Entanglement entropy and higher spin holography

Shouvik Datta

Centre for High Energy Physics Indian Institute of Science, Bangalore

> 15th December, 2014 Indian Strings Meeting

Shouvik Datta

Entanglement entropy and higher spin holography

Based on :

- Shouvik Datta, Justin R. David, Michael Ferlaino, S. Prem Kumar Higher spin entanglement entropy from CFT [arXiv:1402.0007] JHEP 1406 (2014) 096.
- Shouvik Datta Relative entropy in higher spin holography [arXiv:1406.0520] To appear in Phys. Rev. D.

Introduction and Motivation

- A major theme in the context of the holography is the study of dualities between theories of higher spin gravity and CFTs with extended symmetries.
 [Klebanov-Polyakov `02, Sezgin-Sundell `02, Gaberdiel-Gopakumar `11]
- Higher spin gravity has considerably lesser number of fields compared to full fledged string theories.
- At the same time one hopes to go beyond the classical supergravity regime and capture some features of tensionless strings.
- We have better analytical control over the dual CFTs.
- We can hope to learn a lot from both sides of the duality!

Higher spin AdS₃/CFT₂

 Vasiliev higher spin gravity in AdS₃ is conjectured to be dual to W_N minimal models. [Gaberdiel-Gopakumar `11]

$$\begin{array}{c} \text{higher spin gravity} & N, k \to \infty \\ & & \text{hs}[\lambda] \end{array} \xrightarrow[]{} 0 \le \lambda = \frac{N}{N+k} \le 1 \end{array} \xrightarrow[]{} \begin{array}{c} \text{coset CFT} \\ & \underline{SU(N)_k \otimes SU(N)_1} \\ & \underline{SU(N)_{k+1}} \end{array}$$

• Evidence in favour of the duality : matching of symmetries, one-loop determinants, correlation functions, black hole partition functions, ...

Higher spin black holes and CFT thermodynamics

- There exists explicit constructions of classical solutions in higher spin gravity in 3d black holes, conical defects etc. [Gutperle-Kraus `11; Kraus-Perlmutter `11; Castro-Gopakumar-Gutperle-Raeymaekers `11; ...]
- The higher spin black holes are generalizations of the BTZ black holes with higher spin charges (and with conjugate chemical potentials).
- The dual description of this is that of CFT at finite temperature and at finite chemical potentials for conserved higher spin currents.

Higher spin black holes and CFT thermodynamics

Striking agreement of black hole thermodynamics with that of the CFT

 $\log Z = \frac{i\pi c}{12\tau} \left[1 - \frac{4}{3} \frac{\alpha^2}{\tau^4} + \frac{400}{27} \frac{\lambda^2 - 7}{\lambda^2 - 4} \frac{\alpha^4}{\tau^8} - \frac{1600}{27} \frac{5\lambda^4 - 85\lambda^2 + 377}{(\lambda^2 - 4)^2} \frac{\alpha^6}{\tau^{12}} + \cdots \right]$

[Gaberdiel-Hartman-Jin `12] also [SD-David-Ferlaino-Kumar `14; Long `14]

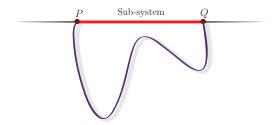
What about more refined observables like entanglement entropy?

Entanglement entropy and higher spin holography

- The Ryu-Takayanagi minimal area proposal offers a simple and elegant route to calculate the entanglement entropy of the dual CFT. [Ryu-Takayanagi `06]
- For AdS₃, the HEE is proportional to the length of the geodesic anchored at the endpoints of the subsystem.
- Higher spin gravity goes beyond diffeomorphism invariance.
- We need to rethink usual notions of spacetime geometry horizons, singularities, minimal surfaces etc.
- What is the bulk observable which captures the entanglement entropy of a \mathcal{W} -algebra CFT?

Wilson lines as holographic entanglement entropy functionals

- Wilson lines form the basic objects in the Chern-Simons description of higher spin gravity.
- They also generalize the notion of trajectories of massive particles i.e. geodesics.
- It has been conjectured that in higher spin gravity functionals involving Wilson lines in capture the entanglement entropy.



