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Some context

I Tremendous progress in understanding N = 2 supersymmetric
gauge theories: spectrum, correlators of non-local observables,
their algebra etc. [Gaiotto-Moore-Nietzke, Cecotti-Vafa . . .]

I 2d/4d connection [Alday-Gaiotto-Tachikawa]

I Relation to integrability [Nekrasov-Shatashvili-Pestun]

I Original goal of Seiberg-Witten: calculate the low energy
effective action of N = 2 gauge theories on the Coulomb
branch.

I Do these advances help?

I Do a quiver case study ...



Plan

I Main goal: calculate the prepotential of Ω-deformed
conformal quiver gauge theories:

L =
1

4π
=Tr

∫
d2θd2θ̃ F (A) . (1)

I For this talk, restrict to SU(2)× SU(2) quiver.

I There are many traditional ways to obtain the prepotential.
I Seiberg-Witten: calculate periods of the SW curve (εi = 0)
I Nekrasov: equivariant localization (Ω-deformed gauge theory)

I We use a combination of Seiberg-Witten theory and AGT to
calculate the prepotential in the Nekrasov-Shatashvili limit
(ε2 = 0).

I Goal:
F (qi , ai ) =

∑
qi

qk1
1 qk2

2 . . .Fk1,k2,...(ai ) (2)

I Some nice results and many interesting directions to explore. . .



Set-up

I We are interested in looking at “linear conformal quivers”.

I At each node, we have an SU(2) with 4 flavours and so the
gauge theory is conformal.

I When all masses are set to zero, the uv-curve for this theory
takes a particularly simple form (double cover of a punctured
Riemann sphere) [Gaiotto ‘09].

I For SU(2)× SU(2), we obtain (via M-theory):

x2 = φ2(t) =
U1t + U2

t(t − 1)(t − q2)(t − q1q2)
(3)

I φ2(t) is a quadratic differential on C .

I qi = e2πiτi , where τi is the uv coupling of the ith gauge group.

I λSW = x dt is the SW differential.



Set-up

I Equivalent way to write the curve:

x2 =
U1q2t + U2

t(t − 1)(t − q1)(t − q−1
2 )

(4)

As qi go to zero, or at weak coupling, the punctured sphere
becomes [Gaiotto]:

Figure: Punctured sphere in the weak-coupling limit

I Naturally defines A1 and A2 cycles in the weak-coupling limit.

I Find symplectic basis Ai ∩ Bj = δi ,j .



Periods and Seiberg-Witten theory

I The period integrals are therefore defined to be

a1 =
1

πi

∫ q1

0
x(t,Ui ) dt a2 =

1

πi

∫ ∞
q−1

2

x(t,Ui ) dt (5)

I Usually,
I Calculate both these integrals.
I Invert them to get Ui (ai ).
I Do the Bi -integrals:

∂F

∂ai
=

1

2πi

∫
Bi

x(t,Ui (ai )) dt (6)

and integrate to get the prepotential.

I However there is a much easier way to do this if we know how
Ui are related to ∂F

∂qi
directly.

I Analogous to finding Matone’s relation.



Periods and Seiberg-Witten theory
I Claim [Krichever ‘94, Marshakov, Mironov, Morozov]:

Resti φ2(t) =
∂F

∂ti
. (7)

I This will be proved later using AGT.
I What this means is that we can write the curve as

x2(t) =
(q1 − 1)F1

t(t − 1)(t − q1)
+

(1− 1
q2

)F2

t(t − 1)(t − q−1
2 )

(8)

where Fi = qi
∂F
∂qi

.

I From the period calculation ai =
∮
Ai

x(t)dt ,

ai (F1,F2) ∼
√

Fi + . . . (9)

I Invert (order by order in qi ) and integrate w.r.t qi .

F ∼
∑

i

log(qi )a
2
i + . . . (10)

I Very easy to calculate the prepotential as a series in qi .



