]) initiated the
study of game structure using algebraic properties. Pauly ([Pau01]) has built on this to provide interesting
relationships between programs and games, and to describe coalitions to achieve desired goals. Bonnano
([Bon91]) suggested obtaining game theoretic solution concepts as characteristic formulas in modal logic.
van Benthem ([vB01]) uses dynamic logic to describe games as well as strategies.

On the other hand, the work on Alternating Temporal Logic ([AHK98]) considers selective quantification
over paths that are possible outcomes of games in which players and an environment alternate moves. Here,
we talk of the existence of a strategy for a coalition of players to force an outcome. [Gor01] draws parallels
between these two lines of work, that of Pauly’s coalition logics and alternating temporal logic. It is to be
noted that in these logics, the reasoning is about existence of strategies, and the strategies themselves do
not figure in formulas.

In the work of [HvdHMW03] and [vdHJW05], van der Hoek and co-authors develop logics for strategic
reasoning and equilibrium concepts and this line of work is closest to ours in spirit. Our point of departure
is in bringing logical structure into strategies rather than treating strategies as atomic. In particular, the
strategy specifications we use are partial (in the sense that a player may assume that an opponent plays
a whenever p holds, without knowing under what conditions the opponent strategy picks another move b),
allowing for more generality in reasoning.

2 Game Arenas

We begin with a description of game models on which formulas of the logic will be interpreted. We use the
graphical model for extensive form turn-based multiplayer games, where at most one player gets to move at
each game position.

Game Arena

Let N = {1, 2, . . . , n} be a non-empty finite set of players and Σ = {a1, a2, . . . , am} be a finite set of action
symbols, which represent moves of players. A game arena is a finite graph G = (W,−→, w0, χ) where W is
the set of nodes which represents the game positions, −→: (W ×Σ) →W is a function also called the move
function, w0 is the initial node of the game.
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Let the set of successors of w ∈ W be defined as
→
w= {w′ ∈ W | w

a
−→ w′ for some a ∈ Σ}. A node w is

said to be terminal if
→
w= ∅. χ : W → N assigns to each node w in W the player who “owns” w: that is, if

χ(w) = k and w is not terminal then player k has to pick a move at w.
In an arena defined as above, the play of a game can be viewed as placing a token on w0. If player k

owns the game position w0 i.e χ(w0) = k and she picks an action ’a’ which is enabled for her at w0, then

the new game position moves the token to w′ where w0

a
−→ w′. A play in the arena is simply a sequence of

such moves. Formally, a play in G is a finite path ρ = w0

a1−→ w1

a2−→ . . .
ak−→ wk where wk is terminal, or it

is an infinite path ρ = w0

a1−→ w1

a2−→ . . ., and where ∀i : wi
ai−→ wi+1 holds. Let Plays denote the set of all

plays in the arena.
With a game arena G = (W,−→, w0, χ), we can associate its tree unfolding also referred to as the extensive

form game tree T = (S,⇒, s0, λ) where (S,⇒) is a countably infinite tree rooted at s0 with edges labelled
by Σ and λ : S →W such that:

– λ(s0) = w0.

– For all s, s′ ∈ S, if s
a

=⇒ s′ then λ(s)
a

−→ λ(s′).

– If λ(s) = w and w
a

−→ w′ then there exists s′ ∈ S such that s
a

=⇒ s′ and λ(s′) = w′.

Given the tree unfolding of a game arena T , a node s in it, we can define the restriction of T to s, denoted
Ts to be the subtree obtained by retaining only the unique path from root s0 to s and the subtree rooted at
s.

Games and Winning Conditions

Let G be an arena as defined above. The arena merely defines the rules about how the game progresses and
terminates. More interesting are winning conditions, which specify the game outcomes. Naturally, each player
may have some preferences relating to the outcomes.

What we need is a finitely specified condition describing each player’s preference on outcomes. We choose
to use regular conditions: since the graph is finite, in every infinite play, some positions are visited infinitely
often. Rather than specify preferences on plays, we do so on the set of positions through which the play
cycles. Let CG denote the set of all cycles in the game arena G and TG denote the set of all terminal nodes
in the game arena. For each k ∈ N , let �k⊆ ((CG ∪ TG) × (CG ∪ TG)) be a complete reflexive, transitive
binary relation denoting the preference relation of player k. Clearly, we have induced orderings: for k ∈ N ,
let �k⊆ (Plays× Plays), defined in the obvious manner.

