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Introduction

I Entanglement entropy is a measure of quantum correlation in
a pure state.

I Take a system and divide it into two parts A and B.

I The system is in a pure state |ψ > and the Hilbert space of
the system is factorized into the Hilbert space of A and B.

H = HA ⊗ HB (1)



I One can define the reduced density matrix, ρB for system B
by tracing over the A Hilbert space.

ρB = TrHA
|ψ >< ψ| (2)

I The entropy associated with density matrix ρB is called the
entanglement entropy of system B.

SEE = −TrHB
ρB lnρB (3)



Replica Trick

I Replica trick is a useful way to compute entanglement entropy
in quantum field theory.

I The trick is to use the identity

lnX = limn→1
X n−1 − 1

n − 1
(4)

I Using this one can write,

SEE = −TrρAlnρA = −limn→1
TrρnA − 1

n − 1
= − ∂

∂n
|n=1Trρ

n
A

(5)



I We can decompose ρA as,

ρA =

∫
Dφ

′
ADφ

′′
A |φ

′
A >< φ

′
A|ρA|φ

′′
A >< φ

′′
A| (6)

where |φA > denotes a field eigenstate on the subsystem A.

I To compute the matrix element of the reduced density matrix,
let us specialize to the case of ground state of the field theory.

I The ground state wave functional can be written as,

ψ[φ̄(~x)] =
1√
Z

∫
φ(~x ,0)=φ̄(~x)

Dφ e−
∫
d3~x

∫ 0
−∞ dτLE (φ) (7)

where Z is the Euclidean partition function of the field theory
and LE is the Euclidean Lagrangian.



I Using this one can write,

< φ−|ρA|φ+ >=
1

Z

∫
φ(~x ,0+)|A=φ+,φ(~x ,0−)|A=φ−

Dφ(~x , τ)e−SE (φ)

(8)



I So the matrix element of the reduced density operator is
computed by the Euclidean path-integral with a branch cut
along the subsystem, A, located on the τ = 0 spatial slice.

I

TrρnA ∼
∑

< φ1|ρA|φn >< φn|ρA|φn−1 > ........ < φ2|ρA|φ1 >

(9)

I With the help of the path-integral expression this expression
can be written as,

TrρnA =
Zn

Zn
(10)



I Zn is the partition function of the Euclidean theory on the
n-fold replicated space and Z is the partition function of the
theory on the originial space-time.

I The replica space is a space with conical singularities along
the entangling surface.

I The opening angle at each singularity is 2πn.

I The expression of the entanglement entropy can be simplified
to,

SEE (A) = n
∂

∂n
|n=1(Fn − nF1) (11)

where F = −lnZ .

I This is the main formula that we will use.



Massive Theories in two dimensions

I Consider a massive two dimensional theory.

I When the subsystem is an infinite half-line, Calabrese and
Cardy proved that,

SEE =
cUV

6
ln
ξ

ε
(12)

where ξ is the correlation length and ε is the short-distance
cutoff.

I Let us first go through their proof.



Calabrese-Cardy Proof

I The replica geometry for an infinite half-line is that of a flat
cone with only one conical singularity with opening angle 2πn.

I Our field theory lives on this cone.

I The field theory has a stress tensor, Tµν which satisfies the
conservation law,

∂µT
µν = 0 (13)

I If we use complex coordinates then the conservation equation
can be written as,

∂̄T +
1

4
∂Θ = 0 (14)

where T = Tzz and Θ = Tµ
µ .



I On the cone translational invariance is broken and there is
only rotational invariance.

I

< T (z , z̄) >n=
Fn(zz̄)

z2
(15)

I

< Θ(z , z̄) >n − < Θ >1=
Gn(zz̄)

zz̄
(16)

I Substituting them in the conservation equation we get,

F
′
n +

1

4
G
′
n =

1

4
(< Θ >n − < Θ >1) (17)

where, ′ = d
d(zz̄)



I

1

4

∫
cone

d2x(< Θ >n − < Θ >1) = nπ(Fn(r2) +
1

4
Gn(r2))|∞0

(18)
where we have used the fact that d2x = rdrdθ and
0 ≤ θ ≤ 2πn, on the cone.

I Now the contribution form infinity is zero because it is a
gapped theory.

