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Introduction and Motivation



Introduction and Motivation

Inflation explains the approximate homogeneity and isotropy of

our Universe as well as provides a mechanism for producing tiny

perturbations to break them.

In cosmology we try to measure the correlation functions of
these perturbations encoded in CMB.



Introduction and Motivation

The Universe during inflation was “approximately” de Sitter - with a

symmetry group of SO(4, 1) - 3d CFT

One would like to ask ⇒

How this symmetry group can be used to learn about the correlations
of those perturbations?

Motivation ⇒ robust and model independent.

In situations where inflation occurs for H ∼ Mstring - Higher

derivative corrections might be important (Loop corrections are

not important since Mstring ≪ MPl ).

Conclusions obtained from symmetry considerations alone still
hold. Hence analysis based on symmetries are very powerful.



Introduction and Motivation
The general theme:

This symmetry based analysis of cosmological correlators are
relatively new

Maldacena’s pioneering work (astro-ph/0210603)

Maldacena and Pimentel (1104.2846) ⇒ 〈γijγklγmn〉
Mata-Raju-Trivedi (1211.5482) ⇒ 〈ζζγmn〉

Convenient to consider Wave function of the Universe

Invariance of the Wave function under spatial and time

reparametrization gives Ward Identities under Conformal
transformation.

We systematically study others : Scalar 4 pt and 3 pt correlators.

Also incorporate the effect of small breaking of conformal

symmetry in the formalism.



Introduction and Motivation
The lessons in general :

The symmetry considerations

Indeed fixes some correlators completely - full functional form +
normalization.

⇒ True for the three point correlator.

Sometimes they uncover subtle and interesting issues :
the correct question to ask regarding how the symmetries are

implemented in the correlators ⇒ For the scalar four point

correlator

Also, allow to derive relations between different correlators ⇒ the

three and four point correlator in a particular limit with important

implications to future observations.



Basic Set Up



Basic Set Up

Isometries of dS4 ⇔3d CFT⇔Euclid AdS4

The metric of dS space : dS2 = −dt2 + e2Ht(dx i)2

SO(4, 1) symmetry → 10 generators

Translations 3 x i → x i + v i

Rotations 3 x i → Ri
j
x i

Scaling 1 t → t + 1
H

logλ and x i → x i

λ

Special Conformal
Transformations

3
t → t + 2bjxj and

x i → x i − 2(bj x j )x i + bi ((x j )2 − e−2Ht)

SO(4, 1) symmetry group of dS4 ≡ 3d Euclidean CFT ≡
Euclidean AdS4

⇒ Analytic continuation takes EAdS4 to dS4 and vice-versa.

We are not using any hologram of dS/inflation ⇒ the symmetry

considerations translates the questions regarding dS4 to those in
a 3d CFT and also use techniques from AdS/CFT .



Basic Set Up

Assumptions in our analysis-I

The SO(4, 1) symmetries of dS4 are slightly broken during

inflation - due to a scalar field (inflaton) and its slow rolling.

Our analysis will apply to situations where the full inflationary
dynamics including the scalar sector approximately preserve the
full SO(4, 1) symmetry.

Geometry is fixed to be dS4 but the scalar sector might not respect

the full conformal group.

There might also be higher derivative corrections respecting

Conformal symmetry.



Basic Set Up

Canonical v/s General slow-roll model of inflation

The action for the Canonical slow-roll model :

S =

∫

d4x

√−g

8πGN

[

1

2
R − 1

2
(∇φ)2 − V (φ)

]

In General slow-roll model :

S =

∫

d4x

√−g

8πGN

[

1

2
R − 1

2
(∇φ)2 − V (φ) +

c1

Λ2
R2 +

c2

Λ4
R3 + ...

]

ellipses → Additional higher derivative terms on metric or inflaton.

c1 and c2 are dimensionless constants.

Λ → Some high energy cut-off scale, e.g. String scale Mst

Additional terms get important when Hubble scale H ∼ Mst



Basic Set Up

The perturbations : δφ, ζ, γij

We work in ADM formalism :

ds2 = −N2dt2 + hij

(

dx i + N idt
) (

dx j + N j dt
)

hij = e2Ht

(

δij(1 + 2ζ) + γij

)

and φ = φ̄+ δφ

Scalar Perturbations : δφ, ζ and Tensor Perturbation : γij

Action for small perturbations to leading order is

Sδφ =

∫

d4x

√−g

16πG

[

− 1

2
(∇δφ)2

]

This action cares about the background through geometry only

and the symmetries of the geometry is shared by the
perturbations as well.



