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Some context

» Tremendous progress in understanding NV = 2 supersymmetric
gauge theories: spectrum, correlators of non-local observables,
their algebra etc. [Gaiotto-Moore-Nietzke, Cecotti-Vafa .. ]

» 2d/4d connection [Alday-Gaiotto-Tachikawa]
> Relation to integrability [Nekrasov-Shatashvili-Pestun]

» Original goal of Seiberg-Witten: calculate the low energy
effective action of N' = 2 gauge theories on the Coulomb
branch.

» Do these advances help?

» Do a quiver case study ...



Plan

Main goal: calculate the prepotential of Q2-deformed
conformal quiver gauge theories:

L= 4i% Tr /d2ed2§ F(A). (1)
T

For this talk, restrict to SU(2) x SU(2) quiver.

There are many traditional ways to obtain the prepotential.

> Seiberg-Witten: calculate periods of the SW curve (¢; = 0)
» Nekrasov: equivariant localization (Q-deformed gauge theory)

We use a combination of Seiberg-Witten theory and AGT to
calculate the prepotential in the Nekrasov-Shatashvili limit

(e2=0).
Goal:
Flgiai) =Y _ a5 ... Fi,,..(a) (2)
i

Some nice results and many interesting directions to explore. . .



Set-up

>

We are interested in looking at “linear conformal quivers”.

O ON oS E

At each node, we have an SU(2) with 4 flavours and so the
gauge theory is conformal.

When all masses are set to zero, the uv-curve for this theory
takes a particularly simple form (double cover of a punctured
Riemann sphere) [Gaiotto ‘09].

For SU(2) x SU(2), we obtain (via M-theory):

Uit + Us
(t=1)(t — @)(t — q1q2)

X = ¢o(t) = ;

> ¢o(t) is a quadratic differential on C.

> g; = e2™7i where 7; is the uv coupling of the ith gauge group.

Asw = x dt is the SW differential.



Set-up

» Equivalent way to write the curve:

2 Uigot + Uy (4)
t(t—1)(t—aq)(t— a5 ")
As g; go to zero, or at weak coupling, the punctured sphere
becomes [Gaiotto]:

Figure: Punctured sphere in the weak-coupling limit

» Naturally defines A; and A, cycles in the weak-coupling limit.
» Find symplectic basis A; N B; = ¢, ;.



Periods and Seiberg-Witten theory

» The period integrals are therefore defined to be

1 [ 1 [
m= 2 [Tt Uyt m = / «(t,U)dt  (5)
q

™ Jo ™

» Usually,

» Calculate both these integrals.
> Invert them to get U;(a;).
» Do the Bi-integrals:

oF_ 1
aa,' o 2mi B

x(t, Ui(a;)) dt (6)

and integrate to get the prepotential.

» However there is a much easier way to do this if we know how
U; are related to gTI;:- directly.

» Analogous to finding Matone's relation.



Periods and Seiberg-Witten theory

>
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Claim [Krichever ‘94, Marshakov, Mironov, Morozov]:
OF
ot; '
This will be proved later using AGT.
What this means is that we can write the curve as

(g1 —1)F (1—%)’:2
tt—1)(t—q)  t(t—1)(t—g5 ')
where F; = g; g;.

Restl. ¢2 ( t) =

X*(t) =

From the period calculation a; = fA,x (t)dt

ai(F1, F2) ~ /Fi + ..

Invert (order by order in g;) and integrate w.r.t g;.

F~ Z log(qi)a? + ...

i

Very easy to calculate the prepotential as a series in g;.

(10)



The answer
F(ah qi) = Fclass. + + Z qinqg Fm,n . (11)
m,m

a1 ] q1q2
Finst(ai, qi) = ?(3% - 3%) + 5(3% - a%) + T(a% + 3%)
Q% 4 2.2 2 q% 4 2.2 2
+ ——=(13a7 — 14a7a5 + a5) + —==(13a5; — 14a7a5 + a
643%( 1 192 5) 6435( 2 192 1)
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ai
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———(3a7 — 2aja5 — a ——=(3a, — 2a7a5 — a oo (12
+64a§( 1 132 2)+64a§( 2 122 —ai) + (12)

(23a] — 26a%a3 + 3a3) + (23a3 — 26a3a3 + 3a)

Completely symmetric if we exchange (a1, q1) <> (a2, g2) and this
also matches with Nekrasov calculation.



Summary so far:

» Derive uv curve from M-theory with non-zero masses [Witten
'97].

» Find A and B cycles in the weak-coupling limit [Gaiotto].

» Use residue fomula to write the curve in terms of F;
[Marshakov et al.].

» Do only the A-periods.

> Invert and integrate to find F(a;, g;). Works easily for any
linear quiver.

