Pure D-brane Systems and Black Hole Microstate Counting

Swapnamay Mondal

HRI, Allahabad

20.12.2014

ISM 2014, Puri
based on arXiv: 1405.0412
with Abhishek Chowdhury, Richard Garavuso \& Ashoke Sen

Plan of the talk

- Overview
- Our work
- Our system
- Warm up : an easier toy
- Actual system
- Future plans

Summary

- Long term goal:
to produce exact microscopic counting in $N=2$ theories using pure D brane systems.
- In this particular work, we test our ideas for an intersecting D brane system in type IIA string theory, compactified on T^{6} and our computation yields the expected result.

Overview

Some Prehistory

- Black Hole Entropy ~ Black Hole Area!
- Statistical underastanding? Black Hole microstates?
- Where would then misrostates come from?

Here comes string theory

- Macroscopic story (small G, large GM)

Low energy effective description of string theory \rightarrow SUGRA Black Holes \rightarrow (brane) solutions of SUGRA.

- Microscopic story (smaller G, small GM) p-branes \rightarrow D-branes description involving stringy objects.
- Matching them :

Witten index remains unchanged as one varies coupling.
Calculate Witten index in microscopic description and see whether it matches the area of the corresponding Black Hole.

Why D brane systems ?

- Only option for microscopic system in $N=2$ theories (Calabi Yau compactifications).
- One to one correspondence with Black Hole microstates? (to be clear later ...)

Why D brane systems ?

- Only option for microscopic system in $N=2$ theories (Calabi Yau compactifications).
- One to one correspondence with Black Hole microstates? (to be clear later ...)
- Worth understanding state counting using pure D brane systems.

Steps . .

- simplest compactification $\left(T^{6}\right)$, smallest charges. (arXiv 1405.0412)
- simplest compactification $\left(T^{6}\right)$, arbitrary charges. (work in progress)
- Calabi Yau compactification, arbitrary charges.

Our Work

Our System

Our system

Table: Brane configuration

brane	123	45	67	89
1 D2		$\sqrt{ }$		
1 D2			$\sqrt{ }$	
1 D2				$\sqrt{ }$
1 D6		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

Some comments

- The index has been calculated in a "dual system" and for the particular case concerned, is known to be 12 . (Shih,Strominger \& Yin)
- A computation in the D brane system would be a non trivial check of U duality.
- The system corresponds to Black Holes only for large charges, which is NOT the case considered in our paper .

What to do ?

- Calculate Witten Index for the given brane system.
- Only minimum energy modes are relevant \rightarrow concentrate on 0 modes.
- Witten Index in the SUSY QM (that lives on the intersection of the branes).
- Q: But how to get that SUSY QM ?

What to do ?

- Calculate open string spectrum in this brane background.
- Count the d.o.f and arrange in SUSY multiplets.
- SUSY dictates their interactions.
- Witten Index = Euler characteristic of the vacuum manifold.
- Write down the potential, calculate the Euler number of the vacuum manifold.

Warm up: 2 intersecting branes

2 Intersecting D-branes

Table: Brane configuration

SUSY multiplets

Preserved number of supercharges $=16 / 2=8$ \Rightarrow Arrange fields in $\mathcal{N}=2$ multiplets .

Table: $\mathcal{N}=2$ multiplets

Fields	$\mathcal{N}=2$ multiplet
$V^{(i)}, \Phi_{3}^{(i)}$	$\mathcal{N}=2$ vector multiplets
$\Phi_{1}^{(i)}, \Phi_{2}^{(i)}$	$\mathcal{N}=2$ hypermultiplet
$Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ hypermultiplet

Physical interpretation of bosonic fields

Table: Interpretation of on brane fields

Fields	Physical Interpretation
$V^{(1)}$	$1,2,3$ coordinates of 1-st brane.
$\Phi_{1}^{(1)}$	Wilson lines of the 1-st brane along 4,5.
$\Phi_{2}^{(1)}$	6,7 coordinates of 1-st brane.
$\Phi_{3}^{(1)}$	8,9 coordinates of 1-st brane.

Interactions of the multiplets

Table: Interactions

Fields	Interactions
$V, \Phi_{1}, \Phi_{2}, \Phi_{3}$	$\mathcal{N}=4$ SYM (free for $U(1)$)
$V^{(1)}-V^{(2)}, \Phi_{3}^{(1)}-\Phi_{3}^{(2)}, Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ vector $+\mathcal{N}=2$ hyper

Superpotentials

- $\mathcal{N}=4:$

No superpotential for Ableian case.

- $\mathcal{N}=2:$

$$
\mathcal{W} \sim Z^{(12)}\left(\Phi_{3}^{(1)}-\Phi_{3}^{(2)}\right) Z^{(21)}
$$

Mixed strings sense separation of branes.

Goldstones

Table: Goldstones

Goldstone	Physical interpretation
$A_{\mu}^{(1)}+A_{\mu}^{(2)}$	c.o.m along flat directions
$\phi_{1}^{(1)}$	Wilson line
$\phi_{2}^{(2)}$	Wilson line
$\phi_{2}^{(1)}$	1st brane moving along 2nd brane
$\phi_{1}^{(2)}$	2nd brane moving along 1st brane
$\phi_{3}^{(1)}+\phi_{3}^{(2)}$	c.o.m along x^{8}, x^{9}

7 Goldstones $\rightarrow 6$ Goldstinos $\rightarrow 4 \times 6=24$ broken SUSY
$\therefore 32-24=8$ remaining SUSY.

The actual problem

The actual problem

- The brane configuration :

Table: Brane configuration

brane	123	45	67	89
1 D2		$\sqrt{ }$		
1	D2			$\sqrt{ }$
1				
1	D2			
1	D6		$\sqrt{ }$	$\sqrt{ }$

- preserved SUSY: $\mathcal{N}=1$
- The Lagrangian :

$$
L=\sum_{i=1}^{4}(N=4 S Y M)_{i}+\sum_{(i j) ; i, j=1}^{4}(N=2)_{(i j)}+W
$$

Various pieces of W

- 3 string interaction :

$$
\mathcal{W}_{2}=\sqrt{2} C \sum_{(i j) ; i, j=1}^{4} Z^{i j} Z^{j k} Z^{k i}
$$

- turn on metric and B field fluctuations : Effects :

$$
\mathcal{W}_{3}=c^{(12)}\left(\Phi_{3}^{1}-\Phi_{3}^{2}\right)+\ldots
$$

Prohibits mixed strings from vanishing.