Basic Set Up

Slow-roll parameters

Slow-roll parameters: Quantifies the breaking of Conformal

Symmetry :

1. ǫ = − Ḣ

H2
≪ 1 2. δ =

Ḧ

2HḢ
≪ 1 and 3.

˙̄φ

H
≪ 1

In Canonical slow-roll model : H2 = V
3

and ˙̄φ ∼ − V ′

3H

ǫ =

(

V ′

2V

)2

≪ 1; δ = ǫ− V ′′

V
≪ 1 ⇒

˙̄φ

H
=

√
2ǫ ≫ ǫ

For General slow-roll cases too, it can be argued that

˙̄φ

H
∼

√
ǫ ≫ ǫ



Basic Set Up

Summary of Assumptions

Gravity + Scalar (Inflaton) sector respects approximate

Conformal Symmetry.

Single Scalar Field

Bunch Davies Vacuum in far past

Slow-roll conditions hold in general.

One important point is that we will work in momentum space ⇒
Often calculations in CFT are done in coordinate space ⇒
Fourier transforming position space answers is not
straightforward. (Issues of contact terms).



Basic Set Up

Gauge fixing

By coordinate choice the shift and lapse functions can be set to :

N = 1 and N i = 0

ds2 = −dt2 + e2Ht (δij(1 + 2ζ) + γij)dx idx j

Remaining Gauge invariance :

Spatial Reparametrization : x i → x i + v i(x)

Fix by imposing transversality of γij : ∂iγij = 0

Time Reparametrization (at late times) : t → t + ǫ(x)

This leads to two choices for the scalar degree of freedom.



Basic Set Up

Gauge choice : For Scalars : I

Gauge 1 : δφ = 0 and ζ 6= 0

Gauge 2 : δφ 6= 0 and ζ = 0

To go between the two gauges : time reparametrization

t → t − ζ

H
to get δφ = −

˙̄φ

H
ζ

Gauge 1 is useful to work with, once the modes cross horizon →
since ζ becomes time independent then.



Basic Set Up

Gauge choice : Exact dS Limit

It is convenient to work in Gauge 2 during inflation before the
modes cross the horizon.

ζ = − 1√
2ǫ
δφ

The slow-roll limit, ǫ→ 0, the discussion in terms of ζ might be

confusing.

Therefore Gauge 2 is useful to think about the conformally

invariant limit in a straightforward manner

⇒ In this gauge we work in exact dS limit and incorporate the
effect of breaking of conformal invariance by going over to Gauge

1 at the end.



Perturbations During and After Inflation:



Basic Set Up

Wave Function of the Universe

Symmetry considerations are useful in terms of Wave function.

Invariance under symmetry translates to the invariance of the

wave function.

In particle physics S-matrix is more natural. But in cosmology we

are interested in the state of the Universe at a time instant.

We will compute the wave function at late times when the modes

have crossed the horizon and have stopped time evolving.



Basic Set Up

Wave Function: Formal definition and conformally invariant

The wave function may be defined as a functional of the late time
values of the perturbations δφ, γij through the path integral

ψ[χ(x)] =

∫ χ(x)

Dχ̃ e
i S[χ̃]

,

Conformal invariance of ψ[χ(x)] follows from this definition.



Basic Set Up

Wave Function: Gaussian and Non-Gaussian Terms

We know the perturbations are nearly Gaussian and hence write
the wave function as

ψ[δφ, γij ] = exp

[(

−
1

2

∫

d3x d3y δφ(x) δφ(y) 〈O(x)O(y)〉

−
1

2

∫

d3x d3y γij (x) γkl (y) 〈T
ij (x)T kl (y)〉

−
1

4

∫

d3x d3y d3z δφ(x) δφ(y) γij (z) 〈O(x)O(y)T ij (z)〉

+
1

4!

∫

d3x d3y d3z d3w δφ(x) δφ(y) δφ(z) δφ(w) 〈O(x)O(y)O(z)O(w)〉 + · · ·

)]

.

〈O(x)O(y)〉, 〈O(x)O(y)T ij(z)〉 for now are just arbitrary

coefficient functions determining the Wave function.