» We can do independent checks: a) Nekrasov b) Thomae
formula for roots in terms of genus-2 theta functions. This
also validates our expression for the SW curve.



Directions

» One could add masses now and re-calculate periods. Harder
this time, different techniques (Picard-Fuchs equations).

» One could turn on €1, keeping e; = 0 (Nekrasov-Shatshvili
limit) and ask how one would calculate the corrections to the
prepotential.

» Will not review the Q-deformation. Two parameter
deformation of SYM theory: can be understood as a twisted
compactification of A/ =1 SYM in d = 6 on T?2. Breaks
Lorentz invariance in d = 4.

» It is crucial for the AGT correspondence.

» Next stop: Calculate e;-deformed prepotential.



AGT

(11 Vin) ., = Zu(1) Zinst(ai, mi €1, €2) - (13)
i=1

» LHS is the conformal block of Liouville CFT in d = 2, with a
specific pair of pants decomoposition.

> Znek Is the instanton partition function of a conformal
SU(2)"=3 quiver.

z2 z3 Zn—1
A? A3 Anfl
Ay A,
21 Zn
A51 AEz

Figure: Pair-of-pants decomposition of conformal block



Map of parameters [AGGTV ‘09]

» All conformal dimensions are measured in units of 4. The
Liouville central charge is c =1+ 6Q2, with Q = b+ 1/b.

These map to

€1 = bh € = % (14)

» The NS limit is taking i — 0 and b — 0 keeping
€ = h fixed . (15)
b
» The Coulomb parameters map to internal momenta:

hE = aj + %(61 + 62) . (16)

» In the massless limit, all external Ay are equal and given by

_gz_(€1+62)2 €1

Ag = — .
4 deren 4es

(17)



The SW curve

According to AGT, the quantum deformed SW curve is given by

(T V)

x* = ¢(z) = n 18
22 = I, V) (9)
The classical curve is given by the limit
|im0(—6162¢)g(2)) = ¢o(2). (19)
€1,0—

To evaluate the RHS we make use of the conformal Ward identities
and write it as

9(z) = 1 & AV, 1 i n
$3(2) T, Va) ; <(Z—Z,')2 t 2 82,-) <i1;I Va,) -




The SW curve

>

9z :# . Ai 1 i n
%(2) (I Va) ; <(z—z,-)2 - z—z 62;) <1:[1 Vol

(21)
We now use invariance of the chiral conformal block under the
L_1,0,1 generators.

We also set three points to (0,1, 00). The remaining points
are set to g; and qz_l.

This allows us to solve for the three derivatives at (0, 1, 00) in
terms of a%,.

_F
Lastly, we set (J]; Vi) ~ e <122 to get the SW curve:

(q1 — 1)671:997,;1 N (1- %)ngfc’;

2(z-1(z-aq) z(z-1)(z-)

P2(z) = (22)




Null-vectors vs. surface operators

» Claim [AGT-Gukov-Verlinde, Drukker-Gomis-Okuda-Teschner]

V(z) = <H Vini ¢'2:1(Z)>a, = Zy(1) Zinst,5(ai, mi, €1, €2; 2) .
i—1

(23)
» On the LHS, &, 1(z) is a degenrate field of the Virasoro
algebra, satisfying the null-vector condition

1
(ELgl + L—2)¢2,1 =0. (24)

» On the RHS, Zng s is the instanton partition function of the
quiver gauge theory in the presence of a surfce operator.
Operationally, what this means is that in the NS limit:

__F 1
Zinst,S(aia m;j, €1, €2; z) — €1€2 € W(z)+... (25)



Null-vector decoupling equation

» Plan: use null-vector decoupling to write a Schrodinger type
equation for the "wavefunction” W(z).

> Use the AGGVT ansatz for W(z) and take the U(1) factor to
be such that

V(o) = ai (1) (1) () e
(26)
(%Lgl + L_2)<¢271(Z) H \/I> =0. (27)

1
» Take the NS limit: the equation simplifies to the Schrodinger
form with €; playing the role of 42 and an hA-dependent
potential:

d2
(-8 + Vi) w2 =0, (28)
» The potential is of the form:

V(Z, 61) = ¢2(Z) + 6% Vg(q,-,z) (29)



Prepotential from Schrodinger equation: WKB analysis

» Use a WKB ansatz for the wavefunction:

1 z
e W(z) _. q)(Z, 61) _ eiif dz Po(z)+e1 P1(z)+... (30)

» Substituting the ansatz we find that Py = \/¢2(z): the zeroth
order wavefunction is just [GMN]
_ o] Asw
d)o(z) —e € . (31)

» This observation provides a basis for a natural extension of
SW theory to the ¢;-deformed theory:

2mia(ey) 27'riaD(€1)

P(z+A)=e a P(z2) O(z+Bj)=e 1 P(z). (32)

» Quantum monodromy conditions derived from fusion and
braiding in Liouville [DGOT, AGGTV '09]



(2-deformed prepotential from null-vector decoupling
» The (semi-classical) monodromy conditions imply

1
ai(e1) = ~5 (Po(z) + e1Pi(2) + €2Py(2) + .. ) (33)
Aj
» The first term is just the undeformed period. The claim is
that the successive WKB corrections to the wavefunction
calculates the deformed SW period.

