AdS plane waves, Entanglement and Mutual Information

Debangshu Mukherjee

Chennai Mathematical Institute

Indian Strings Meeting, 15th-20th December, 2014

arXiv: 1405.3553 DM & K.Narayan

《曰》 《圖》 《臣》 《臣》

æ

Entanglement Entropy and Ryu-Takayanagi prescription

AdS/CFT correspondence[Maldacena '97] in large N limit gives a map:

bulk gravity theory \Leftrightarrow strongly-coupled field theory on boundary.

Geometrizes quantities in field theory otherwise difficult to compute; one such quantity is Entanglement Entropy (EE).

Ryu-Takayanagi prescription:

EE of subsystem $A \propto$ Area of bulk minimal surface bounding A (subsystem).

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Entanglement Entropy

- can be used to characterize phases.
- Proportional to no. of d.o.f on bndry. b/w A and environment. Shows area law divergence. $(S_A \sim \frac{\partial A}{c^{d-2}}$ for $AdS_{d+1})$

From a linear combination of EEs, define **Mutual Information** (MI) for disjoint subsystems $A \& B (A \cap B = \emptyset)$.

$$\mathcal{I}[A:B] = S[A] + S[B] - S[A \cup B]$$

where S[A] is EE of subsystem A as if B was absent

- Positive semi-definite
- Cut-off dependent divergences cancel out
- Measures correlation b/w A and B (quantum & classical)

$$\mathcal{I}[A:B] \geq \frac{(\langle \mathcal{O}_A \mathcal{O}_B \rangle - \langle \mathcal{O}_A \rangle \langle \mathcal{O}_B \rangle)^2}{2|\mathcal{O}_A|^2|\mathcal{O}_B|^2}$$

< ロ > < 同 > < 回 > < 回 > :

Mutual Information: Disentangling transition

 $\mathcal{I}[A:B] = S[A] + S[B] - S[A \cup B]$

As an example, consider two **spacelike**, **strip subsystems** each of width $\ell \parallel$ to each other separated by *x*. Two possible candidates of $S[A \cup B]$.

When A and B are widely separated, relevant extremal surface is simply union of disconnected surfaces. $S[A \cup B] = S[A] + S[B] = 2S(\ell)$ $\mathcal{I}[A:B] = 0$ For nearby subsystems, connected surface has lower area. $S[A \cup B] = S(2\ell + x) + S(x)$ $\mathcal{I}[A:B] > 0$

・ロト ・ 一下・ ・ ヨト・ ・ ヨト・

R-T implies disentanglement i.e $\mathcal{I}[A:B] = 0$ identically $\forall \frac{x}{\ell} > \frac{x_c}{\ell}$ [Headrick '10].

Mutual Information: Ground state and thermal state

• Ground state \Leftrightarrow pure AdS_{d+1} (d > 2):

$$\mathcal{I}[A:B] = -c \frac{V_{d-2}}{\ell^{d-2}} \left(2 - \frac{1}{(2+x/\ell)^{d-2}} - \frac{1}{(x/\ell)^{d-2}} \right)$$

$$\begin{split} \mathcal{I}[A:B] \to \infty \text{ as } x \to 0. \text{ Zero of } \mathcal{I}[A:B] \text{ i.e disentangling happens at} \\ \mathbf{AdS_5}: \ \tfrac{x_c}{\ell} \simeq 0.732 \quad \& \quad \mathbf{AdS_4}: \ \tfrac{x_c}{\ell} \simeq 0.620 \end{split}$$

• Thermal states also show disentanglement transition [Fischler,Kundu,Kundu '12]. When $\ell T, xT \gg 1$ entanglement dominated by thermal entropy (S scales linearly as ℓ).

$$\mathcal{I}[A:B]=0$$

 \implies A and B disentangle at $x > \frac{1}{T}$.

AdS plane waves

Interesting to explore non-relativistic systems with reduced symmetries. A certain class of gravity duals exhibit hyperscaling violation: $ds^2 = r^{2\theta/d_i} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right)$ Arise in Einstein-Maxwell-scalar theories [Trivedi et al; Kiritsis et al;...] For $\theta = 0$ this reduces to Lifshitz metric.

$$\theta = d_i - 1$$
 family $\rightarrow \log$ violation of area law.