I The contribution from zero is given the UV-CFT values.

I So,

Gn(0) = 0, Fn(0) =
cUV
24

(1− 1

n2
) (19)



I We have used the Callan-Symanzik equation and the fact that
Tµν being a conserved current has zero anomalous dimension.

I We have also used that on a cone with opening angle 2πn,

< T (z) >CFT
n =

cUV
24

(1− 1

n2
)

1

z2
(20)

which can be easily derived by using the map, z → z
1
n , to the

complex plane and using the transformation rule of the Stress
tensor.



I This leads to the result,∫
cone

d2x(< Θ >n − < Θ >1) = −π cUV
6

(n − 1

n
) (21)

I Integrated trace of the stress tensor is the generator of rigid
scale transformation.

I Now Rigid scale transformation is equivalent to changing the
mass parameter of the theory.

I So,

1

2π

∫
cone

d2x(< Θ >n − < Θ >1) = m
d

dm
(Fn − nF1) (22)

I

Fn − nF1 = −cUV
12

(n − 1

n
) ln(ma) (23)



I So using the definition of entanglement entropy we get,

SEE =
∂

∂n
|n=1(Fn − nF1) = −cUV

6
ln(ma) =

cUV
6

ln
ξ

a
(24)

I For example a massive scalar filed in two dimensions will have
cUV = 1, cIR = 0 and so EE given by, −1

6 ln(ma).

I This result is valid when ξ << L, where L is the subsystem
size. In general there are finite size corrections of the form
f ( ξL).

I This correction term cannot be calculated so simply.

I Unfortunately this method of proof does not work in higher
dimension.

I So let us look for an alternative derivation which can be
generalized to higher dimensions.



Review of the Komargodski-Schwimmer method

I Consider a UV-CFT which has been deformed by a relevant
operator.

I Our deformed field theory is not conformal but it can be made
conformally invariant by coupling to a background dilaton
field τ(x).

I The dilaton, τ , couples to the deformed theory as,

S = SUV
CFT +

∫
d2x
√
h g(eτ(x)µ)µ2−∆O∆ (25)

where µ is the renormalization scale. We have also introduced
a background metric hab.

I This is conformally invariant if the metric and the background
fields are transformed as,

hab → e2σhab, τ(x)→ τ(x) + σ (26)



I There are two sources of breaking of the conformal invariance.

I One is an explicit breaking by the relevant operator and the
other one is the conformal anomaly.

I By coupling to the background field τ(x) we got rid of the
explicit breaking.

I So the remaining source of the conformal symmetry breaking
is the conformal anomaly.

I Now the partition function Z [hab, τ(x)] is invariant along the
RG flow, by construction.

I So its transformation property under the combined Weyl
transformations of hab and τ(x) should not depend on the
scale.

I In particular this means that anomalous transformation
property will be the same as the anomaly of the UV-CFT.



I The free energy after integrating out the dynamical fields is
then given by,

F (h, τ) = Fdil(h, τ) + FIR−CFT (h) (27)

I Now according to our previous argument, under an
infinitesimal Weyl transformation,

δσF (h, τ) =

∫ √
hσ(x)AUV−CFT (h) = δσFdil(h, τ)+∫ √

hσ(x)AIR−CFT (h) (28)

where ACFT = − < Tµ
µ >CFT is the conformal anomaly.



I So the dilaton effective action consists of two parts. One is
the Weyl non-invariant universal term which is completely
determined by the conformal anomaly matching between the
UV and the IR.

I The other part is the Weyl invariant part of the effective
action which can be written as a functional of the Weyl
invariant combination e−2τhab.



I To first order dilaton couples to the trace of the energy
momentum tensor, ∼

∫
τ(x)Tµ

µ (x).

I

g(eτ(x)µ)µ2−∆O∆ = (g(µ) + τ(x)µ
dg

dµ
)µ2−∆O∆ (29)

= g(µ)µ2−∆O∆ + τ(x)β(g)µ2−∆O∆ = τ(x)Tµ
µ (30)

I So to compute the integrated trace we can couple to a
constant dilaton field.

I We need to compute the dilaton effective action for a
constant dilaton background field.