Wilson lines as holographic entanglement entropy functionals

• **Proposal I** : Wilson lines in the infinite dimensional representation [Ammon-Castro-Iqbal `13]

$$S_{\mathsf{EE}} = -\log(W_{\mathcal{R}}(C)) , \qquad W_{\mathcal{R}}(C) = \operatorname{tr}_{\mathcal{R}}\left(\mathcal{P}\exp\int_{C}(A+\bar{A})\right)$$

The path-integral representation of the Wilson line is used to evaluate the EE.

• Proposal II : Composite Wilson line [de Boer-Jottar `13]

$$S_{\mathsf{EE}} = \frac{k}{\sigma_{1/2}} \log \left[\lim_{\rho_0 \to \infty} W_{\mathcal{R}_N}^{\mathsf{comp}}(C) |_{\rho_0 = \rho_A = \rho_B} \right], \ W_{\mathcal{R}}(C) = \operatorname{tr}_{\mathcal{R}_N} \left(\mathcal{P}e^{\left(\int_C A \right)} \mathcal{P}e^{\left(- \int_C \bar{A} \right)} \right)$$

The dimension of the representation is $2^{N(N-1)/2}$ for the principal embedding. It also has a holomorphic version.

• These proposals have been shown to be equivalent. [Castro-Llabrés `14]

Testing the holographic entanglement entropy proposals

In this talk, I shall focus on some tests of the holographic EE proposal

- Comparison with universal CFT results (from Justin's talk).
- Short distance behaviour and relative entropy.

Entanglement entropy from higher spin holography

- Higher spin black holes describe the CFT at finite temperature and a finite higher spin chemical potential.
- We shall consider black holes in the simplest higher spin theory $SL(3,\mathbb{R}) \times SL(3,\mathbb{R})$. [Gutperle-Kraus `11]
- These black holes have a rich phase structure. We focus on the 'BTZ branch'. [David-Ferlaino-Kumar `12; Chowdhury-Saha `13; ...]
- The EE is computed via the holomorphic Wilson line functional to be

$$S_E = \frac{c}{3} \log \left| \frac{\pi}{\beta} \sinh\left(\frac{\pi\Delta}{\beta}\right) \right| + c \frac{\mu^2}{\beta^2} \left[\frac{32\pi^2}{9} \left(\frac{\pi\Delta}{\beta}\right) \coth\left(\frac{\pi\Delta}{\beta}\right) - \frac{20\pi^2}{9} - \frac{4\pi^2}{3} \operatorname{csch}^2\left(\frac{\pi}{\beta}\right) \left\{ \left(\frac{\pi}{\beta} \coth\left(\frac{\pi}{\beta}\right) - 1\right)^2 + \left(\frac{\pi}{\beta}\right)^2 \right\} \right] + \mathcal{O}(\mu^4)$$

Entanglement entropy from higher spin holography

- Higher spin black holes describe the CFT at finite temperature and a finite higher spin chemical potential.
- We shall consider black holes in the simplest higher spin theory $SL(3,\mathbb{R}) \times SL(3,\mathbb{R})$. [Gutperle-Kraus `11]
- These black holes have a rich phase structure. We focus on the 'BTZ branch'. [David-Ferlaino-Kumar `12; Chowdhury-Saha `13; ...]
- The EE is computed via the holomorphic Wilson line functional to be

$$S_E = \frac{c}{3} \log \left| \frac{\pi}{\beta} \sinh\left(\frac{\pi\Delta}{\beta}\right) \right| + c \frac{\mu^2}{\beta^2} \left[\frac{32\pi^2}{9} \left(\frac{\pi\Delta}{\beta}\right) \coth\left(\frac{\pi\Delta}{\beta}\right) - \frac{20\pi^2}{9} - \frac{4\pi^2}{3} \operatorname{csch}^2\left(\frac{\pi}{\beta}\right) \left\{ \left(\frac{\pi}{\beta} \coth\left(\frac{\pi}{\beta}\right) - 1\right)^2 + \left(\frac{\pi}{\beta}\right)^2 \right\} \right] + \mathcal{O}(\mu^4)$$