Then a game is defined as the pair G = (G, (�i)i∈N ).

Strategies

For simplicity we will restrict ourselves to two player games, i.e. N = {1, 2}. It is easy to extend the notions
introduced here to the general case where we have n players.

Let the game graph be represented by G = (W 1,W 2,−→, s0) where W 1 is the set of positions of player
1, W 2 that of player 2. Let W = W 1 ∪W 2.

Let T be the tree unfolding of the arena and s1 a node in it. A strategy for player 1 at node s1 is given
by: µ = (S1

µ, S
2
µ,⇒µ, s1) is a subtree of Ts1

which contains the unique path from root s0 to s1 in T and is
the least subtree satisfying the following properties:

– s1 ∈ S1
µ, where χ(λ(s1)) = 1.

– For every s in the subtree of TG rooted at s1,
• if s ∈ S1

µ then for some a ∈ Σ, for each s′ such that s
a

=⇒ s′, we have s
a

=⇒µ s
′.

• if s ∈ S2
µ, then for every b ∈ Σ, for each s′ such that s

b
=⇒ s′, we have s

b
=⇒µ s

′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. A strategy profile 〈µ, τ〉 defines a
unique play ρτ

µ in the game G.
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3 The logic

We now present a logic for reasoning about composite strategies. The syntax of the logic is presented in two
layers, that of strategy specification and game formulas.

Atomic strategy formulas specify, for a player, what conditions she tests for before making a move. Since
these are intended to be bounded memory strategies, the conditions are stated as past time formulas of a
simple tense logic. Composite strategy specifications are built from atomic ones using connectives (without
negation). We crucially use an implication of the form: “if the opponent’s play conforms to a strategy π then
play σ”.

Game formulas describe the game arena in a standard modal logic, and in addition specify the result
of a player following a particular strategy at a game position, to choose a specific move a, to ensure an
intermediate outcome α . Using these formulas one can specify how a strategy helps to eventually win an
outcome α.

Before we describe the logic and give its semantics, some prelimiaries will be useful. Below, for any
countable set X , let Past(X) be a set of formulas given by the following syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.

Such past formulas can be given meaning over finite sequences. Given any sequence ξ = t0t1 · · · tm,
V : {t0, · · · , tm} → 2X , and k such that 0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted
ξ, k |= ψ can be defined as follows:

– ξ, k |= p iff p ∈ V (tk).
– ξ, k |= ¬ψ iff ξ, k 6|= ψ.
– ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.
– ξ, k |= 3-ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

Strategy specifications

For simplicity of presentation, we stick with two player games, where the players are Player 1 and Player 2.
Let i = 2 when i = 1 and i = 1 when i = 2.

Let P i = {pi
0, p

i
1, . . .} be a countable set of proposition symbols where τi ∈ Pi, for i ∈ {1, 2}. Let

P = P 1∪P 2∪{leaf }. τ1 and τ2 are intended to specify, at a game position, which player’s turn it is to move.
leaf specifies whether the position is a terminal node.

Further, the logic is parametrized by the finite alphabet set Σ = {a1, a2, . . . , am} of players’ moves and
we only consider game arenas over Σ.

Let Strat i(P i), for i = 1, 2 be the set of strategy specifications given by the following syntax:

Strat i(P i) := any | [ψ 7→ ak]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ

where π ∈ Strat i(P 1 ∩ P 2), ψ ∈ Past(P i) and ak ∈ Σ.
The idea is to use the above constructs to specify properties of strategies. For instance the interpretation

of a player i specification [p 7→ a]i will be to choose move “a” for every i node where p holds. π ⇒ σ would
say, at any node player i sticks to the specification given by σ if on the history of the play, all moves made
by i conforms to π.

For a game tree T , a node s and a strategy specification σ ∈ Strat i(P i), we define T |\ σ = (Sσ,=⇒σ, s0)
to be the least subtree of Ts which contains the unique path from s0 to s and satisfies the following property.

– For every s′ in Sσ,
• if s′ is an i node then for all s′′ with s′

a
=⇒ s′′ and a ∈ σ(s′), we have s′

a
=⇒σ s

′′.

• if s′ is an i node then for all s′′ with s′
a

=⇒ s′′, we have s′
a

=⇒σ s
′′.

