An Inverse Scattering Construction of a Fuzzball

Despoina Katsimpouri¹ Axel Kleinschmidt^{1,2} Amitabh Virmani^{1,3,4} Bidisha Chakrabarty³

¹Albert Einstein Institute, Golm, Germany

²International Solvay Institutes, Brussels, Belgium

³Institute of Physics, Bhubaneshwar, India

⁴Kavli Institute of Theoretical Physics, Beijing, China

ISM Puri 2014

Last sentence of my ISM 2012 talk was: it will be nice if in ISM 2014 I can report of the inverse scattering construction of the JMaRT fuzzball....

Outline

Motivation

Our Formalism

Inverse Scattering JMaRT

Future

 Inverse scattering is the best developed technique for constructing novel solutions of vacuum gravity theories.

- Inverse scattering is the best developed technique for constructing novel solutions of vacuum gravity theories.
- Some three years back it was not clear how to apply such techniques to supergravities.

- Inverse scattering is the best developed technique for constructing novel solutions of vacuum gravity theories.
- Some three years back it was not clear how to apply such techniques to supergravities.
- Fuzzball proposal of Samir Mathur asks for certain smooth geometries.

- Inverse scattering is the best developed technique for constructing novel solutions of vacuum gravity theories.
- Some three years back it was not clear how to apply such techniques to supergravities.
- Fuzzball proposal of Samir Mathur asks for certain smooth geometries.
- Only a very few fuzzballs are known for non-extremal black holes.

Summary of formalism (4 JHEP papers)

Outline

Motivation

Our Formalism

Inverse Scattering JMaRT

Future

Motivation

- Dimensionally reduced gravity theories have large U-duality groups
- These symmetries have been used to study black holes.
- In many situations these symmetries are infinite dimensional.
 - Black holes/fuzzballs in 4d (5d) have 2 (3) commuting Killing vectors. Thus we have access to symmetries of theories reduced to 2d, which are infinite dimensional.

Motivation

- We want to understand and make use of these symmetries.
- Using these symmetries one can arrive at inverse scattering techniques for supergravities.
- I will review our formalism, and present JMaRT construction.

Outline

Motivation

Our Formalism

Inverse Scattering JMaRT

Future

- Geroch group is the symmetry of 4d gravity reduced to 2d.
- 2d gravity is completely integrable, so it has infinite dimensional symmetry: the Geroch group.
- It is affine SL(2, \mathbb{R}).

- Geroch group is the symmetry of 4d gravity reduced to 2d.
- 2d gravity is completely integrable, so it has infinite dimensional symmetry: the Geroch group.
- It is affine SL(2, ℝ).
- These considerations have natural generalization
 - 5d gravity: affine SL(3)
 - minimal 5d supergravity: affine G₂₍₂₎
 - STU model: affine SO(4,4)

- Geroch group is the symmetry of 4d gravity reduced to 2d.
- 2d gravity is completely integrable, so it has infinite dimensional symmetry: the Geroch group.
- It is affine SL(2, ℝ).
- These considerations have natural generalization
 - 5d gravity: affine SL(3)
 - minimal 5d supergravity: affine G₂₍₂₎
 - STU model: affine SO(4,4)
- ► Most natural way to think about affine sl(2, R) is to think about two non-commuting sl(2, R).

Ehlers and Matzner–Misner

4d metric

$$ds^2 = -e^{-\phi}(dt + A)^2 + e^{\phi}ds_3^2$$

with $\mathcal{A}_{(1)}$ is one form and ϕ the 3d dilaton. Define $d\chi = \star_3(e^{-2\phi}\mathcal{F})$. Axion-Dilaton (ϕ, χ) SL(2)/SO(2). Ehlers SL(2).

Ehlers and Matzner–Misner

4d metric

$$ds^2 = -e^{-\phi}(dt + \mathcal{A})^2 + e^{\phi}ds_3^2$$

with $\mathcal{A}_{(1)}$ is one form and ϕ the 3d dilaton. Define $d\chi = \star_3(e^{-2\phi}\mathcal{F})$. Axion-Dilaton (ϕ, χ) SL(2)/SO(2). Ehlers SL(2).

Rewrite 4d metric

$$ds^{2} = e^{2\nu}(d\rho^{2} + dz^{2}) + g_{ab}dx^{a}dx^{b},$$
 (1)

use Einstein equations to impose

$$\det g_{ab} = -\rho^2.$$

By scaling by ρ and using the signature $\{-1, 1\}$, we construct a representative of SL(2)/SO(1,1). Matzner-Misner SL(2).

