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First law of thermodynamics

Thermodynamics provides a useful tool to study a system when it is
in thermal equilibrium.

Physics may be described in terms of few macroscopic quantities such
as energy(E), temperaure(T), pressure(P), entropy(S) and chemical
potential(µ).

The laws of thermodynamics describe how these quantities behave
under various conditions.

The first law of thermodynamics tells us how the entropy changes as
one changes the energy, volume and particle number of the system.

TdS = dE + PdV − µdN
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Thermodynamics and Entanglement Entropy

There are several interesting phenomena which occur when the
system is far from thermal equilibrium.

The entanglement entropy may provide a useful quantity to study
excited quantum systems which are far from thermal equilibrium.

For a generic quantum system it is difficult to compute the
entanglement entropy. Nevertheless, at least, for those quantum
systems which have holographic descriptions, one may use the
holographic entanglement entropy to explore the behavior of the
system.

Another quantity which can be always defined is the energy of the
system.
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Motivation

Is there is any relation between the entanglement entropy of an
excited state and its energy as in ordinary thermodynamics?

Motivated by this, we would like to explore the analogue of the first
law of thermodynamics for entanglement entropy of excited state.

We concentrate on excited states of a non-relativistic Lifshitz system.

The aim is to compute the entanglement entropy of an excited state
of the Lifshitz system in four dimensions.

Non-relativistic and non-conformal symmetry.
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Lifshitz holography

Gravity on an asymptotically Lifshitz space-time provides a
holographic description for a strongly coupled quantum field theory
near the critical point.

The information of quantum state in the dual field theory is encoded
in the bulk geometry. In particular the Lifshitz geometry is dual to the
ground state of the dual field theory.

Exciting the dual field theory from the ground state to an excited
state holographically corresponds to modifying the bulk geometry
from Lifshitz solution to a general asymptotically Lifshitz solution.

Need to solve Einstein’s equation with a massive vector field.
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EOM for Lifshitz space-time

The equations of motion for this theory are

Rµν = Λgµν +
1

2
FµλF

λ
ν − 1

8
FλρF

λρgµν +
1

2
m2AµAν

∇µF
µν = m2Aν .

If we choose Λ = −1
2(z

2 + z + 4) and m2 = 2z , this theory has the
following solution.

The asymptotically Lifshitz metric takes the following form

ds2 = −r2zdt2 + r2(dx2 + dy2) +
dr2

r2

A = αr zdt, α2 =
2(z − 1)

z
.

where the scaling symmetry is realised as an isometry:
t → λzt, x i → λx i , r → λ−1r .
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Excited State

We construct an excited state by perturbing the metric and the gauge
field as follows:

ds2 = −r2z(1 + f (r))dt2 + r2(1 + hxx(r))dx
2 + r2(1 + hyy (r))dy

2

+
dr2

r2
+ 2htx (r) dtdx + 2hty (r) dtdy + 2hxy (r) dxdy

A = αr z(1 + [j(r) +
1

2
f (r)]) dt

Ross and Saremi, JHEP 0909 (2009) 009

The information about the excited state is encoded in the functions
f (r), hµν(r), j(r).

As r → ∞, f (r), hµν(r), j(r) → 0.

Parijat Dey (SINP) Entgl. thermodynamics for Lifshitz systems ISM 2014 7 / 18



Linearized solution

hxx(r) = k(r) + td (r) and hyy(r) = k(r)− td(r)

The linearized equation of motion can be solved and the normalizable
solutions for j(r), k(r), f (r) and td (r) take the following form : (since
the solutions for z = 2 and z 6= 2 are quite different we write them
separately in the following)

For z = 2

j(r) = −c1 + c2 ln r

r4
,

f (r) =
4c1 − 5c2 + 4c2 ln r

12r4
,

k(r) =
4c1 + 5c2 + 4c2 ln r

24r4
,

td(r) =
td2

r4
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Linearized solution

For z 6= 2

j(r) = − (z + 1)c1
(z − 1)r z+2

− (z + 1)c2

(z − 1)r
1
2
(z+2+βz )

,

f (r) = 4
1

(z + 2)

c1

r z+2
+ 2

(5z − 2− βz)

(z + 2 + βz)

c2

r
1
2
(z+2+βz)

,

k(r) = 2
1

(z + 2)

c1

r z+2
− 2

(3z − 4− βz)

(z + 2 + βz)

c2

r
1
2
(z+2+βz)

,

td (r) =
td2

r z+2

where β2
z = 9z2 − 20z + 20 = (z + 2)2 + 8(z − 1)(z − 2).

c1, c2 and td2 are integration constants.
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Holographic Computation of Entanglement Entropy

We compute the shift in the holographic entanglement entropy of the
excited state due to the metric perturbation

∆SE = SE − SE
GroundState

The entangling region is taken to be a strip with width ℓ given by

− ℓ

2
≤ x ≤ ℓ

2
, 0 ≤ y ≤ L.