Given a game tree T and a node s in it, let ρs
s0

: s0
a1=⇒ s1 · · ·

am=⇒ sm = s denote the unique path from

s0 to s. For a strategy specification σ ∈ Strat i(P i) and a node s we define σ(s) as follows:
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– [ψ 7→ a]i(s) =

{
{a} if s ∈W i and ρs

s0
,m |= ψ

Σ otherwise

– (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).
– (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).

– (π ⇒ σ)(s) =

{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj)
Σ otherwise

We say that a path ρs′

s : s = s1
a1=⇒ s2 · · ·

am−1

=⇒ sm = s′ in T conforms to σ if ∀j : 1 ≤ j < m, aj ∈ σ(sj).
When the path constitutes a proper play, i.e. when s = s0, we say that the play conforms to σ.

Syntax

The syntax of the logic is given by:

Π := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉α | 〈a〉α | 2-α | (σ)i : c | σ ;i β

where c ∈ Σ, σ ∈ Strat i(P i), β ∈ Past(P i). The derived connectives ∧ ⊃ and [a]α are defined as usual.

Let 3-α = ¬2-¬α, 〈N〉α =
∨

a∈Σ

〈a〉α, [N ]α = ¬〈N〉¬α, 〈P 〉α =
∨

a∈Σ

〈a〉α and [P ] = ¬〈P 〉¬α.

The formula (σ)i : c asserts, at any game position, that the strategy specification σ for player i suggests
that the move c can be played at that position. The formula σ ;i β says that from this position, there is a
way of following the strategy σ for player i so as to ensure the outcome β. These two modalities constitute
the main constructs of our logic.

Semantics

The models for the logic are extensive form game trees along with a valuation function. A model M = (T , V )
where T = (S1, S2,−→, s0) is a game tree as defined in section 2, and V : S → 2P is the valuation function,
such that:

– For i ∈ {1, 2}, τi ∈ V (s) iff s ∈ Si.
– leaf ∈ V (s) iff moves(s) = φ.

where for any node s, moves(s) = {a|s
a

=⇒ s′}.
The truth of a formula α ∈ Π in a model M and position s (denoted M, s |= α) is defined by induction

on the structure of α, as usual. Let ρs
s0

be s0
a0=⇒ s1 · · ·

am−1

=⇒ sm = s.

– M, s |= p iff p ∈ V (s).
– M, s |= ¬α iff M, s 6|= α.
– M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.

– M, s |= 〈a〉α iff there exists s′ ∈ W such that s
a
→s′ and M, s′ |= α.

– M, s |= 〈a〉α iff a = am−1 and M, sm−1 |= α.
– M, s |= 3-α iff there exists j : 0 ≤ j ≤ m such that M, sj |= α.
– M, s |= (σ)i : c iff c ∈ σ(s).
– M, s |= σ ;i β iff

• for all s′ in Ts |
\ σ, such that s =⇒∗ s′, we have M, s′ |= β ∧ (τi ⊃ enabledσ).

where enabledσ ≡
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).

The notions of satisfiablility and validity can be defined in the standard way. A formula α is satisfiable

iff there exists a model M such that M, s0 |= α. A formula α is said to be valid iff for all models M , we have
M, s0 |= α.
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4 Example

Consider the game shown in Fig. 1. Players alternate moves with 1 starting at s0. There are two cycles
C1 : s5 → s6 → s7 → s8 → s5, C2 : s1 → s2 → s3 → s4 → s1 and two terminal nodes t1 and t2. Let the
preference ordering of player 1 be t2 �1 t1 �1 C2 �1 C1. As far as player 2 is concerned t1 �2 C1 and he is
indifferent between C2 and t2. However, he prefers C2 or t2 over {C1, t1}. Equilibrium reasoning will advise
player 1 to move “a” since at s7 it is irrational for 2 to move x as it will result in 2’s worst outcome. However
the utility difference between C1 and t1 for 2 might be negligible compared to the incentive of staying in
the “left” path. Therefore 2 might decide to punish 1 for moving b when 1 knew that {C2, t2} was equally
preferred by 2. Even though t1 is the worst outcome, at s7 player 2 can play x to implement the punishment.
Let V (pj) = {s3, s7}, V (pinit ) = {s0}, V (pgood) = {s0, s1, s2, s3, s4} and V (ppunish ) = {s0, s5, s6, s7, t1}. The
local objective of 2 will be to remain on the good path or to implement the punishment. Player 2 strategy
specification can be written as

π ≡ ([pinit 7→ b]1 ⇒ [pj 7→ x]2) · ([pinit 7→ a]1 ⇒ [pj 7→ y]2).

