Basic Kernels Problem Sheet

- 1. A graph G is a cluster graph if every connected component of G is a clique. In the CLUSTER EDITING problem, we are given as input a graph G and an integer k, and the objective is to check whether one can edit (add or delete) at most k edges in G to obtain a cluster graph. That is, we look for a set $F \subseteq E(G)$ of size at most k, such that the graph $(V(G), (E(G) \setminus F) \cup (F \setminus E(G)))$ is a cluster graph.
 - (a) Show that a graph G is a cluster graph if and only if it does not have an induced path on three vertices (a sequence of three vertices u, v, wsuch that $uv, vw \in E(G)$ and $uw \notin E(G)$).
 - (b) Show a kernel for CLUSTER EDITING with $\mathcal{O}(k^2)$ vertices.
- 2. In the MIN-ONES-2-SAT problem, we are given a 2-CNF formula ϕ and an integer k, and the objective is to decide whether there exists a satisfying assignment for ϕ with at most k variables set to true. Show that MIN-ONES-2-SAT admits a polynomial kernel.
- 3. In the *d*-BOUNDED-DEGREE DELETION problem, we are given an undirected graph *G* and a positive integer *k*, and the task is to find at most *k* vertices whose removal decreases the maximum vertex degree of the graph to at most *d*. Obtain a kernel of size polynomial in *k* and *d* for the problem. (Observe that VERTEX COVER is the case of d = 0.)
- 4. In the *d*-HITTING SET problem, the input consists of a set U, called the universe, a family \mathcal{A} of subsets of U such that $|\mathcal{A}| \leq d$ for every $\mathcal{A} \in \mathcal{A}$ and a positive integer k, and the objective is to decide whether (U, \mathcal{A}) has a *hitting set* of size at most k. (A set $X \subseteq U$ is said to be a hitting set of (U, \mathcal{A}) if $X \cap \mathcal{A} \neq \emptyset$ for every $\mathcal{A} \in \mathcal{A}$.)
 - (a) Consider a restriction of d-HITTING SET, called Ed-HITTING SET, where we require every set in the input family \mathcal{A} to be of size exactly d. Show that this problem is not easier than the original d-HITTING SET problem, by transforming a d-HITTING SET instance into an equivalent Ed-HITTING SET instance without changing the number of sets.
 - (b) Show a kernel with at most $f(d)k^d$ sets for the Ed-HITTING SET problem.

- 5. In the CONNECTED VERTEX COVER problem, we are given an undirected graph G and a positive integer k, and the objective is to decide whether there exists a vertex cover C of G such that $|C| \leq k$ and G[C] is connected.
 - (a) Explain where the Buss kernel for VERTEX COVER breaks down for the CONNECTED VERTEX COVER problem.
 - (b) Show that CONNECTED VERTEX COVER admits a kernel with at most $2^k + \mathcal{O}(k^2)$ vertices.
 - (c) Show that if the input graph G does not contain a cycle of length 4 as a subgraph, then the problem admits a kernel with at most $\mathcal{O}(k^2)$ vertices.
- 6. A split graph is a graph in which the vertices can be partitioned into a clique and an independent set. In the VERTEX DISJOINT PATHS problem, we are given an undirected graph G and k pairs of vertices $(s_i, t_i), i \in \{1, \ldots, k\}$, and the objective is to decide whether there exists paths P_i joining s_i to t_i such that these paths are pairwise vertex disjoint. Show that VERTEX DISJOINT PATHS admits a polynomial kernel on split graphs (when parameterized by k).
- 7. Byteland, a country of area exactly n square miles, has been divided by the government into n regions, each of area exactly one square mile. Meanwhile, the army of Byteland divided its area into n military zones, each of area again exactly one square mile. Show that one can build n airports in Byteland, such that each region and each military zone contains one airport. (Hint use Hall's theorem for bipartite graphs)
- 8. In the Point Line Cover problem, we are given a set of n points in the plane and an integer k, and the goal is to check if there exists a set of k lines on the plane that contain all the input points. Show a kernel for this problem with $O(k^2)$ points