Conjectured to be gravity dual of Fermi surfaces [Ogawa, Takayanagi, Ugajin; Huijse, Sachdev, Swingle '11]. EE has been studied for hyperscaling violation geometry [Dong, Harrison, Kachru, Torroba, Wang].

Concrete string construction exists [Narayan '12]. Obtained after x^+ -dimnⁿ redⁿ of AdS_{d+1} plane wave:

$$ds^{2} = \frac{R^{2}}{r^{2}}(-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}) + R^{2}Qr^{d-2}(dx^{+})^{2}$$

E.g: AdS_5 plane wave $\xrightarrow{x^+-dimn. redn} \theta = 1 = d_i - 1$ hyperscaling violating

Dual to excited pure states with uniform energy-momentum density $T_{++} \sim Q$.

◆□> ◆□> ◆三> ◆三> ・三 のへで

AdS plane waves and Entanglement Entropy

EE for these excited states have been studied [Narayan, Takayanagi, Trivedi '12]

Two choices for strip subsystemdepending on flux dirⁿ.

For large $\ell Q^{1/d} \gg 1$, we know the scaling of S_A with ℓ and Q.

• Strip || flux: $S_A = \begin{cases} \pm \sqrt{Q} V_{d-2} \ell^{2-\frac{d}{2}} & \text{for } [+:d < 4, -:d > 4] \\ \sqrt{Q} V_2 \log(\ell Q^{1/4}) & \text{for } d = 4 \end{cases}$

For d = 4 if we identify $Q^{1/4}$ with k_F (Fermi momentum), S_A shows log scaling, functionally similar to Fermi surface.

• Strip \perp^r flux: For large ℓ , there is **NO** connected minimal surface. **Phase transition** for $\ell \gg Q^{-1/d}$.

We have studied MI for AdS plane waves in three regimes: [DM, Narayan '14]

- $\ell \mathbf{Q}^{1/d} \gg 1$:
 - $\bullet\,$ When strips are $\|$ to flux dirn. systems disentangle faster than ground state.
 - $\frac{x_c}{\ell}$ is independent of Q.
 - Unlike thermal states, $\exists x_c$ for which $\mathcal{I}[A:B] > 0$, for all ℓ .
- $\ell \mathbf{Q}^{1/d} \ll 1$: In this limit, we did a perturbative analysis about pure AdS and computed O(Q) correction to MI. Faster disentanglement than ground state.
- $\ell Q^{1/d} \sim O(1)$: We did a numerical study when systems are \parallel to flux dirn. to get a more complete parameter space.

MI for AdS plane waves: $\ell Q^{1/d} \gg 1$

O Strip || to flux dirn.:

- AdS_5 plane wave: $\mathcal{I}[A:B] \sim V_2 \sqrt{Q} \log \left(\frac{\ell^2}{x(2\ell+x)}\right)$ Disentanglement: $\mathcal{I}[A:B] = 0$ at $\frac{x_c}{\ell} \approx 0.414$. (Ground state $\frac{x_c}{\ell} = 0.732$)
- AdS_4 plane wave: $\mathcal{I}[A:B] \sim V_1 \sqrt{Q} (2\sqrt{\ell} \sqrt{2\ell + x} \sqrt{x})$. Disentanglement: $\mathcal{I}[A:B] = 0$ at $\frac{x_c}{\ell} = 0.250$. (Ground state $\frac{x_c}{\ell} = 0.620$)

Disentangles faster compared to ground state. Critical seperation is independent of Q.

 Strip ⊥^r to flux dirn.: At large width, there is absence of connected bulk minimal surface and S(ℓ), S(2ℓ + x) and S(x) ALL saturate to a definite value S_{sat}. So,
 T[A: B] = 2S(ℓ) = S(2ℓ + x) = S(x) = 0.

In this regime ($\ell Q^{1/d} \ll 1$), we can compute perturbative correction to ground state entanglement.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

In this regime ($\ell Q^{1/d} \ll 1$), we can compute perturbative correction to ground state entanglement.

• For single strip, calculate deviation in turning pt. δr_* upto O(Q).