Massive Scalar In Two Dimwnsions

I Let us consider a massive scalar field of mass m in two
dimensions described by the Euclidean action,

S =
1

2

∫
((∂φ)2 + m2φ2) (31)

I We want to compute the entanglement entropy of a
subsystem which want to keep arbitrary.

I It could be an infinite half-line or it could be an interval of
finite length.

I One way to do this is to use the identity (Calabrese-Cardy,
Casini),

∂

∂m2
lnZn = −1

2

∫
Gn(~r ,~r)d2~r (32)

I Gn(~r ,~r ′) is the Green’s function of the operator (−∇2 + m2),
on the singular space.



I Now instead of doing this one could also use the following
identity,

m2 ∂

∂m2
lnZn = −1

2

∂

∂τ
|τ=0 lnZn(τ) (33)

I −lnZn(τ), is the free energy computed on the cone for the
theory defined by the euclidean action,

S(τ) =
1

2

∫
((∂φ)2 + m2e−2τφ2) (34)

I Now this is precisely the coupling of the dilaton to the
massive theory.

I So we can interpret the number τ as a constant background
dilaton field.

I This shows that we can calculate the entanglement entropy
once we know the dilaton effective action on the cone.



Universal Part In Two dimensions

I Naively one would expect that the trace of the
energy-momentum of a CFT of central charge c on the cone
is given by ∫

cone

√
h < Tµ

µ >=
c

24π

∫
cone

√
hR(h) (35)

I But the correct expression is given by (Cardy-Peschel,
Nucl.Phys. B300 (1988) 377),∫

cone

√
h < Tµ

µ >=
c

24π

1

2
(1 +

1

n
)

∫
cone

√
hR(h) (36)



I In particular this shows that if one uses a smoothed out cone
one will generically get wrong answers.

I This is also true for other anomalies, in particular
Gravitational Anomaly.



I This measures the response of the 2-D CFT on the cone to a
scale transformation.

I Using this and the anomaly matching condition gives us the
universal (Weyl non-invariant) part of the dilaton effective
action for a constant dilaton field to be,

Fdil(n, τ) = −cUV
24π

1

2
(1 +

1

n
) τ

∫
cone

√
hR(h) (37)



I So we get,∫
cone

< Tµ
µ >n,universal = −cUV

24π

1

2
(1+

1

n
)

∫
cone

√
hR(h) (38)

I The non-universal contribution is purely bulk contribution in
this case because there is no other length scale in the problem
and hence cancelled in the combination∫
cone(< Tµ

µ >n − < Tµ
µ >1).

I Hence we arrive at the Calabrese-Cardy result once we note
that, ∫

cone

√
hR(h) = 4π(1− n) (39)



I Now let m denote the mass scale associated with the relevant
operator.

I A scale transformation is equivalent to a change in the
parameter m. (Calabrese-Cardy)

I So,

m
d

dm
SEE = n

∂

∂n
|n=1 (µ

d

dm
F (n)− nµ

d

dm
F (1)) (40)

I And,

µ
d

dm
F = −

∫ √
h < Tµ

µ > (41)

I This gives us,

m
d

dm
SEE = −cUV

6
(42)

I This is precisely the Calabrese-Cardy answer,

SEE = −cUV
6

ln(ma) (43)



Four Dimensions

I In four dimensions the trace anomaly of a conformal field
theory is give by,

< Tµ
µ >= − c

16π2
W 2 + 2a E4 (44)

where

W 2 = RabcdR
abcd − 2RabR

ab +
1

3
R2 (45)

and

E4 =
1

32π2
(RabcdR

abcd − 4RabR
ab + R2) (46)

I So the the universal (Weyl non-invariant) part of the dilaton
effective action for a constant dilaton filed is given by,

F (n, τ) = −τ
∫
cone

d4x
√
h (

cUV
16π2

W 2 − 2aUVE4) (47)



I This gives rise to a term which is universal,

SEE ⊃ −n
∂

∂n
|n=1

∫
cone

d4x
√
h (

cUV
16π2

W 2 − 2aUVE4) ln(ma)

(48)

I This for of the expression is valid for any arbitrary shape of
the entangling surface in four dimensions. This can be written
in closed form in terms of the intrinsic and extrinsic geometric
quantities of the entangling surface.