- Introduces F.I parameters.

Can support mixed strings in the vacuum.

The vacuum manifold

- $V=V_{D}+V_{F}$
- $V_{D}+$ gauge redundancy
\rightarrow a toric variety for mixed strings of complex dimension 9 .
- $V_{F} \rightarrow$ intersection of hypersurfaces in the toric variety.

The equations (in homogeneous coordinates)

- Φ eqns :

$$
z_{i j} z_{j i}=-c_{i j} ; i, j=1,2,3,4
$$

- zeqns:
- ϕ-s are fixed in terms of Z-s
- consistency conditions:

$$
\begin{aligned}
& z_{23} z_{31} z_{12}+z_{23} z_{34} z_{42}=z_{32} z_{21} z_{13}+z_{32} z_{24} z_{43} \\
& z_{24} z_{41} z_{12}+z_{24} z_{43} z_{32}=z_{42} z_{21} z_{14}+z_{42} z_{23} z_{34} \\
& z_{34} z_{41} z_{13}+z_{34} z_{42} z_{23}=z_{43} z_{31} z_{14}+z_{43} z_{32} z_{24}
\end{aligned}
$$

- 9 equations on 9 variables
\rightarrow vacuum manifold is 0 dimensional

Affine coordinates

$$
\begin{array}{r}
u_{1} \equiv z_{12} z_{21} \\
u_{2} \equiv z_{23} z_{32} \\
u_{3} \equiv z_{31} z_{13} \\
u_{4} \equiv z_{14} z_{41} \\
u_{5} \equiv z_{24} z_{42} \\
u_{6} \equiv z_{34} z_{43} \\
u_{7} \equiv z_{12} z_{24} z_{41} \\
u_{8} \equiv z_{13} z_{34} z_{41} \\
u_{9} \equiv z_{23} z_{34} z_{42}
\end{array}
$$

The final result

Number of solutions $=12$

 exactly the expected result!
Future plans

The task ahead

- $(1,1,1,2)$ case
- $\left(1,1,1, N_{4}\right)$ case .
- $\left(N_{1}, N_{2}, N_{3}, N_{4}\right)$
- trek to Calabi Yau!

Some developments : $(1,1,1,2)$ case

- Approach 1: Gauge invariant combinations of equations in terms of gauge invariant observables.
Too many equations and too many variables (along with compensating syzygies.)

Some developments : $(1,1,1,2)$ case

- Approach 1
- Approach 2: Gauge fix.
- elimination $\rightarrow 5$ variables, 5 equations of degree $14,12,10,11,8$.
- Question: number of roots of this polynomial system ? Bernshtein's formula: number of roots on $\mathcal{C}^{* n}=$ certain linear combination of volumes of Minkowski sum of Newton Polytopes.
- tried in SAGE. does not seem to work :(

The equations (in affine coordinates)

$$
\begin{aligned}
m_{13} u_{7}^{2} u_{9}^{2}-m_{23} m_{34} m_{24}^{2} u_{7} u_{8}+m_{24} u_{7} u_{8} u_{9}^{2}-m_{24} m_{23} m_{12} u_{8}^{2} & =0 \\
u_{7}^{2} u_{9}-u_{7} u_{9}^{2}+m_{23} m_{24} m_{34} u_{7}-m_{12} m_{14} m_{24} u_{9} & =0 \\
u_{8}^{2} u_{9}+u_{8} u_{9}^{2}-m_{23} m_{24} m_{34} u_{8}-m_{13} m_{14} m_{34} u_{9} & =0
\end{aligned}
$$

with $m_{i j}=-c_{i j}$

The system concerned

Original System
IIB on T^{6}, D1-D5 system (some results are known here)

D Dual

IIA on T^{6}, only R-R charges
(computations \Rightarrow check of U duality)

KK along 4 momentum along 5
D1-brane along 5
D5-brane along 56789 momentum along 4

D2-branes along 45
D2-branes along 67
D2-branes along 89
D6-branes along 456789
D4-branes along 4589

Dualities relating two systems

(1) T duality along 4-5
(2) T duality along 6-7
(3) S duality
(4) T duality along 5-8-9

Thumb Rules: S Duality

Initial configuration	Final configuration
momentum	momentum
F1	D1
D1	F1
KK monopole	KK monopole
NS5 brane	D5 brane
D3 brane	D3 brane

Table: S Duality

Thumb Rules: T Duality

Initial configuration Final configuration

momentum (4)	F1 (4)
F1 (4)	momentum (4)
momentum $(a), a \neq 4$	momentum (a)
F1 $(a), a \neq 4$	F1 (a)
KK monopole (4)	NS5 (56789)
NS5 $(5-6-7-8-9)$	KK monopole (4)
KK monopole $(a), a \neq 4$	KK monopole $(a), a \neq 4$
NS 5 $(4) \times T^{4}$	NS5 $(4) \times T^{4}$

Table: T Duality (along X^{4})