The holographic entanglement entropy may be computed by
minimizing a surface embedded in the time slice of the bulk geometry
and ending at r = ∞ with the boundary coinciding with the
entangling region.

Ryu and Takayanagi, Phys. Rev. Lett. 96, 181602 (2006)
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Holographic Entanglement Entropy

Assume that the bulk extension of the surface to be parameterized by
x = x(r).

By the standard procedure of minimizing the embedded manifold we
get

ℓ =
2

rt

∫

∞

1

dy

y2
√

y4 − 1
=

2
√
π Γ(3/4)

Γ(1/4) rt

where rt is the turning point.

The shift in the holographic entanglement entropy due to the metric
perturbation is given by

∆SE =
L

8GN

∫

∞

rt

dr
1

√

1− ( rt
r
)4

[

hyy +
( rt

r

)4
hxx

]
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Holographic Entanglement Entropy

For z = 2, the shift in the entanglement entropy is given by

∆SE =
ℓLπ

24rt2
1

16πG4

[32c1
5

− 48td2
5

+ c2(
352

25
− 8π

5
) +

32

5
c2 ln rt

]

〈T00〉 =
1

16πG4

4c2
3

〈Txx〉 =
1

16πG4

(4c2
3

+ 4td2

)

.

The total energy, entanglement pressure and entanglement chemical
potential can be defined as,

∆E =

∫ L

0

∫ ℓ/2

−ℓ/2
dy dx 〈T00〉 = L ℓ 〈T00〉

∆Px = 〈Txx〉

∆µ =
4
3(c1 + c2 ln r)

16πG4
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First Law of Entanglement Thermodynamics for z = 2

Defining an entanglement temperature as

Tent =
24r2t
π

25

(324 − 30π)
=

96Γ2
(

3
4

)

ℓ2Γ2
(

1
4

)

25

(324 − 30π)

we obtain the following relation:

∆E = Tent∆S +
60

(324 − 30π)
∆PxV − 90

(324 − 30π)
∆µQ

where V = Lℓ is the volume of the entangling region and Q = m2αV .

We have identified m2α as some charge density j0 using the equation
of motion.

Due to its similarity with the first law of thermodynamics we would
like to consider this expression as the first law of entanglement
thermodynamics.
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Holographic computation for z 6= 2

For z 6= 2, the change in holographic entanglement entropy is given by

∆SE =
LℓΓ(14 )π

2Γ(34 )rt
z

1

16πG4

[

Γ(1+z
4 )

Γ(3+z
4 )

1

(z + 3)
(2c1 − td2)

+ rt
1
2
(z+2−β) Γ( z+β

8 )

Γ( z+4+β
8 )

2(4 + β − 3z)

4 + z + β
c2

]

The holographic stress energy tensor for z 6= 2 is given by

〈T00〉 =
1

16πG4

4(z − 2)

z
c1

〈Txx〉 =
1

16πG4
[2(z − 2)c1 + (z + 2)td2].
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First law for z 6= 2

Tent =
2r zt Γ

(

3
4

)

πΓ
(

1
4

)

A1

we can rewrite as,

∆E = Tent∆S +
A2

A1
∆PxV − A3

A1
∆µQ

where

A1 =
z2

(z + 3)(z2 − 4)

Γ
(

1+z
4

)

Γ
(

3+z
4

) − 2

(z − 2)(4 + z + βz)

Γ
(

z+βz

8

)

Γ
(

z+4+βz

8

) ,

A2 =
1

(z + 3)(z + 2)

Γ
(

1+z
4

)

Γ
(

3+z
4

) , A3 =
1

2z(4 + z + βz)

Γ
(

z+βz

8

)

Γ
(

z+4+βz

8

)

This is the modified first law of entanglement thermodynamics.
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Relativistic limit

For z = 1,
Q = 0
A1 =

√
π/6

A2 =
√
π/12

A2/A1 = 1/2

Tent =
24Γ2(3/4)
πℓΓ2(1/4)

.

Reduces to the first law obtained before for the AdS case in four
dimensions:

∆E = Tent∆S +
1

2
∆PxV

Allahbakhshi et. al. JHEP 1308 (2013) 102
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Conclusion

We have holographically computed the change in entanglement
entropy for the excitation of the ground state Lifshitz system.

Unlike the relativistic system with conformal symmetry, the change in
entanglement entropy for the Lifshitz system contains an additional
term.

Non-relativistic modification of first law of entanglement
thermodynamics.

Parijat Dey (SINP) Entgl. thermodynamics for Lifshitz systems ISM 2014 17 / 18



THANK YOU

Parijat Dey (SINP) Entgl. thermodynamics for Lifshitz systems ISM 2014 18 / 18