Basic Set Up

Coefficient Functions → Correlators in CFT

The boundary values of the fields in dS transforms under the
symmetry, leading to the statement of the invariance of wave
function

δφ
′ = δφ+ δ(δφ) ⇒ ψ[δφ] = ψ[δφ′] = ψ[δφ+ δ(δφ)]

Invariance of the wave function fix the transformations of the

coefficient functions as correlation functions in a CFT.

O′(x) = O(x) + δO(x) ⇒ O(x) : dimension 3 operators in CFT

One obtains Ward Identities for those correlators

〈δO(x1)O(x2)O(x3)〉+ 〈O(x1)δO(x2)O(x3)〉 + 〈O(x1)O(x2)δO(x3)〉 = 0

This way we recast our study of symmetries for cosmological

perturbations to that of constraints put on correlation functions in
a CFT ⇒ This is the central idea of our analysis.



Basic Set Up

Ward Identities of conformal symmetry : Completely fix 〈TijOO〉

The Ward identities ⇒ differential equations for 〈TijOO〉
〈δO(x1)O(x2)Tij(x3)〉+ 〈O(x1)δO(x2)Tij(x3)〉 + 〈O(x1)O(x2)δTij (x3)〉 = 0

∂i 〈Tij(x)O(y1)O(y2)〉 = δ3(x − y1)〈∂y
j
1

O(y1)O(y2)〉 + δ3(x − y2)〈O(y1)∂y
j
2

O(y2)〉

〈Tii (x)O(y1)O(y2)〉 = −3δ3(x − y1)〈O(y1)O(y2)〉 − 3δ3(x − y2)〈O(y1)O(y2)〉

In MRT they completely fixed this correlator.

〈O(k1)O(k2)Tij (k3)〉e
s,ij =− 2(2π)3δ(

∑

kJ)e
s,ij k1ik2j S(k1, k2, k3).

with S(k1, k2, k3) =(k1 + k2 + k3)−

∑

i>j ki kj

(k1 + k2 + k3)
−

k1k2k3

(k1 + k2 + k3)2



Conformal Invariance and the Four Point
Scalar Correlator



The Four Point Scalar Correlator

The scalar four point correlator is not fixed. In canonical slow-roll

model of inflation Serry-Sloth-Vernizzi (0811.3934) already

computed it using “in-in” formalism ⇒ not invariant under the
symmetries.

This puzzling feature motivated us to embark on calculating it
ourselves using technique borrowed from AdS/CFT

correspondence in the exact dS limit



The Four Point Scalar Correlator

Analytic continuation of dS ⇔ Euclidean AdS

Starting with Euclidean AdS4 ⇒

ds2 = R2
AdS

(

dz2 +
∑3

i=1(dx i)2

z2

)

with z ∈ [0,∞]

Upon the analytic continuation

⇒ z = −i η, RAdS =
i

H

We get back the dS4 metric in conformal coordinates,

ds2 =
1

H2η2

(

− dη2 +

3
∑

i=1

(dx i)2

)

; with η ∈ [−∞, 0]



The Four Point Scalar Correlator

dS Wave function ⇔ AdS Partition function

In leading semi-classical approximation the partition function in

AdS space is defined as a functional of the boundary values of
the fields as z → 0, i.e.

Z [χ(x)] = e−SAdS
on-shell[χ(x)]

Similarly, the wave function in dS space can also be obtained in
saddle point approximation,

ψ[χ(x)] = ei SdS
on-shell[χ(x)]

The analytic continuation gives,

Sds
on-shell[φ(k ),H] = −i SAdS

on-shell

[

φ(k ),RAdS =
i

H

]

.

⇒ Upon analytic continuation we obtain the wave function.



The Four Point Scalar Correlator

Feynman-Witten diagram
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Figure : Three different contribution corresponding to S,T and U-channel to

the scalar four point correlator are shown in the three figures. The brown

solid vertical line represents the 3-dimensional boundary of AdS4 at z = 0,

the black solid lines are boundary to bulk scalar propagators whereas the

green wavy lines are graviton propagators in the bulk.



