Pure D-brane Systems and Black Hole Microstate Counting

Swapnamay Mondal

HRI, Allahabad

20.12.2014

ISM 2014, Puri

based on arXiv: 1405.0412

with Abhishek Chowdhury, Richard Garavuso & Ashoke Sen

wapnamay Mondal Pure D-brane Systems and Black Hole Microstate Counting

イロト イポト イヨト イヨト

Plan of the talk

- Overview
- Our work
 - Our system
 - Warm up : an easier toy
 - Actual system
- Future plans

イロン 不同と 不同と 不同と

Summary

• Long term goal:

to produce exact microscopic counting in N = 2 theories using pure D brane systems.

 In this particular work, we test our ideas for an intersecting D brane system in type IIA string theory, compactified on T⁶ and our computation yields the expected result.

イロト イポト イヨト イヨト

・ロト ・回ト ・ヨト ・ヨト

Some Prehistory

- Black Hole Entropy \sim Black Hole Area!
- Statistical underastanding? Black Hole microstates?
- Where would then misrostates come from?

・ロト ・回ト ・ヨト ・ヨト

Here comes string theory

- Macroscopic story (small G, large GM) Low energy effective description of string theory \rightarrow SUGRA Black Holes \rightarrow (brane) solutions of SUGRA.
- Microscopic story (smaller G, small GM)

 $\begin{array}{l} \text{p-branes} \rightarrow \text{D-branes} \\ \text{description involving stringy objects.} \end{array}$

• Matching them :

Witten index remains unchanged as one varies coupling. Calculate Witten index in microscopic description and see whether it matches the area of the corresponding Black Hole.

・ロト ・回ト ・ヨト ・ヨト

Why D brane systems ?

- Only option for microscopic system in N = 2 theories (Calabi Yau compactifications).
- One to one correspondence with Black Hole microstates? (to be clear later ...)

・ 同 ト ・ ヨ ト ・ ヨ ト

Why D brane systems ?

- Only option for microscopic system in N = 2 theories (Calabi Yau compactifications).
- One to one correspondence with Black Hole microstates? (to be clear later ...)
- Worth understanding state counting using pure D brane systems.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Steps . . .

- simplest compactification (T⁶), smallest charges.
 (arXiv 1405.0412)
- simplest compactification (T⁶), arbitrary charges.
 (work in progress)
- Calabi Yau compactification, arbitrary charges.

 Overview
 Our system

 Our work
 Warm up: 2 intersecting branes

 Some developments and future plans
 The actual problem

Our Work

Swapnamay Mondal Pure D-brane Systems and Black Hole Microstate Counting

・ロト ・回ト ・ヨト ・ヨト

 Overview Our work
 Our system

 Some developments and future plans
 The actual problem

Our System

wapnamay Mondal Pure D-brane Systems and Black Hole Microstate Counting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Our system Warm up: 2 intersecting branes The actual problem

Our system

Table: Brane configuration

brane	123	45	67	89
1 D2				
1 D2				
1 D2				\checkmark
1 D6			\checkmark	\checkmark

<ロ> <四> <四> <四> <三</p>

Our system Warm up: 2 intersecting branes The actual problem

Some comments

- The index has been calculated in a "dual system" and for the particular case concerned, is known to be 12.
 (Shih,Strominger & Yin)
- A computation in the D brane system would be a non trivial check of U duality.
- The system corresponds to Black Holes only for large charges, which is NOT the case considered in our paper .

・ロト ・回ト ・ヨト ・ヨト

Our system Warm up: 2 intersecting branes The actual problem

What to do ?

- Calculate Witten Index for the given brane system.
- Only minimum energy modes are relevant
 → concentrate on 0 modes.
- Witten Index in the SUSY QM (that lives on the intersection of the branes).
- Q: But how to get that SUSY QM ?

イロト イポト イヨト イヨト

Our system Warm up: 2 intersecting branes The actual problem

What to do ?

- Calculate open string spectrum in this brane background.
- Count the d.o.f and arrange in SUSY multiplets.
- SUSY dictates their interactions.
- Witten Index = Euler characteristic of the vacuum manifold.
- Write down the potential, calculate the Euler number of the vacuum manifold.

Overview Our system Our work Warm up: 2 intersecting branes Some developments and future plans The actual problem

Warm up: 2 intersecting branes

・ロト ・日本 ・モト ・モト

Our system Warm up: 2 intersecting branes The actual problem

2 Intersecting D-branes

Table: Brane configuration

brane	123	45	67	89
1 D2				
1 D2			\checkmark	

・ロン ・回 と ・ ヨ と ・ ヨ と

Our system Warm up: 2 intersecting branes The actual problem

SUSY multiplets

Preserved number of supercharges = 16/2 = 8 \Rightarrow Arrange fields in $\mathcal{N} = 2$ multiplets .