We get that π ;2 (pgood ∨ ppunish). Player 1 if he knows 2’s strategy will be tempted to play “a” at s0 by
which the play will end up in C2.

5 Axiom system

We now present our axiomatization of the valid formulas of the logic. Before we present the axiomatization,
we will find some abbreviations useful:

– root = ¬〈P 〉True defines the root node to be one that has no predecessors.
– δσ

i (a) = τi ∧ (σ)i : a denotes that move “a” is enabled by σ at an i node.
– invσ

i (a, β) = (τi ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fact that after an “a” move by player i which
conforms to σ, σ ;i β continues to hold.

– invσ
i
(β) = τi ⊃ [N ](σ ;i β) says that after any move of i, σ ;i β continues to hold.

– conf π = 2- (〈a〉τi ⊃ 〈a〉(π)i : a) denotes that all opponent moves in the past conform to π.

The axiom schemes

(A0) All the substitutional instances of the tautologies of PC
(A1) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)
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(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)
(A2) (a) 〈a〉α ⊃ [a]α

(b) 〈a〉α ⊃ [a]α
(c) 〈a〉True ⊃ ¬〈b〉True for all b 6= a

(A3) (a) α ⊃ [a]〈a〉α
(b) α ⊃ [a]〈a〉α

(A4) (a) 3- root
(b) 2-α ≡ (α ∧ [P ]2-α)

(A5) (a) ([ψ 7→ a]i)i : a for all a ∈ Σ
(b) τi ∧ ([ψ 7→ a]i)i : c ≡ ¬ψ for all a 6= c

(A6) (a) (σ1 + σ2)i : c ≡ σ1 : c ∨ σ2 : c
(b) (σ1 · σ2)i : c ≡ σ1 : c ∧ σ2 : c
(c) (π ⇒ σ)i : c ≡ conf π

⊃ (σ)i : c
(A7) σ ;i β ⊃ (β ∧ invσ

i (a, β) ∧ invσ
i
(β) ∧ (¬leaf ⊃ enabledσ))

Inference rules

(MP) α, α ⊃ β (NG) α (NG-) α
β [a]α [a]α

(Ind -past) α ⊃ [P ]α
α ⊃ 2-α

(Ind ;) α ∧ δσ
i (a) ⊃ [a]α, α ∧ τi ⊃ [N ]α, α ∧ ¬leaf ⊃ enabledσ, α ⊃ β

α ⊃ σ ;i β
The axioms are mostly standard. After the Kripke axioms for the 〈a〉 modalities, we have axioms that

ensure determinacy of both 〈a〉 and 〈a〉 modalities, and an axiom to assert the uniqueness of the latter. We
then have axioms that relate the previous and next modalities with each other, as well as to assert that the
past modality steps through the 〈a〉 modality. An axiom asserts the existence of the root in the past. The
rest of the axioms describe the semantics of strategy specifications.

The rule Ind -past is standard, while Ind ; illustrates the new kind of reasoning in the logic. It says that
to infer that the formula σ ;i β holds in all reachable states, β must hold at the asserted state and

– for a player i node after every move which conforms to σ, β continues to hold.
– for a player i node after every enabled move, β continues to hold.
– player i does not get stuck by playing σ.

To see the soundness of (A7), suppose it is not valid. Then there exists a node s such that M, s |= σ ;i β
and one of the following holds:

– M, s 6|= β: in which case from semantics we get that M, s 6|= σ ;i β which is a contradiction.

– M, s 6|= invσ
i (a, β): In this case, we have s ∈W i, M, s |= (σ)i : a and M, s′ 6|= σ ;i β where s

a
=⇒ s′. This

implies that there is a path ρ′sk

s which conforms to σ and either M, sk 6|= β or moves(sk) ∩ σ(sk) = φ.

But since s
a

=⇒ s′, we have ρsk

s conforms to σ as well. From which it follows that M, s 6|= σ ;i β which
is a contradiction.

– M, s 6|= invσ
i
(β): We have a similar argument as above.

– M, s 6|= ¬leaf ⊃ enabledσ: This means that M, s |= ¬leaf and M, s 6|= enabledσ. Therefore moves(s) ∩
σ(s) = φ and by semantics we have M, s 6|= σ ;i β which is a contradiction.

