Logic Tutorial

May 27, 2018

Propositional Logic Let \mathcal{P} be a non-empty set of propositional atoms. Then the set of propositional well formed formula \mathcal{F} is :

$$
\begin{aligned}
p \in \mathcal{P} \text { then } p \in \mathcal{F} \\
f \in \mathcal{F} \text { then } \sim f \in \mathcal{F} \\
\odot \in\{\vee, \wedge, \Longrightarrow, \Longleftrightarrow\}, f, g \in \mathcal{F} \text { then }(f \odot g) \in \mathcal{F}
\end{aligned}
$$

- Give examples and non examples of well formed formula.
- Write out the formula parse tree for the following formulae : $(p \wedge q) \vee(\sim(\sim$ $p \vee(q \wedge r)) \wedge q)$
- Give an algorithm to test if a propositional formula is a tautology or not. Analyse its running time.
- Every $f \in \mathcal{F}$ has matching paranthesis. Prove this via induction.
- Each $\mathrm{f} \in \mathcal{F}$ has a unique parsing tree. Prove this using induction.
- Give a propositional logic encoding of the problem of coloring a graph using only k colors.
- Give a propositional logic encoding of the pigeon hole principle for n pigeons in $\mathrm{n}-1$ holes.

First Order Logic

- Given the language $\left\{R^{2}\right\}$ where R is a binary relational symbol. Write out first order formulas which would be satisfied by structures in the language that are equivalence relations.
- Given the language $\{+\}$ where + is a binary function symbol. Write out first order formulas that would be satisfied only when the structure interpreted using the language is a group.
- Given the language $\left\{<^{2}\right\}$ where $<$ is a binary relational symbol. Write out the formulas that would characterise a dense linear order with no end point. Give some models that satisy the property.
- Let $\{E\}$ be the language where E is a binary relational symbol. Give some models that satisfy these FO formula :
$-\exists x, \sim(\exists y E(x, y))$
- $\forall x \forall y E(x, y)$
$-\forall x, \exists y, E(x, y) \wedge \forall z(E(x, z) \Longrightarrow z=y)$
- Given $M=(\mathbb{N}, 0, s,+)$ where s is the successor function, define a first order formula $\psi(a, b)$ which will be true iff $a<b$

Second Order Logic Given the language of graphs, ie, E where E is a binary relational symbol.

- Write a second order formula that will be satisfiable by graphs that are three colourable.
- Write a second formula that will be satisfied by graphs that are not connected.
- Write a formula $\psi(a, b)$ which will be satisfied iff $(a, b) \in T C(E)$ where $T C$ is the transitive closure.
- Write a formula that will be satisified by only planar graphs.