For strip \parallel to flux, we find

$$\delta r_* = -\frac{\mathcal{N}_{r_*}}{4\eta} Q r_*^{d+1}$$

where
$$\mathcal{N}_{r_*} = \frac{\sqrt{\pi}}{(d-1)^2} \left(\frac{\Gamma(\frac{1}{d-1})}{\Gamma(\frac{d+1}{2d-2})} - (d-1) \frac{\Gamma(\frac{d}{2d-2})}{\Gamma(\frac{1}{2d-2})} \right) > 0 \& \eta = \frac{\sqrt{\pi}\Gamma(\frac{d}{2d-2})}{\Gamma(\frac{1}{2d-2})} > 0.$$

For strip \perp^r to flux, we find

$$\delta r_* = -\beta Q r_*^{d+1}$$

where $\beta = \frac{2^{\frac{1}{d-1}}}{8(d-1)^3\sqrt{\pi}} \frac{\Gamma(\frac{1}{2d-2})^2}{\Gamma(\frac{3}{2}+\frac{1}{d-1})} - \frac{1}{4(d-1)} > 0$

Essentially, for either orientation, we have $\delta r_* = -\beta Q r_*^{d+1}$ where $\beta > 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

In this regime ($\ell Q^{1/d} \ll 1$), we can compute perturbative correction to ground state entanglement.

- For single strip, calculate deviation in turning pt. δr_* upto O(Q). $[\delta r_* = -\beta Q r_*^{d+1}$ where $\beta > 0]$
- Compute area functional (S_{EE}) upto O(Q) correction to pure AdS.

For either orientation to the flux dirn,

$$\Delta S = + \frac{R^{d-1}}{G_{d+1}} \frac{\mathcal{N}_{EE}^{\parallel,\perp}}{4\eta^2 \sqrt{2}} \frac{V_{d-2}}{\ell^{d-2}} (Q\ell^d)$$
where $\mathcal{N}_{EE}^{\parallel,\perp} = \begin{cases} \frac{\sqrt{\pi}}{8(d-1)^2} \left(\frac{(d+1)\Gamma(\frac{1}{d-1})}{\Gamma(\frac{d+1}{2d-2})} - 2(d-1)\frac{\Gamma(\frac{2d}{2d-2})}{\Gamma(\frac{1}{2d-2})} \right) & \text{for strips} & \parallel & \text{flux dirn.} \\ \frac{\sqrt{\pi}}{4\sqrt{2}(d-1)^2} \left(\frac{\Gamma(\frac{1}{d-1})}{\Gamma(\frac{d+1}{2d-2})} - (d-1)\frac{\Gamma(\frac{d}{2d-2})}{\Gamma(\frac{1}{2d-2})} \right) & \text{for strips} & \perp & \text{flux dirn.} \end{cases}$
and $\eta = \frac{\sqrt{\pi}\Gamma(\frac{d}{d-2})}{\Gamma(\frac{1}{2d-2})}$.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

In this regime ($\ell Q^{1/d} \ll 1$), we can compute perturbative correction to ground state entanglement.

- For single strip, calculate deviation in turning pt. δr_* upto O(Q). $[\delta r_* = -\beta Q r_*^{d+1}$ where $\beta > 0]$
- Compute area functional (S_{EE}) upto O(Q) correction to pure AdS.
 For either orientation to the flux dirn,

$$\Delta S = + \frac{R^{d-1}}{G_{d+1}} \frac{\mathcal{N}_{EE}^{\parallel,\perp}}{4\eta^2 \sqrt{2}} \frac{V_{d-2}}{\ell^{d-2}} (Q\ell^d)$$