To show that the induction rule preserves validity, suppose that the premise is valid and the conclusion
is not. Then for some node s we have M, s |= α and M, s 6|= σ ;i β. i.e. there is a path ρsk

s which conforms
to σ such that M, sk 6|= β or sk is a non-leaf node and σ(sk) ∩ moves(sk) = φ. Consider the shortest such
path. Since the premise is assumed to be valid, we get for all s′ in ρ

sk−1

s , M, s′ |= α. Assume that α ⊃ β is
valid.

If M, sk 6|= β then we have two cases to consider
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1. sk−1 ∈ W i, in which case we have M, sk−1 |= α ∧ δσ
i (ak−1) and M, sk 6|= α. From which we get that

M, sk−1 6|= (α ∧ δσ
i (ak−1)) ⊃ [ak−1]α.

2. sk−1 ∈ W i. We have M, sk−1 |= α ∧ τi and M, sk−1 6|= [ak−1]α from which we get M, sk−1 6|= (α ∧
τi) ⊃ [N ]α.

Either case we get a contradiction to the validity of a premise. If sk is a non-leaf node and σ(sk)∩moves(sk) =
φ then we have M, sk |= α ∧ ¬leaf and M, sk 6|= enabledσ. Therefore M, sk 6|= (α ∧ ¬leaf ) ⊃ enabledσ.

6 Completeness

To show completeness, we prove that every consistent formula is satisfiable. Let α0 be a consistent formula,
and let W denote the set of all maximal consistent sets (MCS). We use w,w′ to range over MCS’s. Since α0

is consistent, there exists an MCS w0 such that α0 ∈ w0.
Define a transition relation on MCS’s as follows: w

a
−→ w′ iff {〈a〉α|α ∈ w′} ⊆ w.

We will find it useful to work not only with MCSs, but also with sets of subformulas of α0. For a formula
α let CL(α) denote the subformula closure of α. Let AT denote the set of all maximal consistent subsets
of CL(α0), reffered to as atoms. Each t ∈ AT is a finite set of formulas, we denote the conjunction of all

formulas in t by t̂. For a nonempty subset X ⊆ AT , we denote by X̃ the disjunction of all t̂, t ∈ X . Define
a transition relation on AT as follows: t

a
−→ t′ iff t̂ ∧ 〈a〉t̂′ is consistent. Call an atom t a root atom if there

does not exist any atom t′ such that t′
a

−→ t for some a.
Note that t0 = w0 ∩ CL(α0) ∈ AT .

Proposition 6.1. There exist t1, . . . , tk ∈ AT and a1, . . . ak ∈ Σ (k ≥ 0) such that tk
ak−→ tk−1 . . .

a1−→ t0,
where tk is a root atom.

Proof. Consider the least set R containing t0 and closed under the following condition: if t1 ∈ R and for
some a ∈ Σ there exists t2 such that t2

a
−→ t1, then t2 ∈ R. Now, if there exists an atom t′ ∈ R such that t′

is a root then we are done. Suppose not, then we have ⊢ R̃ ⊃ ¬root . But then we can show that ⊢ R̃ ⊃ [P ]R̃.

By rule Ind -past and above we get ⊢ R̃ ⊃ 2-¬root . But then t0 ∈ R and hence ⊢ t̂0 ⊃ R̃ and therefore we get
⊢ t̂0 ⊃ 2-¬root , contradicting axiom (A4a).

Above, we have additional properties: for any formula 3-α ∈ tk, we also have α ∈ tk. Further, for all
j ∈ {0, · · · , k}, if 3-α ∈ tj , then there exists i such that k ≥ i ≥ j and α ∈ ti. Both these properties are
ensured by axiom (A4b).

Hence it is easy to see that there exist MCS’s w1, . . . , wk ∈ W and a1, . . . ak ∈ Σ (k ≥ 0) such that

wk
ak−→ wk−1 . . .

a1−→ w0, where wj ∩ CL(α0) = tj . Now this path defines a (finite) tree T0 = (S0,=⇒0, s0)
rooted at s0, where S0 = {s0, s1, . . . , sk}, and for all j ∈ {0, · · · , k}, sj is labelled by the MCS wk−j . The
relation =⇒0 is defined in the obvious manner. From now we will simply say α ∈ s where s is the tree node,
to mean that α ∈ w where w is the MCS associated with node s.