The first correction to the entanglement entropy matches exactly with CFT calculations. [SD-David-Ferlaino-Kumar`14]

Relative entropy

Definition and properties

- Relative entropy is a measure of distinguishability of two states for a quantum system.
- For two density matrices σ and ρ , the relative entropy is defined as

 $\mathcal{S}(\sigma||\rho) = \operatorname{tr}(\sigma \log \sigma) - \operatorname{tr}(\sigma \log \rho)$

- Properties
 - 1. Non-negativity : $S(\sigma || \rho) \ge 0$.
 - 2. Invariance under unitary trans : $S(\sigma || \rho) = S(U^{\dagger} \sigma U || U^{\dagger} \rho U)$.
 - 3. Monotonicity under partial traces : $S(\sigma || \rho) \ge S(\operatorname{tr}_P \sigma || \operatorname{tr}_P \rho)$
 - 4. Additivity : $S(\sigma_A \otimes \sigma_B || \rho) = S(\sigma_A || \rho) + S(\sigma_B || \rho)$

[Vedral `02]

Relative entropy

Relationship with the modular Hamiltionian and entanglement entropy

We wish express relative entropy in terms of thermodynamic-like quantities. For a given (reduced) density matrix, the modular Hamiltonian is defined as

$$o = \frac{e^{-H}}{\operatorname{tr}(e^{-H})}$$

It can then be shown that the relative entropy is

$$\mathcal{S}(\sigma||\rho) = \Delta \langle H \rangle - \Delta S$$

The relative entropy vanishes in the limit of small sub-system sizes

$$\lim_{\substack{\dim(A)\\\dim(A')\to 0}} \left(\Delta \langle H_A \rangle - \Delta S_A\right) = 0 \qquad \Longrightarrow \qquad \Delta \langle H \rangle = \Delta S$$

The first law of entanglement

[Blanco-Casini-Hung-Myers `13]

Relative entropy in a $\ensuremath{\mathcal{W}}\xspace$ -algebra CFT and its holographic dual

• We shall try to calculate the relative entropy between a high temperature state and the vacuum in a CFT with \mathcal{W} symmetries in presence of a chemical potential for the spin-3 current.

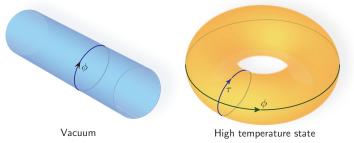
The CFT is at large central charge and on a finite system of size R and the high temperature state is at temperature T.

- As we had seen earlier such a CFT is describable in terms of higher-spin gravity.
- It is possible to calculate $\langle H_A \rangle$ from the holographic stress tensor. The EE (S_A) is also calculable in terms of Wilson lines.
- We shall try to verify $\Delta \langle H_A \rangle = \Delta S$ in the short distance regime.

The bulk configurations

The gravity configurations dual to the vacuum and high temperature state of the CFT are the higher spin vacuum and black hole respectively.

[Gutperle-Kraus `11; Kraus-Perlmutter `11; Castro-Gopakumar-Gutperle-Raeymaekers `11; Li-Lin-Wang `13; Compere-Jottar-Song `13; Chowdhury-Saha `13]



The higher spin vacuum is a higher spin generalization of global AdS. It has trivial holonomy along the spatial ϕ cycle.

The higher spin black hole generalizes the BTZ. Its temporal cycle τ has trivial holonomy.

Modular Hamiltonian

The modular Hamiltonian is not a local quantity in general. However, there exist special cases where it is local and calculable.

[Casini-Huerta-Myers `11]

One such example is that of the vacuum state of any QFT restricted to the half-space. H_{vac} then generates boost orbits in the Rindler wedge. [Bisognano-Wichmann '75]

There exists a conformal transformation which maps the Rindler wedge to the causal domain of a spherical entangling region.