Table: $\mathcal{N} = 2$ multiplets

Fields	$\mathcal{N}=2$ multiplet
$V^{(i)}, \Phi_3^{(i)}$	$\mathcal{N}=2$ vector multiplets
$\Phi_1^{(i)}, \Phi_2^{(i)}$	$\mathcal{N}=2$ hypermultiplet
$Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ hypermultiplet

- 4 回 2 - 4 □ 2 - 4 □

Our system Warm up: 2 intersecting branes The actual problem

Physical interpretation of bosonic fields

Table: Interpretation of on brane fields

Fields	Physical Interpretation	
$V^{(1)}$	1,2,3 coordinates of 1-st brane.	
$\Phi_1^{(1)}$	Wilson lines of the 1-st brane along $4,5$.	
$\Phi_2^{(1)}$	6,7 coordinates of 1-st brane.	
$\Phi_{3}^{(1)}$	8,9 coordinates of 1-st brane.	

・ロト ・回ト ・ヨト ・ヨト

Our system Warm up: 2 intersecting branes The actual problem

Interactions of the multiplets

Table: Interactions

Fields	Interactions	
$V, \Phi_1, \Phi_2, \Phi_3$	$\mathcal{N}=4$ SYM (free for U(1))	
$V^{(1)} - V^{(2)}, \Phi_3^{(1)} - \Phi_3^{(2)}, Z^{(12)}, Z^{(21)}$	$\mathcal{N}=2$ vector $+$ $\mathcal{N}=2$ hyper	

・ロト ・回ト ・ヨト ・ヨト

Our system Warm up: 2 intersecting branes The actual problem

Superpotentials

 $\bullet \ \mathcal{N}=4$:

No superpotential for Ableian case.

 $\bullet \ \mathcal{N}=2$:

$$\mathcal{W} \sim Z^{(12)}(\Phi_3^{(1)} - \Phi_3^{(2)})Z^{(21)}$$

Mixed strings sense separation of branes.

・ロン ・回 とくほど ・ ほとう

Our system Warm up: 2 intersecting branes The actual problem

Goldstones

Table: Goldstones

Goldstone	Physical interpretation	
$A^{(1)}_{\mu} + A^{(2)}_{\mu}$	c.o.m along flat directions	
$\phi_1^{(1)}$	Wilson line	
$\phi_2^{(2)}$	Wilson line	
$\phi_2^{(1)}$	1st brane moving along 2nd brane	
$\phi_1^{(2)}$	2nd brane moving along 1st brane	
$\phi_3^{(1)} + \phi_3^{(2)}$	c.o.m along x^8, x^9	

7 Goldstones \rightarrow 6 Goldstinos \rightarrow 4 \times 6 = 24 broken SUSY \therefore 32 - 24 = 8 remaining SUSY.

・ロト ・回ト ・ヨト ・ヨト

 Overview
 Our system

 Our work
 Warm up: 2 intersecting branes

 Some developments and future plans
 The actual problem

The actual problem

Swapnamay Mondal Pure D-brane Systems and Black Hole Microstate Counting

・ロン ・回 と ・ヨン ・ヨン

Our system Warm up: 2 intersecting branes The actual problem

The actual problem

• The brane configuration :

- $\bullet \ \text{preserved SUSY}: \mathcal{N}=1$
- The Lagrangian :

$$L = \sum_{i=1}^{4} (N = 4 SYM)_i + \sum_{(ij); i, j=1}^{4} (N = 2)_{(ij)} + W$$

Our system Warm up: 2 intersecting branes The actual problem

Various pieces of W

• 3 string interaction :

$$\mathcal{W}_2 = \sqrt{2}C \sum_{(ij);\ i,\ j=1}^4 Z^{ij} Z^{jk} Z^{ki}$$

• turn on metric and B field fluctuations : Effects :

$$W_3 = c^{(12)}(\Phi_3^1 - \Phi_3^2) + \dots$$

Prohibits mixed strings from vanishing.

• Introduces F.I parameters. Can support mixed strings in the vacuum.

・ロト ・回ト ・ヨト ・ヨト

Our system Warm up: 2 intersecting branes The actual problem

The vacuum manifold

- $V = V_D + V_F$
- V_D + gauge redundancy \rightarrow a toric variety for mixed strings of complex dimension 9.
- $V_F \rightarrow$ intersection of hypersurfaces in the toric variety.