These SL(2)'s do not commute. They form affine SL(2).

Affine sl(2)

[Geroch 1971, Julia 1980]

Key elements I, Ehlers symmetry

 Consider 3d Euclidean gravity-matter system G/K. Let V be the representative of G/K. Key elements II, 2d reduction

► Now if the system admits an axial isometry ∂_φ we reduce the metric

$$ds_3^2 = f^2 ds_2^2 + \rho^2 d\phi^2.$$
 (2)

f: conformal factor;

Key elements II, 2d reduction

► Now if the system admits an axial isometry ∂_φ we reduce the metric

$$ds_3^2 = f^2(d\rho^2 + dz^2) + \rho^2 d\phi^2.$$
 (2)

f: conformal factor; and choose Weyl coordinates

Key elements II, 2d reduction

► Now if the system admits an axial isometry ∂_φ we reduce the metric

$$ds_3^2 = f^2(d\rho^2 + dz^2) + \rho^2 d\phi^2.$$
 (2)

f: conformal factor; and choose Weyl coordinates

► We seek V(t)—representative of the affine group—such that

$$\lim_{t\to 0}\mathcal{V}(t)=V$$

that solves the Lax pair.

Key elements III, solitons

Integrability of the Lax pair require certain differential equation for t.

Key elements III, solitons

Integrability of the Lax pair require certain differential equation for t.

$$t_{\pm} = \frac{1}{\rho} \left[(z - w) \pm \sqrt{(z - w)^2 + \rho^2} \right],$$
 (3)

solitons and anti-solitons [Relation to BZ], where *w* is an integration constant.

Key elements III, solitons

Integrability of the Lax pair require certain differential equation for t.

$$t_{\pm} = \frac{1}{\rho} \left[(z - w) \pm \sqrt{(z - w)^2 + \rho^2} \right],$$
 (3)

solitons and anti-solitons [Relation to BZ], where *w* is an integration constant.

t: spacetime dependent spectral parameter.
 w: spacetime independent spectral parameter.

Key elements IV, monodromy

• The involution T extends to functions $\mathcal{V}(t)$ by

$$\left(\mathcal{V}(t)\right)^{T} = \mathcal{V}^{T}\left(-\frac{1}{t}\right). \tag{4}$$

and one defines

$$\mathcal{M} = \mathcal{V}^T \left(-\frac{1}{t} \right) \mathcal{V}(t).$$
 (5)

Key elements IV, monodromy

• The involution T extends to functions $\mathcal{V}(t)$ by

$$\left(\mathcal{V}(t)\right)^{T} = \mathcal{V}^{T}\left(-\frac{1}{t}\right). \tag{4}$$

and one defines

$$\mathcal{M} = \mathcal{V}^T \left(-\frac{1}{t} \right) \mathcal{V}(t).$$
 (5)

 Using the involution symmetry of the Lax pair, one sees Breitenlohners, Maison 86; Nicolai 91

$$\partial_{\pm}\mathcal{M}(t,x) = 0 \Longrightarrow \mathcal{M}(t,x) = \mathcal{M}(w).$$
 (6)

Key elements IV, monodromy

• The involution T extends to functions $\mathcal{V}(t)$ by

$$\left(\mathcal{V}(t)\right)^{T} = \mathcal{V}^{T}\left(-\frac{1}{t}\right). \tag{4}$$

and one defines

$$\mathcal{M} = \mathcal{V}^T \left(-\frac{1}{t} \right) \mathcal{V}(t).$$
 (5)

 Using the involution symmetry of the Lax pair, one sees Breitenlohners, Maison 86; Nicolai 91

$$\partial_{\pm}\mathcal{M}(t,x) = 0 \Longrightarrow \mathcal{M}(t,x) = \mathcal{M}(w).$$
 (6)

• Under group transformations $\mathcal{M}(w)$ transforms as

$$\mathcal{M}(w) \to \mathcal{M}^{g}(w) = g^{T}(w)\mathcal{M}(w)g(w).$$
 (7)

Key elements, summary

Group action

$$V \longrightarrow \mathcal{V}(t) \longrightarrow \mathcal{M}(w) \longrightarrow \mathcal{M}^{g}(w) \longrightarrow \mathcal{V}^{g}(t) \longrightarrow V^{g}$$

Key elements, summary

Group action

$$V \longrightarrow \mathcal{V}(t) \longrightarrow \mathcal{M}(w) \longrightarrow \mathcal{M}^{g}(w) \longrightarrow \mathcal{V}^{g}(t) \longrightarrow V^{g}(t)$$

To implement

$$\mathcal{M}^{g}(w) \longrightarrow \mathcal{V}^{g}(t)$$
 (8)

one needs to solve a Riemann-Hilbert problem. For meromorphic functions this is purely algebraic.