The modular Hamiltonian associated with the vacuum in a 1+1 d CFT is

$$H_{\rm vac} = 2\pi R^2 \int_{-\frac{\phi}{2}}^{\frac{\phi}{2}} d\theta \, \frac{\cos\theta - \cos\frac{\phi}{2}}{\sin\frac{\phi}{2}} \, T_{00}(\theta)$$

Here, $T_{00} = (L_0 - \frac{c}{24}) + (\bar{L}_0 - \frac{c}{24})$. These can be obtained from the holographic stress tensor for specific states. [Balasubramanian-Kraus `99, de Haro-Solodukhin-Skenderis `00]

Modular Hamiltonian from the holographic stress tensor

The stress tensors corresponding to the hs-vacuum and the hs-black hole can be obtained by solving holonomy conditions.

The expectation values of the modular Hamiltonian are therefore

$$\langle H \rangle_{\text{state}} = \operatorname{tr}(\rho_{\text{state}}H_{\text{vac}}) = 8\pi R^2 \left[1 - \frac{\phi}{2}\cot\left(\frac{\phi}{2}\right)\right] \mathcal{L}_{\text{state}}$$
 where,

$$\mathcal{L}_{T} = \frac{c\pi T^{2}}{12} \left[1 + \frac{80(\pi\mu T)^{2}}{3} + \frac{2560(\pi\mu T)^{4}}{3} + \frac{905216(\pi\mu T)^{6}}{27} + \cdots \right]$$
$$\mathcal{L}_{\text{vac}} = -\frac{c}{48\pi R^{2}} \left[1 - \frac{20}{3} \left(\frac{\mu}{R}\right)^{2} + \frac{160}{3} \left(\frac{\mu}{R}\right)^{4} - \frac{14144}{27} \left(\frac{\mu}{R}\right)^{6} + \cdots \right]$$

The difference $\Delta \langle H \rangle$ can then be calculated.

Holographic entanglement entropy

The EEs – computed via Wilson lines – corresponding to higher spin black holes and the vacuum in the $SL(3,\mathbb{R}) \times SL(3,\mathbb{R})$ theory are

$$S_T(\phi) = \frac{c}{3} \log \left| \frac{\sinh(\pi RT\phi)}{\Lambda^{-1} \pi T} \right|$$

+ $\frac{c}{18} (\pi \mu T)^2 \operatorname{csch}^4(\pi RT\phi) \left[8 \left(1 - 3\pi^2 R^2 T^2 \phi^2 \right) \cosh(2\pi RT\phi) + 8\pi RT\phi \left(\sinh(2\pi RT\phi) + \sinh(4\pi RT\phi) \right) - 5 \cosh(4\pi RT\phi) - 3 \right] + \mathcal{O}((\pi \mu T)^4)$

$$S_{\text{vac}}(\phi) = \frac{c}{3} \log \left| \frac{2R}{\Lambda^{-1}} \sin\left(\frac{\phi}{2}\right) \right|$$

+ $\frac{c}{72} \left(\frac{\mu}{R}\right)^2 \csc^4\left(\frac{\phi}{2}\right) \left[3 - 2\left(3\phi^2 + 4\right)\cos(\phi) + 4\phi(\sin(\phi) + \sin(2\phi)) \right]$
+ $5\cos(2\phi) + \mathcal{O}((\mu/R)^4)$

One can systematically keep track of terms to higher orders.

Relative entropy in holographic CFTs with a \mathcal{W} -symmetry

We can now employ the thermodynamic-like relation to calculate the relative entropy between the high-temp state and the vacuum.

$$\mathcal{S}(\rho_T || \rho_{\text{vac}}) = \left(\left\langle H \right\rangle_T - \left\langle H \right\rangle_{\text{vac}} \right) - \left(S_T - S_{\text{vac}} \right)$$

We shall focus on the small-subsystem size regime where we expect $\Delta \langle H \rangle = \Delta S$.