> If we expand the periods as

ailer) = D ekal (34)

k=0

o

the first order term is zero. At second order, we find

3 1
a? = - T no_ - <q§ (17F2—TF1F+2F3)+40q1 g2 Ff) +...
VL 108,

(35)



(2-deformed prepotential from null-vector decoupling
» All odd powers vanish in this case; the next non-zero term is

2
A= B (_10F2 1 8FF —16F2) +...  (36)
1024F2
» Similarly agk) is obtained by exchanging (g1, F1) and (g2, F2).
As before, invert and we obtain F;i(aj, g;). Integrating w.r.t g,
we obtain F(aj, g;).

» The result matches with the Nekrasov calculation (which is
much harder to do) up to 4 instantons.

» So, in the NS limit, the e;-corrected prepotential is obtained
from a wavefunction that solves a quantum problem with
¢2(z) as the potential (4-corrections), which satisfies
monodromy conditons.



Things to do

» Doing the massive case turns out to be useful: our earlier
claim needs to be modified

F
Res; x2(t) = g + corrections (37)

i

» The corrections include AGT-prefactors (now
mass-dependent).

» The SW curve with masses obviously distinguishes (mz, m»)
and (ms3, mg). For a single gauge group, how to restore this?

» Difficult to do the general massive quiver case by factorizing
polynomials. Calculate periods using Picard-Fuchs equations.



Take-home messages

» AGT helps to solve for the prepotential of undeformed
conformal quiver theories by giving you Matone's relation.

» The instanton partition function is the wavefunction of a
quantum mechanical system in the NS limit. This follows
from null-vector decoupling in the Liouville CFT.

» The monodromy relations give you deformed periods of the
gauge theory.



More interesting things to do

» How about gauge theories with no AGT-dual?

» Nekrasov-Pestun-Shatashvili have written down SW curves for
any Q-deformed (conformal) quiver gauge theory as difference
equations.

» In the NS limit, for the (SU(2))" quiver, these reduce to Ward
identities of Liouville theory. So this method could be applied

to any gauge theory to calculate the prepotential.

» Does a WKB type solution still work?



More interesting things to do

» What about null vectors at higher level? Can they be used to
solve for the prepotential along similar lines?

» What about W)y algebras for higher rank quivers?



Even more interesting things to do

» The calculation of €7 corrections reduced to a QM problem,

1
with i = €1. Are there non-perturbative O(e 1) corrections
to the prepotential? Interpretation?

» How does one include € corrections systematically?



From the prepotential to the SW curve

» According to SW, the data of the low energy effective action
is encoded in the SW curve. In particular,

PF

= m (38)

Tij

is the period matrix of the SW curve. Recall that the SW
differential is

upt + tn
A= x(t)dt = \/t(t =Dt —q)(t—1/q)

Differentiating w.r.t the u; we get

ox  dt o\ tdt
— == == 40

dt . (39)

where

y2=t(t—1)(t—q)(t —1/q)(t + /) .  (41)



For the quiver . ..

» The SW curve is of genus two:

yr=t(t—1)(t—)(t— )t —G). (42)
> Suppose you know the period matrix of the curve 7 [IR].

» There are expressions for the roots in terms of theta constants
of the genus-2 curve with given period matrix.

» But we know that (; = ¢; and (o = q2_1 etc. [uv]

> There are three dimensionless uv parameters: (g1, g2, ).
There are three IR parameters 7. The theta constants
provide the map between these two sets.



Geometry of the SW curve
» Given the period matrix 7, define
Q = e/m . Q= e/mT22 ’ Q — /™2 (43)
The genus-2 theta-constants are defined as follows:
€ i e/)T € e/2)Te
9[ y } =Y e [(kre/2)T 7 (kke/2)+(ete/TN]  (44)
kez?

where ¢, € are two 2-vectors.
» The cross ratios (1, (2, (3 can be written in terms of
theta-constants:

el el
1= , G = .
(2 le[2) e[l X

> Is this consistent if we input the 7;; obtained from the
prepotential .. ? YES! (1 =qrand o =¢q,' (3~ — 4

u”