I For example if we take our entangling surface to be a sphere
in flat space then this reduces to,

SEE ⊃ 4aUV ln(ma) (49)

I For a cylindrical entangling surface of radius R and length
L(L >> m−1) in flat space we get,

SEE ⊃
L

2R
cUV ln(ma) (50)



I In fact, this term always appears if you compute holographic
entanglement entropy in RG-flow geometries.

I Our method extends this to any field theory and explains this
as the consequence of trace-anomaly matching.



Universal Contributions From The Weyl Invariant Part

I By universal contribution we mean logarithmically divergent
part of the entanglement entropy.

I The coefficient of the UV-divergent term will be a local
function of the various geometric quantities.

I The Weyl invariant part of the dilaton effective action can be
expanded in terms of tensors built out of ĥab = e−2τhab. Let
us arrange these terms in order of increasing mass dimensions
of the integrand.

I The first term is∫
cone

d4x
√
ĥ = e−4τ

∫
cone

d4x
√
h (51)

This term does not contribute to the entanglement entropy
because the volume of the cone does not get any contribution
from the tip.



I The second term is,∫
cone

d4x
√
ĥR(ĥ) = e−2τ

∫
cone

d4x
√
hR(h) (52)

I This gives rise to a universal term of the form,

a2 m2 AΣln(ma) (53)

where AΣ is the area of the entangling surface.

I The coefficient a2 cannot be calculated form any symmetry
argument. One needs to do the Feynman graphs.



I The dimension four terms can be written as linear
combinations of R2(ĥ), R2

ab(ĥ) and R2
abcd(ĥ). So a general

dimension four term in the dilaton effective action has the
structure,∫

cone
d4x

√
ĥ(AR2(ĥ) + BR2

ab(ĥ) + CR2
abcd(ĥ)) (54)

where A, B and C are dimensionless constants. Since this
term is marginal, it does not couple to a constant dilaton and
so does not contribute to the universal term.



Scale versus conformal invariance

I One of things which we assumed was that the the fixed points
are CFTs .

I In a scale invariant theory,

Tµ
µ = ∂νV

ν (55)

where V µ is called the virial current.

I To first order the coupling of the dilaton to a scale but
non-conformally invariant theory is then given by,∫

τ(x)Tµ
µ =

∫
τ(x)∂µV

µ (56)

I This clearly shows that a space-time independent dilaton
cannot decouple from a scale-invariant theory.

I This also shows that a constant dilaton still decouples from a
scale invariant theory and so our method extends also to
scale-invariant but non-conformally invariant theories.



I In a four dimensional scale invariant theory the trace anomaly
is given by,

< Tµ
µ >=< Tµ

µ >CFT +e R2 (57)

where e is another number like a and c.

I In a CFT the additional term does not appear because it does
not satisfy the Wess-Zumino consistency condition.

I So if the UV theory is only scale invariant then we get an
extra term given by,

n
∂

∂n
|n=1 eUV

∫
cone

d4x
√
h R2(h) ln(ma) (58)

where e is the ”central charge” corresponding to the R2 term.

I For a general entangling surface this can be written as,

SEE ⊃ eUV

∫
Σ
R ln(ma) (59)

where R is the space-time Ricci scalar.



Comparison With The Known Results

I In four dimensions the universal part of the entanglement
entropy was computed for any free field of mass m and spin s,
in terms of three unknown coefficients ,
(Phys.Rev.Lett. 106 (2011) 050404; Hertzberg-Wilczek,
Phys.Rev. D88 (2013) 4, 044054; Fursaev, Patrushev,
Solodukhin )

SEE =
1

2π

∫
Σ

(aRΣ − bKΣ − cR +
1

12
m2Ds)ln(ma) (60)

Where Ds is the dimension of spin-s representation.

I The coefficients a, b and c cannot be computed by the
standard approach for arbitrary entangling surface.

I Our method gives the values,

a = aUV , b = cUV , c = 0. (61)

So we have the complete answer.



I The answer for any four dimensional field theory which is
described in the UV by a CFT is given by,

SEE =
1

2π

∫
Σ

(aUVRΣ − cUVKΣ + αm2Ds)ln(ma) (62)

I This also reproduces the AdS-CFT answer exactly.
(JHEP 1108 (2011) 039; Hung-Myers-Smolkin)