Inductively assume that we have a tree Tk = (Sk,=⇒k, s0) such that the past formulas at every node have

“witnesses” as above. Pick a node s ∈ Sk such that 〈a〉True ∈ s but there is no s′ ∈ Sk such that s
a

=⇒ s′.

Now, if w is the MCS associated with node s, there exists an MCS w′ such that w
a

−→ w′. Pick a new node
s′ /∈ Sk and define Tk+1 = Sk ∪{s′} and =⇒k+1==⇒k ∪{(s, a, s′)}, where w′ is the MCS associated with s′.
It is easy to see that every node in Tk+1 has witnesses for past formulas as well.

Now consider T = (S,=⇒, s0) defined by: S =
⋃

k≥0

Sk and =⇒=
⋃

k≥0

=⇒k. Define the model M = (T, V )

where V (s) = w ∩ P , where w is the MCS associated with s.

Lemma 6.1. For any s ∈ S, we have the following properties.

1. if [a]α ∈ s and s
a

=⇒ s′ then α ∈ s′.

2. if 〈a〉α ∈ s then there exists s′ such that s
a

=⇒ s′ and α ∈ s′.
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3. if [a]α ∈ s and s′
a

=⇒ s then α ∈ s′.

4. if 〈a〉α ∈ s then there exists s′ such that s′
a

=⇒ s and α ∈ s′.
5. if 2-α ∈ s and s′ =⇒∗ s then α ∈ s′.
6. if 3-α ∈ s then there exists s′ such that s′ =⇒∗ s and α ∈ s′.

Lemma 6.2. For all ψ ∈ Past(P ), for all s ∈ S, ψ ∈ s iff ρs, s |= ψ.

Lemma 6.3. For all i, for all σ ∈ Strat i(P i), for all c ∈ Σ, for all s ∈ S, (σ)i : c ∈ s iff c ∈ σ(s).

Proof. The proof is by induction on the structure of σ. The nontrivial cases are as follows:
σ ≡ [ψ 7→ a]:
(⇒) Suppose ([ψ 7→ a]i)i : c ∈ s. If c = a then the claim holds trivially. If c 6= a then from (A5a) we get that
¬ψ ∈ s, from lemma 6.2 ρs, s 6|= ψ. Therefore by definition we have [ψ 7→ a]i(s) = Σ and c ∈ σ(w).
(⇐) Conversly, suppose ([ψ 7→ a]i)i : c 6∈ s. From (A5a) we have a 6= c. From (A5b) we get ψ ∈ s. By lemma
6.2 ρs, s |= ψ. Therefore c 6∈ σ(s) by definition.
σ ≡ σ1 + σ2:
(σ1 + σ2)i : c ∈ s iff by (A6a) and property of MCS, (σ1)i ∈ s or (σ2)i ∈ s iff by induction hypothesis,
c ∈ σ1(s) or c ∈ σ2(s) iff c ∈ σ1(s) ∪ σ2(s) iff by definition c ∈ (σ1 + σ2)(s).
σ ≡ σ1 · σ2: A similar argument as above.

σ ≡ π ⇒ σ′: Let ρs
s0

: s0
a0=⇒ · · ·

ak−1

=⇒ sk = s be the unique path from the root to s.
(⇒) Suppose (π ⇒ σ′)i : c ∈ s. To show c ∈ (π ⇒ σ′)(s). Suffices to show that ρs

s0
conforms to π implies

c ∈ σ′(s). From (A6c) we have conf π
⊃ (σ′)i : c ∈ s. Rewriting this we get 3- (〈a〉τi ∧ [a](¬(π)i : a)) ∨ (σ′)i :

c ∈ s. We have two cases,

– if (σ′)i : c ∈ s then by induction hypothesis we get c ∈ σ′(s). Therefore by definition c ∈ (π ⇒ σ)i(s).
– otherwise we have 3- (〈a〉τi ∧ [a](¬(π)i : a)) ∈ s. From lemma 6.1(6), there exits sl ∈ ρs such that

〈a〉τi ∧ [a](¬(π)i : a) ∈ sl. By lemma 6.1(4) there exists sl−1 ∈ ρs ∩W i such that sl−1

a
=⇒ sl. From

lemma 6.1(3), ¬(π)i : a ∈ sl−1. Since sl−1 is an MCS, we have (π)i : a 6∈ sl−1. By induction hypothesis,
a 6∈ π(sl−1), therefore we have ρs

s0
does not conform to π.