The Four Point Scalar Correlator

Wave Function to 4 point Correlator

The wave function schematically looks like

ψ[δφ, γs] = exp

[

−
1

2

∫

δφδφ 〈OO〉−
1

2

∫

γsγs′ 〈T sT s′ 〉

−
1

4

∫

δφδφγs 〈OOT s〉+
1

4!

∫

δφδφδφδφ 〈OOOO〉

]

.

Knowing the wave function as a functional of the late time values
of the perturbations we can compute the scalar correlator.

〈δφ(x1)δφ(x2)δφ(x3)δφ(x4)〉

= N

∫
D[δφ]D[γij ] δφ(x1)δφ(x2)δφ(x3)δφ(x4) |ψ[δφ, γij ]|

2

Using the relation ζ = − 1√
2ǫ
δφ, one obtains the desired

correlator 〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉.

It agrees with existing result !!.



The Four Point Scalar Correlator

Conformal Invariance : Wave Function vs Correlator

To check conformal invariance for the wave function it just
remains to check that for 〈OOOO〉

ψ[δφ, γs] = exp

[

−
1

2

∫

δφδφ 〈OO〉−
1

2

∫

γsγs′ 〈T sT s′ 〉

−
1

4

∫

δφδφγs 〈OOT s〉+
1

4!

∫

δφδφδφδφ 〈OOOO〉

]

.

We will subject the correlator 〈OOOO〉 to conformal ward identity
and it satisfies.

〈δO(k1)O(k2)O(k3)O(k4)〉 + 〈O(k1)δO(k2)O(k3)O(k4)〉

+ 〈O(k1)O(k2)δO(k3)O(k4)〉 + 〈O(k1)O(k2)O(k3)δO(k4)〉 = 0

δO(k1) → Change in O(k1) under SCT

The wave function is conformally invariant but the correlator

〈δφδφδφδφ〉 is not.



The Four Point Scalar Correlator

Conformal Invariance : subtlety for Correlator

This subtlety is due to the fact that one needs do a path integral
over the graviton

〈δφδφδφδφ〉 =

∫

D[δφ]D[γij ]
4
∏

i=1

δφ(x i) |ψ[δφ, γij ]|
2

Before doing the path integral one needs to fix the gauge for the
graviton ⇒ ∂iγij = γii = 0, A conformal transformation does not
preserve this choice of gauge.

δγij (x) = 2Mm
j γim+2Mm

i γmj − (x2bm − 2xm(x · b))
∂γij (x)

∂xm

∂iδγij = −6bkγkj 6= 0

One needs to do a compensating coordinate reparametrization
to restore the gauge. Under the combined transformation the

invariance works and we learn to ask the correct question.



The Four Point Scalar Correlator

No analogue of this subtlety in AdS space

This subtlety of conformal invariance for dS space correlators

doesn’t exist in AdS space : One needs to proceed differently in
calculating a correlation function from a wave function as

opposed to the partition function (in the presence of sources) in

AdS.

In AdS space one computes the partition function, and the

boundary value of the metric is a non-dynamical source. Taking

derivative with respect to the source produces correlation
function.

In dS, the metric at late times is a genuine degree of freedom and

hence to calculate correlation functions from the wave function of
the Universe at late times, one must fix gauge completely.



Ward Identities and the Three Point Scalar
Correlator



The Three Point Scalar Correlator

The scalar three point correlator : 〈ζζζ〉 ⇒ observationally most
important for non-Gaussianity.

It is suppressed in canonical slow roll inflation ⇒ vanishes up to
leading order in approximate conformal invariance during

inflation.



The Three Point Scalar Correlator

The vanishing at leading order

The corresponding term in the wave function to consider is

ψ = exp

[

−
∫

δφδφδφ 〈OOO〉
]

In a 3 dim CFT: 〈OOO〉 ⇒ 3 point function of an exactly

marginal operator ⇒ 〈OOO〉 must vanish when all the slow roll

parameters go to zero.

From the gravity calculation ⇒ δφ becomes a massless scalar
with no potential ⇒ 3 point function 〈δφδφδφ〉 vanishes.

We need to go beyond the exact de-Sitter limit ⇒to incorporate

the breaking of the conformal symmetry in our formalism. and
compute the leading non-vanishing contribution.



The Three Point Scalar Correlator

The orders of parameters at play

In attempts to consider the departure from conformally invariant

dS limit ⇒ The background might itself change because H is no
longer a constant

⇒ Corrections to dS ∼ O(ǫ) ∼ (
˙̄φ2

H2 )

⇒ the stress tensor gets corrections ∼ O(
˙̄φ2

H2 ) or higher.