Key elements, summary

Group action

$$V \longrightarrow \mathcal{V}(t) \longrightarrow \mathcal{M}(w) \longrightarrow \mathcal{M}^{g}(w) \longrightarrow \mathcal{V}^{g}(t) \longrightarrow V^{g}(t)$$

To implement

$$\mathcal{M}^{g}(w) \longrightarrow \mathcal{V}^{g}(t)$$
 (8)

one needs to solve a Riemann-Hilbert problem. For meromorphic functions this is purely algebraic.

Main Technical Result (Katsimpouri, Kleinschmidt, AV)

We solve this Riemann-Hilbert problem for SL(2) matrices with simple poles in *w* with residues of rank one.

Riemann-Hilbert Factorization

Let us look at symmetric SL(2) matrices with simple poles in w with residues of rank one

$$\mathcal{M}(w) = 1 + \sum_{i=1}^{N} \frac{A_i}{w - w_i}, \qquad (9)$$

with

$$\boldsymbol{A}_{i} = \boldsymbol{a}_{i} \boldsymbol{\alpha}_{i} \boldsymbol{a}_{i}^{\mathsf{T}}, \qquad (10)$$

The above $\mathcal{M}(w)$ justifies the ansatz $(t_i = t(w_i))$

$$\mathcal{V}(t,x) = V(x)A_+(t,x). \tag{11}$$

$$A_{+}(t) = 11 - \sum_{i} \frac{c_{i} t a_{i}^{T}}{1 + t t_{i}}.$$
 (12)

Riemann Hilbert Factorization, group G

SL(2)
solitons:
$$w_k$$
, $k = 1, ..., N$
vectors: a_k
matrix: Γ_{kl}

 $\begin{array}{c} \hline \\ \textbf{G} \\ \textbf{solitons: } w_k, \ k = 1, \dots, N \\ \textbf{vectors: } a_k^{\alpha}, \ \alpha = 1, \dots, r \\ \textbf{matrix: } \Gamma_{kl}^{\alpha\beta} \end{array}$

Everything boosted up to *rN* dimensional space.

STU supergravity

Example: Kerr solution in STU gravity

$$\mathcal{M}(w) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 + \frac{2m(m-w)}{w^2 - c^2} & 0 & 0 & 0 & 0 & \frac{2am}{w^2 - c^2} \\ 0 & 0 & 0 & 1 + \frac{2m(m-w)}{w^2 - c^2} & 0 & 0 & -\frac{2am}{w^2 - c^2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{2am}{w^2 - c^2} & 0 & 0 & 1 + \frac{2m(m+w)}{w^2 - c^2} & 0 \\ 0 & 0 & \frac{2am}{w^2 - c^2} & 0 & 0 & 0 & 1 + \frac{2m(m+w)}{w^2 - c^2} \end{pmatrix}$$

STU supergravity

Example: Kerr solution in STU gravity

$$\mathcal{M}(w) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 + \frac{2m(m-w)}{w^2 - c^2} & 0 & 0 & 0 & 0 & \frac{2am}{w^2 - c^2} \\ 0 & 0 & 0 & 1 + \frac{2m(m-w)}{w^2 - c^2} & 0 & 0 & -\frac{2am}{w^2 - c^2} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\frac{2am}{w^2 - c^2} & 0 & 0 & 1 + \frac{2m(m+w)}{w^2 - c^2} & 0 \\ 0 & 0 & \frac{2am}{w^2 - c^2} & 0 & 0 & 0 & 1 + \frac{2m(m+w)}{w^2 - c^2} & 0 \\ 0 & 0 & \frac{2am}{w^2 - c^2} & 0 & 0 & 0 & 0 & 1 + \frac{2m(m+w)}{w^2 - c^2} \end{pmatrix}$$

Simple poles. $w = \pm c = \pm \sqrt{m^2 - a^2}$. Rank of residue matrices in two! And need to take into account SO(4,4) group structure.