(⇐) Conversly, using (A6c) and a similar argument it can be shown that if (π ⇒ σ′)i : c 6∈ s then c 6∈ (π ⇒
σ′)(s).

Theorem 6.1. For all α ∈ Π, for all s ∈ S, α ∈ s iff M, s |= α.

Proof. The proof is by induction on the structure of α.
α ≡ (σ)i : c.
From lemma 6.3 we have (σ)i : c ∈ s iff c ∈ σ(s) iff by semantics M, s |= (σ)i : c.
α ≡ σ ;i β.
(⇒) We show the following:

1. If σ ;i β ∈ s and there exits a transition s
a

=⇒ s′ such that a ∈ σ(s), then {β, σ ;i β} ⊆ s′.
Suppose σ ;i β ∈ s, from (A7) we have β ∈ s. We have two cases to consider.
– s ∈ W i: We have τi ∈ s. Since a ∈ σ(s), by lemma 6.3 we have (σ)i : a ∈ s. From (A7) we get

[a](σ ;i β) ∈ s. By lemma 6.1(1) we have σ ;i β ∈ s′.

– s ∈ W i: We have τi ∈ s. From (A7) we get [N ](σ ;i β) ∈ s, since s is an MCS we have for every
a ∈ Σ, [a](σ ;i β) ∈ s. By lemma 6.1(1) we have σ ;i β ∈ s′.

By applying (A7) at s′ we get β ∈ s′.

2. If σ ;i β ∈ s and s is a non-leaf node, then ∃s′ such that s
a

=⇒ s′ and a ∈ σ(s).

Suppose s is a non-leaf node. From (A7),
∨

a∈Σ

(〈a〉True ∧ (σ)i : a) ∈ s. Since s is an MCS, there exists an

a such that 〈a〉True ∧ (σ)i : a ∈ s. By lemma 6.1(2), there exists an s′ such that s
a

=⇒ s′ and by lemma
6.3 a ∈ σ(s).
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(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk

s which conforms to σ, then we have
{β, σ ;i β} ⊆ sk. Since β ∈ Past(P ), by lemma 6.2 we have M, sk |= β. (2) ensures that for all paths ρsk

s

which conforms to σ, if sk is a non-leaf node, then moves(s) ∩ σ(s) 6= φ. Therefore we get M, s |= σ ;i β.
(⇐) Conversly suppose σ ;i β 6∈ s, to show M, s 6|= σ ;i β. Suffices to show that there exists a path ρsk

s

that conforms to σ such that M, sk 6|= β or sk is a non-leaf node and moves(sk) ∩ σ(sk) = φ.

Lemma 6.4. For all t ∈ AT , σ ;i β 6∈ t implies there exists a path ρtk

t : t = t1
a1−→AT t2 . . .

ak−1

−→AT tk
which conforms to σ such that one of the following conditions hold.

– β 6∈ tk.
– tk is a non-leaf node and moves(tk) ∩ σ(tk) = φ.

We have t = s ∩ CL(σ ;i β) is an atom. By lemma 6.4, there exists a path in the atom graph t =

t1
a1−→AT t2 . . .

ak−→AT tk such that β 6∈ tk or tk is a non-leaf node and moves(tk) ∩ σ(tk) = φ. t1 can be
extended to the MCS s. Let t′2 = t2 ∪ {α|[a1]α ∈ s}. Its easy to check that t′2 is consistent. Consider any

MCS s2 extending t′2, we have s
a1=⇒ s2. Continuing in this manner we get a path in s = s1

a1=⇒ s2 . . .
ak−1

=⇒ sk

in M which conforms to σ where either β 6∈ sk or sk is a non-leaf node and moves(sk) ∩ σ(s) = φ.

7 Discussion

We have defined a logic for reasoning about composite strategies in games. We have presented an axiomati-
zation for the logic and shown its completeness.

We again remark that the presentation has been given for two-player games only for easy readability.
It can be checked that all the definitions and arguments given here can be appropriately generalized for
n-player games.

While our emphasis in the paper has been on advocating syntactically constructed strategies, we make no
claims to having the “right” set of connectives for building them. This will have to be decided by experience,
gained by specifying several kinds of strategies which turn out to be of use in reasoning about games.

We believe that a framework of this sort will prove useful in reasoning about multi-stage and repeated

games, where strategy revision based on learning other players’ strategies (perhaps partially) plays an im-
portant role.
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