The equations (in homogeneous coordinates)

$\bullet~\Phi$ eqns :

$$z_{ij}z_{ji} = -c_{ij}$$
; $i, j = 1, 2, 3, 4$

• z eqns :

- Φ-s are fixed in terms of Z-s
- consistency conditions:

 $z_{23}z_{31}z_{12} + z_{23}z_{34}z_{42} = z_{32}z_{21}z_{13} + z_{32}z_{24}z_{43}$

 $z_{24}z_{41}z_{12} + z_{24}z_{43}z_{32} = z_{42}z_{21}z_{14} + z_{42}z_{23}z_{34}$

 $z_{34}z_{41}z_{13} + z_{34}z_{42}z_{23} = z_{43}z_{31}z_{14} + z_{43}z_{32}z_{24}$

- 9 equations on 9 variables
 - \rightarrow vacuum manifold is 0 dimensional

・ロン ・回 と ・ヨン ・ヨン

Our system Warm up: 2 intersecting branes The actual problem

Affine coordinates

 $u_1 \equiv z_{12}z_{21}$ $u_2 \equiv z_{23} z_{32}$ $u_3 \equiv z_{31} z_{13}$ $u_4 \equiv z_{14}z_{41}$ $u_5 \equiv z_{24} z_{42}$ $u_6 \equiv z_{34} z_{43}$ $u_7 \equiv z_{12} z_{24} z_{41}$ $u_8 \equiv z_{13}z_{34}z_{41}$ $u_9 \equiv z_{23} z_{34} z_{42}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Our system Warm up: 2 intersecting branes The actual problem

The final result

Number of solutions =12

exactly the expected result !

<ロ> (日) (日) (日) (日) (日)

Future plans

(1日) (1日) (日)

The task ahead

- (1, 1, 1, 2) case
- $(1, 1, 1, N_4)$ case .
- (N_1, N_2, N_3, N_4)
- trek to Calabi Yau!

・ロト ・回ト ・ヨト ・ヨト

э

Some developments : (1,1,1,2) case

 Approach 1: Gauge invariant combinations of equations in terms of gauge invariant observables. Too many equations and too many variables (along with compensating syzygies.)

▲圖▶ ★ 国▶ ★ 国▶

Some developments : (1,1,1,2) case

- Approach 1
- Approach 2: Gauge fix.
 - $\bullet\,$ elimination \rightarrow 5 variables, 5 equations of degree 14,12,10,11,8.
 - Question: number of roots of this polynomial system ?
 Bernshtein's formula : number of roots on C^{*n} = certain linear combination of volumes of Minkowski sum of Newton Polytopes.
 - tried in SAGE.

does not seem to work :(

・ 同 ト ・ ヨ ト ・ ヨ ト

イロン イロン イヨン イヨン 三日

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

The equations (in affine coordinates)

$$m_{13}u_7^2u_9^2 - m_{23}m_{34}m_{24}^2u_7u_8 + m_{24}u_7u_8u_9^2 - m_{24}m_{23}m_{12}u_8^2 = 0$$

$$u_7^2u_9 - u_7u_9^2 + m_{23}m_{24}m_{34}u_7 - m_{12}m_{14}m_{24}u_9 = 0$$

$$u_8^2u_9 + u_8u_9^2 - m_{23}m_{24}m_{34}u_8 - m_{13}m_{14}m_{34}u_9 = 0.$$

with $m_{ij} = -c_{ij}$

< 口 > < 回 > < 回 > < 回 > < 回 > <

The system concerned

Original System	D Dual
(some results are known here)	(computations \Rightarrow check of U duality)
KK along 4	D2-branes along 45
momentum along 5	D2-branes along 67
D1-brane along 5	D2-branes along 89
D5-brane along 56789	D6-branes along 456789
momentum along 4	D4-branes along 4589

・ロン ・回 と ・ 回 と ・ 回 と

Dualities relating two systems

- T duality along 4-5
- I duality along 6-7
- S duality
- T duality along 5-8-9

・ 同 ト ・ ヨ ト ・ ヨ ト

Thumb Rules: S Duality

Initial configuration	Final configuration
momentum	momentum
F1	D1
D1	F1
KK monopole	KK monopole
NS5 brane	D5 brane
D3 brane	D3 brane

Table: S Duality

イロト イヨト イヨト イヨト

Thumb Rules: T Duality

Initial configuration	Final configuration
momentum (4)	F1 (4)
F1 (4)	momentum (4)
momentum $(a), a \neq 4$	momentum (<i>a</i>)
F1 (<i>a</i>), <i>a</i> ≠ 4	F1 (a)
KK monopole (4)	NS5 (56789)
NS5 (5-6-7-8-9)	KK monopole (4)
KK monopole (a), $a \neq 4$	KK monopole (a), $a \neq 4$
NS 5 (4) \times T^4	NS5 (4) \times T^4

Table: T Duality (along X^4)

◆□ > ◆□ > ◆臣 > ◆臣 > ○