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Last sentence of my ISM 2012 talk was: it will be nice if in ISM
2014 I can report of the inverse scattering construction of the
JMaRT fuzzball....
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Context

I Inverse scattering is the best developed technique for
constructing novel solutions of vacuum gravity theories.

I Some three years back it was not clear how to apply such
techniques to supergravities.

I Fuzzball proposal of Samir Mathur asks for certain smooth
geometries.

I Only a very few fuzzballs are known for non-extremal black
holes.
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Summary of formalism (4 JHEP papers)

Solution

Bidisha Axel & Despoina

Geroch Group Matrix New Geroch Group Matrix

Geroch Group

New solution
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Motivation

I Dimensionally reduced gravity theories have large
U-duality groups

I These symmetries have been used to study black holes.
I In many situations these symmetries are infinite

dimensional.
I Black holes/fuzzballs in 4d (5d) have 2 (3) commuting

Killing vectors. Thus we have access to symmetries of
theories reduced to 2d, which are infinite dimensional.



Motivation

I We want to understand and make use of these
symmetries.

I Using these symmetries one can arrive at inverse
scattering techniques for supergravities.

I I will review our formalism, and present JMaRT
construction.
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Geroch Group

I Geroch group is the symmetry of 4d gravity reduced to 2d.
I 2d gravity is completely integrable, so it has infinite

dimensional symmetry: the Geroch group.
I It is affine SL(2, R).

I These considerations have natural generalization
I 5d gravity: affine SL(3)
I minimal 5d supergravity: affine G2(2)
I STU model: affine SO(4,4)

I Most natural way to think about affine sl(2,R) is to think
about two non-commuting sl(2,R).
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Ehlers and Matzner–Misner

I 4d metric
ds2 = −e−φ(dt +A)2 + eφds2

3

with A(1) is one form and φ the 3d dilaton. Define
dχ = ?3(e−2φF). Axion-Dilaton (φ, χ) SL(2)/SO(2). Ehlers
SL(2).

I Rewrite 4d metric

ds2 = e2ν(dρ2 + dz2) + gabdxadxb, (1)

use Einstein equations to impose

det gab = −ρ2.

By scaling by ρ and using the signature {−1,1}, we
construct a representative of SL(2)/SO(1,1).
Matzner-Misner SL(2).
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Dynkin Diagram

These SL(2)’s do not commute. They form affine SL(2).

EE MM

Affine sl(2)

[Geroch 1971, Julia 1980]



Key elements I, Ehlers symmetry

I Consider 3d Euclidean gravity-matter system G/K. Let V
be the representative of G/K.



Key elements II, 2d reduction

I Now if the system admits an axial isometry ∂φ we reduce
the metric

ds2
3 = f 2ds2

2 + ρ2dφ2. (2)

f : conformal factor;

I We seek V(t)—representative of the affine group—such
that

lim
t→0
V(t) = V

that solves the Lax pair.
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Key elements III, solitons

I Integrability of the Lax pair require certain differential
equation for t .

t± =
1
ρ

[
(z − w)±

√
(z − w)2 + ρ2

]
, (3)

solitons and anti-solitons [Relation to BZ], where w is an
integration constant.

I t : spacetime dependent spectral parameter.
w : spacetime independent spectral parameter.
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Key elements IV, monodromy

I The involution T extends to functions V(t) by

(V(t))T = VT
(
−1

t

)
. (4)

and one defines

M = VT
(
−1

t

)
V(t). (5)

I Using the involution symmetry of the Lax pair, one sees
Breitenlohners, Maison 86; Nicolai 91

∂±M(t , x) = 0 =⇒M(t , x) =M(w). (6)

I Under group transformationsM(w) transforms as

M(w)→Mg(w) = gT (w)M(w)g(w). (7)



Key elements IV, monodromy

I The involution T extends to functions V(t) by

(V(t))T = VT
(
−1

t

)
. (4)

and one defines

M = VT
(
−1

t

)
V(t). (5)

I Using the involution symmetry of the Lax pair, one sees
Breitenlohners, Maison 86; Nicolai 91

∂±M(t , x) = 0 =⇒M(t , x) =M(w). (6)

I Under group transformationsM(w) transforms as

M(w)→Mg(w) = gT (w)M(w)g(w). (7)