Outline

Motivation

Our Formalism

Inverse Scattering JMaRT

Future

JMaRT is the best understood non-supersymmetric fuzzball Jejjala, Madden, Ross, Titchener

- JMaRT is the best understood non-supersymmetric fuzzball Jejjala, Madden, Ross, Titchener
- Microscopic description known as a state in the D1-D5 CFT

- JMaRT is the best understood non-supersymmetric fuzzball Jejjala, Madden, Ross, Titchener
- Microscopic description known as a state in the D1-D5 CFT
- Obtained by studying over-rotating limit of 5d Cvetic-Youm metrics

- JMaRT is the best understood non-supersymmetric fuzzball Jejjala, Madden, Ross, Titchener
- Microscopic description known as a state in the D1-D5 CFT
- Obtained by studying over-rotating limit of 5d Cvetic-Youm metrics
- Extensively studied in the Fuzzball literature Chowdhry, Avery, Mathur et al

Single rotation, 2 charges

$$ds^2 = \dots \left[-f_s (dt - f_s^{-1} Mc_1 c_5 a_1 \cos^2 \theta d\phi)^2 + f(dy + f^{-1} Ms_1 s_5 a_1 \sin^2 \theta d\psi)^2 \right]$$

- $\{t, \phi\}$ and $\{y, \psi\}$ terms have similar structure
- When charges go to zero, we get over-rotating Myers-Perry

$$t \rightarrow iy$$

 $y \rightarrow it$

$$\begin{array}{rccc} t & \rightarrow & iy \\ y & \rightarrow & it \\ \theta & \rightarrow & \frac{\pi}{2} - \theta \\ \phi & \rightarrow & \psi \\ \psi & \rightarrow & \phi \end{array}$$

$$\begin{array}{rccc} t & \rightarrow & iy \\ y & \rightarrow & it \\ \theta & \rightarrow & \frac{\pi}{2} - \theta \\ \phi & \rightarrow & \psi \\ \psi & \rightarrow & \phi \\ \delta_i & \rightarrow & i\frac{\pi}{2} - \delta_i \end{array}$$

$$t \rightarrow iy$$

$$y \rightarrow it$$

$$\theta \rightarrow \frac{\pi}{2} - \theta$$

$$\phi \rightarrow \psi$$

$$\psi \rightarrow \phi$$

$$\delta_i \rightarrow i\frac{\pi}{2} - \delta_i$$

$$a_1 \rightarrow -ia_1$$

$$M \rightarrow -M$$

$$r^2 \rightarrow r^2 - M + a_1^2$$

▶ When charges go to zero, we get Euclidean MP instanton.

A new view on JMaRT

- When charges go to zero, we get Euclidean MP instanton.
- There is no under-rotating version of the instanton.

A new view on JMaRT

- When charges go to zero, we get Euclidean MP instanton.
- There is no under-rotating version of the instanton.
- Systematic construction using inverse scattering easier.

A new view on JMaRT

- When charges go to zero, we get Euclidean MP instanton.
- There is no under-rotating version of the instanton.
- Systematic construction using inverse scattering easier.
- In STU theory (SO(4,4) group) we construct MP instanton and then do appropriate charging.

A bit more detail, rod diagrams

The rod diagram (interval structure) of JMaRT is like

Outline

Motivation

Our Formalism

Inverse Scattering JMaRT

Future

 We have implemented an inverse scattering formalism for theories with G/K symmetries.

Summary

- We have implemented an inverse scattering formalism for theories with G/K symmetries.
- Our formalism is akin to the Belinski Zakharov formalism, but it works for all G, not just for SL groups.

Summary

- We have implemented an inverse scattering formalism for theories with G/K symmetries.
- Our formalism is akin to the Belinski Zakharov formalism, but it works for all G, not just for SL groups.
- We have given special emphasis on the SO(4,4) theory, and have obtained the 4-charge rotating black hole as an example.

Summary

- We have implemented an inverse scattering formalism for theories with G/K symmetries.
- Our formalism is akin to the Belinski Zakharov formalism, but it works for all G, not just for SL groups.
- We have given special emphasis on the SO(4,4) theory, and have obtained the 4-charge rotating black hole as an example.
- …and also the JMaRT fuzzball.

Future

 In longer future I want to explore multi-center instantons and black holes.

Future

- In longer future I want to explore multi-center instantons and black holes.
- There are many unanswered questions:
 - implement all this in Matzner-Misner variables.
 - understand physics of residue vectors from Lie algebra perspective.

Future

- In longer future I want to explore multi-center instantons and black holes.
- There are many unanswered questions:
 - implement all this in Matzner-Misner variables.
 - understand physics of residue vectors from Lie algebra perspective.

Thanks for your attention.