For studying 〈OOO〉 ⇒ we can neglect departures from dS and

work up to limit ∼ O(
˙̄φ

H
)

In canonical slow-roll model ⇒ ˙̄φ
H
∼ √

ǫ ≫ ǫ≪ 1 ⇒ This is true

even in general slow-roll models.

Up to O(
˙̄φ

H
) : δφ→ δφ+ δ(δφ) + δ̃(δφ) with δ̃(δφ) ∼ ˙̄φ

H



The Three Point Scalar Correlator

Ward identities for “approximate” conformal symmetry

The wave function schematically looks like

ψ[δφ, γs] = exp

[(

−
1

2

∫

δφδφ 〈OO〉 −
1

4

∫

δφδφδφ 〈OOO〉

+
1

4!

∫

δφδφδφδφ 〈OOOO〉

)]

.

Finally, for SCT

Lb
ki
〈O(k1)O(k2)O(k3)〉

′ = 2
˙̄φ

H

[

b ·
∂

∂k4

]{

〈O(k1)O(k2)O(k3)O(k4)〉
′

∣

∣

∣

∣

k4→0

}

,

and for scaling

(

ka ·
∂

∂ka

)

〈O(k1)O(k2)O(k3)〉 =
˙̄φ

H
〈O(k1)O(k2)O(k3)O(k4)〉

∣

∣

∣

∣

k4→0

.



The Three Point Scalar Correlator

Implications of the ward identities

Lb
ki
〈O(k1)O(k2)O(k3)〉

′ = 2
˙̄φ

H

[

b ·
∂

∂k4

]{

〈O(k1)O(k2)O(k3)O(k4)〉
′

∣

∣

∣

∣

k4→0

}

,

The Ward identities hold for general slow-roll models but as an

important check they are indeed satisfied by the results obtained

in the canonical slow-roll model.

The uniqueness : Given a four point function how to solve the

Ward Identities to determine the three point function. We found

that it nearly fixes 〈OOO〉 in terms of 〈OOOO〉 up to an additional
term, the homogeneous solution of the Ward identities. Under

generic assumptions even that is argued to be negligible.

When the generic assumptions fail, the known functional form
will subject it to observational tests.



The Three Point Scalar Correlator

Implications of the ward identities

As long as the dynamics is approximately conformally invariant,

and the slow roll approximation is valid, the magnitude of 〈ζζζ〉
should be suppressed, of the same order as in the canonical

slow roll model of inflation.

If the non-Gaussianity in the near future is measured to be much
bigger for 〈ζζζ〉. Our analysis confirms, that would not only rule

out the canonical slow roll model of inflation, but in fact any model

approximately conformally invariant with slow roll approximation.

These Ward identities also implies that, if 〈ζζζ〉 is observed and
found to deviate from its functional form in the canonical slow roll

model, 〈ζζζζ〉 must also be different, suggesting perhaps that
higher spin fields are involved during inflation.



The Three Point Scalar Correlator

Implications of the ward identities

Our procedure is different from the standard conformal

perturbation theory. It is a perturbative expansion in the coupling
constant that breaks conformal symmetry whereas we try to

solve the ward identities once the symmetry breaking is taken

into account. In other words, we try to solve a Callan-Symanzik
eqn with small beta function and hence is more efficient than the

first.

Finally, it will be interesting to extend our analysis to

O(
˙̄φ2

H2 ) ∼ O(ǫ), where the background dS will get corrected. It will

be interesting to understand that in our set-up and explain effects
due breaking of conformal symmetry, such as tilt of scalar and

tensor power spectrum, ns, nt ∼ ǫ.



Summary of the talk



Summary

Conformal Invariance is indeed a powerful constraint.

The way conformal invariance is implemented might turn out to

be subtle, gauge fixing issues due to gravitons.

The correlators discussed here can serve as a good model

independent and robust probe of approximate conformal
invariance during inflation.

The smallness of the non-Gaussianity when conformal symmetry
is a good approximation is a damper but consistent with Planck.

Perhaps future observations like LSS etc can measure them.

There is a possibility that the non-Gaussianity will be measured

to be large and approximate conformal invariance will be ruled

out.