Key elements IV, monodromy

I The involution T extends to functions V(t) by

(V(t))T = VT
(
−1

t

)
. (4)

and one defines

M = VT
(
−1

t

)
V(t). (5)

I Using the involution symmetry of the Lax pair, one sees
Breitenlohners, Maison 86; Nicolai 91

∂±M(t , x) = 0 =⇒M(t , x) =M(w). (6)

I Under group transformationsM(w) transforms as

M(w)→Mg(w) = gT (w)M(w)g(w). (7)



Key elements, summary

I Group action

V −→ V(t) −→M(w) −→Mg(w) −→ Vg(t) −→ V g

I To implement
Mg(w) −→ Vg(t) (8)

one needs to solve a Riemann-Hilbert problem. For
meromorphic functions this is purely algebraic.

Main Technical Result (Katsimpouri, Kleinschmidt, AV)
We solve this Riemann-Hilbert problem for SL(2) matrices with
simple poles in w with residues of rank one.
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Riemann-Hilbert Factorization

Let us look at symmetric SL(2) matrices with simple poles in w
with residues of rank one

M(w) = 11 +
N∑

i=1

Ai

w − wi
, (9)

with

Ai = aiαiaT
i , (10)



Ansatz for V(t , x)

The aboveM(w) justifies the ansatz (ti = t(wi))

V(t , x) = V (x)A+(t , x). (11)

A+(t) = 11−
∑

i

ci taT
i

1 + tti
. (12)



Riemann Hilbert Factorization, group G

SL(2)
solitons: wk , k = 1, . . . ,N
vectors: ak
matrix: Γkl

G
solitons: wk , k = 1, . . . ,N
vectors: aαk , α = 1, . . . , r
matrix: Γαβkl

Everything boosted up to rN dimensional space.



STU supergravity

Example: Kerr solution in STU gravity

M(w) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 +

2m(m−w)

w2−c2 0 0 0 0 2am
w2−c2

0 0 0 1 +
2m(m−w)

w2−c2 0 0 − 2am
w2−c2 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 − 2am

w2−c2 0 0 1 +
2m(m+w)

w2−c2 0

0 0 2am
w2−c2 0 0 0 0 1 +

2m(m+w)

w2−c2



Simple poles. w = ±c = ±
√

m2 − a2. Rank of residue matrices
in two! And need to take into account SO(4,4) group structure.
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One page intro to JMaRT

I JMaRT is the best understood non-supersymmetric
fuzzball Jejjala, Madden, Ross, Titchener

I Microscopic description known as a state in the D1-D5
CFT

I Obtained by studying over-rotating limit of 5d Cvetic-Youm
metrics

I Extensively studied in the Fuzzball literature Chowdhry, Avery,

Mathur et al
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Single rotation, 2 charges

ds2 = . . .[
−fs(dt − f−1

s Mc1c5a1 cos2 θdφ)2 + f (dy + f−1Ms1s5a1 sin2 θdψ)2
]

. . .

I {t , φ} and {y , ψ} terms have similar structure
I When charges go to zero, we get over-rotating Myers-Perry



A discrete symmetry

t → iy
y → it

θ → π

2
− θ

φ → ψ

ψ → φ

δi → i
π

2
− δi

a1 → −ia1

M → −M
r2 → r2 −M + a2

1
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A new view on JMaRT

I When charges go to zero, we get Euclidean MP instanton.

I There is no under-rotating version of the instanton.
I Systematic construction using inverse scattering easier.
I In STU theory (SO(4,4) group) we construct MP instanton

and then do appropriate charging.
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A bit more detail, rod diagrams

The rod diagram (interval structure) of JMaRT is like
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Summary

I We have implemented an inverse scattering formalism for
theories with G/K symmetries.

I Our formalism is akin to the Belinski Zakharov formalism,
but it works for all G, not just for SL groups.

I We have given special emphasis on the SO(4,4) theory,
and have obtained the 4-charge rotating black hole as an
example.

I ...and also the JMaRT fuzzball.
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Future

I In longer future I want to explore multi-center instantons
and black holes.

I There are many unanswered questions:
I implement all this in Matzner-Misner variables.
I understand physics of residue vectors from Lie algebra

perspective.

Thanks for your attention.
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