[Blanco-Casini-Hung-Myers `13]

Relative entropy in holographic CFTs with a \mathcal{W} -symmetry

At the leading order in short-subsystem sizes ...

$$\begin{split} \Delta S \Big|_{\text{to } \phi^2} &\stackrel{\text{matches}}{=} \Delta \langle H \rangle \Big|_{\text{to } \phi^2} \\ = c \, \phi^2 \Bigg[\frac{\left((\ell T)^2 + 1 \right)}{72} + \frac{5 \left((\ell T)^4 - 1 \right)}{54} \frac{\mu^2}{R^2} + \frac{20 \left((\ell T)^6 + 1 \right)}{27} \frac{\mu^4}{R^4} \\ &+ \frac{1768 \left((\ell T)^8 - 1 \right)}{243} \frac{\mu^6}{R^6} + \frac{57664 \left((\ell T)^{10} + 1 \right)}{729} \frac{\mu^8}{R^8} + \dots \Bigg] \end{split}$$

At the leading order in entangling interval sizes, $\Delta H = \Delta S$ in a large-*c* CFT with a W_3 symmetry at finite higher spin chemical potential. ($\ell = 2\pi R$)

If the AdS is considered as the ultimate vacuum, $\Delta \langle H \rangle = \Delta S$ can be verified for that case as well.

Relative entropy in holographic CFTs with a \mathcal{W} -symmetry

- The relative entropy was calculated between two non-perturbative states in the CFT Hilbert space. These corresponds to two distinct instanton-like saddles in the dual gravity theory.
- One can also find what's the relative entropy between any member in the $SL(2,\mathbb{Z})$ family of smooth solutions and the vacuum. These smooth solutions have a non-zero contribution to the modular invariant gravity partition function.

$$Z[\tau] = \sum Z_{AdS_3} \left[\frac{a\tau + b}{c\tau + d} \right]$$

[Dijkgraaf-Maldacena-Moore-Verlinde `00, Manschot-Moore `07, Li-Lin-Wang `13]

Summary & Outlook

- The holomorphic Wilson line proposal correctly reproduces the universal correction to higher spin EE.
- We have verified the first law of entanglement holographically in the regime of short intervals and at finite chemical potential for a higher spin current.
- This ensures the vanishing of the relative entropy which is expected to be true for any quantum mechanical system.
- The relative entropy in (1+1)d is independent of the UV cut-off. It's a refined observable in this sense.
- We have also probed the short-distance behaviour of the holographic EE and seen that it has the desired behaviour.
- All this lends strong support in favour of the Wilson line functional as the bulk observable which captures entanglement entropy.

Summary & Outlook

- Generalizing results to $hs[\lambda]$.
- Multi-sheeted correlators from holography.
- Equations for higher spin fields from entanglement. [Hijano-Kraus`14]
- Is there a non-perturbative way to treat the higher spin chemical potential? [Kaneko-Zagier `95]

Thank you.

Backup slides

A thermodynamic relation for relative entropy

$$S(\sigma || \rho) = \operatorname{tr}(\sigma \ln \sigma) - \operatorname{tr}(\sigma \ln \rho)$$

= $\operatorname{tr}(\sigma \ln \sigma) - \operatorname{tr}(\rho \ln \rho) + \operatorname{tr}(\rho \ln \rho) - \operatorname{tr}(\sigma \ln \rho)$
= $-S_{\sigma} + S_{\rho} - \operatorname{tr}(\rho H_{\rho}) + \operatorname{tr}(\sigma H_{\rho})$
= $\left(\langle H \rangle_{\sigma} - \langle H \rangle_{\rho} \right) - (S_{\sigma} - S_{\rho})$
= $\Delta \langle H \rangle - \Delta S$

On conformal invariance

It is true that CFT partition functions/EE are calculated in conformal perturbation theory. But this does not mean conformal invariance is broken.

Turning on a chemical potential for a higher spin conserved current is on the same footing as having the system at a finite temperature.

For the free fermion theory in presence of a U(1) chemical potential the partition function is

$$Z = \operatorname{Tr}(z^{J_0}q^{L_0}) = \left|\frac{\vartheta_3(\mu\beta|\tau)}{\eta(\tau)}\right|$$

When a higher spin chemical potential is turned on perturbatively, the $W_3 \times W_3$ asymptotic symmetry is unbroken.

[Compere-Song `13; Compere-Jottar-Song `13]

We need to specify boundary conditions for the higher spin black hole – fall-off conditions and initial data for higher spin charges.

The $W_3 \times W_3$ symmetry can then be shown to be remain intact by a proper redefinition of the generators.