 $\text{where } \mathcal{N}_{EE}^{\parallel,\perp} = \begin{cases} \frac{\sqrt{\pi}}{8(d-1)^2} \left(\frac{(d+1)\Gamma(\frac{1}{d-1})}{\Gamma(\frac{d+1}{2d-2})} - 2(d-1)\frac{\Gamma(\frac{d}{2d-2})}{\Gamma(\frac{1}{2d-2})} \right) & \text{for strips} & \parallel & \text{flux dirn.} \\ \frac{\sqrt{\pi}}{4\sqrt{2}(d-1)^2} \left(\frac{\Gamma(\frac{d}{d-1})}{\Gamma(\frac{d+1}{2d-2})} - (d-1)\frac{\Gamma(\frac{d}{2d-2})}{\Gamma(\frac{1}{2d-2})} \right) & \text{for strips} & \perp & \text{flux dirn.} \\ \text{and } \eta = \frac{\sqrt{\pi}\Gamma(\frac{d}{d-2})}{\Gamma(\frac{1}{2d-2})} & \text{For } d > 2, \, \mathcal{N}_{EE} > 0 \, . \end{cases}$

• Similar to Entanglement Thermodynamics

[Takayanagi et al;Alishahiha et al; Faulkner,Guica,Hartman,Myers,Van Raamsdonk]

Debangshu Mukherjee (CMI)

ISM '14 10 / 16

For either orientation of strips, we get a **positive** correction to EE. When the strips are \parallel to flux dirn,

$$\mathsf{MI:} \quad \mathcal{I}[A:B] = \mathcal{I}_{AdS}[A:B] - 2\frac{R^{d-1}}{G_{d+1}}\frac{\mathcal{N}_{EE}^{\parallel}}{4\eta^2\sqrt{2}}V_{d-2}Q\ell^2\left(1+\frac{x}{\ell}\right)^2$$

When the strips are \perp^r to flux dirn,

$$\mathsf{MI:} \quad \mathcal{I}[A:B] = \mathcal{I}_{AdS}[A:B] - 2\frac{R^{d-1}}{G_{d+1}}\frac{\mathcal{N}_{EE}^{\perp}}{4\eta^2\sqrt{2}}V_{d-2}Q\ell^2\left(1+\frac{x}{\ell}\right)^2$$

- MI is lesser compared to ground state \implies faster disentanglement. Suggesting, energy density flux Q disorders system.
- 2 Disentangling transition in this regime depends on flux Q.

EE and MI for AdS_5 plane waves: Numerics

We have done a numerical analysis when $\ell Q^{1/d} \sim O(1)$.

Figure: Red: Q = 0, Black: Q = 1, Green: Q = 3, Blue: Q = 10

• At large ℓ , EE is dominated by effect of energy flux Q.

• For any Q, x_c/ℓ is roughly the same.

< ロ > < 同 > < 回 > < 回 >

Parameter space for AdS_5

Parameter space for AdS_5 (Strip || flux):

- At large ℓ , all curves flatten out $\implies x_c/\ell$ is independent of Q.
- Near $\ell Q^{1/d} \sim O(1)$, curves are distinct $\implies x_c/\ell$ depends on Q.
- Different from **thermal case** where we have finite parameter space. In the regime of large ℓ , subsystems remain disentangled for *any x*.

EE and MI for AdS_4

For AdS_4 , we did a similar numerical analysis and obtained the following:

Figure: Red: Q = 0, Black: Q = 1, Green: Q = 3, Blue: Q = 10

At large ℓ , there is a deviation from pure *AdS* for non-zero *Q*. x_c/ℓ is independent of *Q*.

< ロ > < 同 > < 回 > < 回 >

Parameter space for AdS_4

Parameter space for AdS_4 :

ISM '14 15 / 16

(日)

Conclusions

- We have studied EE and MI for AdS plane waves dual to CFT excited states with T₊₊ ~ Q for two strips of width ℓ, seperation x, || and ⊥^r to flux
- For wide strips $(Q\ell^d \gg 1) \parallel$ to flux, x_c/ℓ is independent of Q. Even for large ℓ , $\exists x_c$ below which A & B are entangled (unlike thermal states).
- For wide strips \perp to flux, there is phase transition for $\ell \gg Q^{-1/d}$. EE saturates, MI is zero.
- In perturbative regime $Q\ell^d \ll 1$, $\Delta S \sim +V_{d-2}Q\ell^2 \implies$ faster disentangling than ground state. Probably, Energy density "disorders" system.
- Numerics show non-trivial dependence of x_c/ℓ with Q when $Q\ell^d \sim O(1)$. At large ℓ , agrees with calculations.
- In some sense, "partially ordered" states.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○