The answer

F (ai , qi ) = Fclass. + F1-loop +
∑
m,m

qm
1 qn

2 Fm,n . (11)

Finst(ai , qi ) =
q1

2
(a2

1 − a2
2) +

q2

2
(a2

2 − a2
1) +

q1q2

4
(a2

1 + a2
2)

+
q2
1

64a2
1

(13a4
1 − 14a2

1a
2
2 + a2

2) +
q2
2

64a2
2

(13a4
2 − 14a2

1a
2
2 + a2

1)

q3
1

192a2
1

(23a4
1 − 26a2

1a
2
2 + 3a4

2) +
q3
2

192a2
2

(23a4
2 − 26a2

1a
2
2 + 3a4

1)

+
q2
1q2

64a2
1

(3a4
1 − 2a2

1a
2
2 − a4

2) +
q1q

2
2

64a2
2

(3a4
2 − 2a2

1a
2
2 − a4

1) + . . . (12)

Completely symmetric if we exchange (a1, q1)↔ (a2, q2) and this
also matches with Nekrasov calculation.



Summary so far:

I Derive uv curve from M-theory with non-zero masses [Witten
’97].

I Find A and B cycles in the weak-coupling limit [Gaiotto].

I Use residue fomula to write the curve in terms of Fi

[Marshakov et al.].

I Do only the A-periods.

I Invert and integrate to find F (ai , qi ). Works easily for any
linear quiver.

I We can do independent checks: a) Nekrasov b) Thomae
formula for roots in terms of genus-2 theta functions. This
also validates our expression for the SW curve.



Directions

I One could add masses now and re-calculate periods. Harder
this time, different techniques (Picard-Fuchs equations).

I One could turn on ε1, keeping ε2 = 0 (Nekrasov-Shatshvili
limit) and ask how one would calculate the corrections to the
prepotential.

I Will not review the Ω-deformation. Two parameter
deformation of SYM theory: can be understood as a twisted
compactification of N = 1 SYM in d = 6 on T 2. Breaks
Lorentz invariance in d = 4.

I It is crucial for the AGT correspondence.

I Next stop: Calculate ε1-deformed prepotential.



AGT

〈 n∏
i=1

Vmi

〉
ai

= ZU(1) Zinst(ai ,mi , ε1, ε2) . (13)

I LHS is the conformal block of Liouville CFT in d = 2, with a
specific pair of pants decomoposition.

I ZNek is the instanton partition function of a conformal
SU(2)n−3 quiver.

Figure: Pair-of-pants decomposition of conformal block



Map of parameters [AGGTV ‘09]

I All conformal dimensions are measured in units of ~. The
Liouville central charge is c = 1 + 6Q2, with Q = b + 1/b.
These map to

ε1 = b~ ε2 =
~
b

(14)

I The NS limit is taking ~→ 0 and b → 0 keeping

ε1 =
~
b

fixed . (15)

I The Coulomb parameters map to internal momenta:

~ξi = ai +
1

2
(ε1 + ε2) . (16)

I In the massless limit, all external ∆k are equal and given by

∆0 =
Q2

4
=

(ε1 + ε2)2

4ε1ε2
→ ε1

4ε2
. (17)



The SW curve

According to AGT, the quantum deformed SW curve is given by

x2 = φq
2(z) =

〈T (z)
∏n

i=1 Vαi 〉
〈
∏n

i=1 Vαi 〉
. (18)

The classical curve is given by the limit

lim
ε1,2→0

(−ε1ε2φq
2(z)) = φ2(z) . (19)

To evaluate the RHS we make use of the conformal Ward identities
and write it as

φq
2(z) =

1

〈
∏n

i=1 Vαi 〉

n∑
i=1

(
∆i

(z − zi )2
+

1

z − zi

∂

∂zi

)
〈

n∏
i=1

Vαi 〉 .

(20)



The SW curve

I

φq
2(z) =

1

〈
∏n

i=1 Vαi 〉

n∑
i=1

(
∆i

(z − zi )2
+

1

z − zi

∂

∂zi

)
〈

n∏
i=1

Vαi 〉 .

(21)
We now use invariance of the chiral conformal block under the
L−1,0,1 generators.

I We also set three points to (0, 1,∞). The remaining points
are set to q1 and q−1

2 .

I This allows us to solve for the three derivatives at (0, 1,∞) in
terms of ∂

∂qi
.

I Lastly, we set 〈
∏

i Vi 〉 ∼ e
− F
ε1ε2 to get the SW curve:

φ2(z) =
(q1 − 1)q1

∂F
∂q1

z(z − 1)(z − q1)
+

(1− 1
q2

)q2
∂F
∂q2

z(z − 1)(z − 1
q2

)
. (22)



Null-vectors vs. surface operators

I Claim [AGT-Gukov-Verlinde, Drukker-Gomis-Okuda-Teschner]

Ψ(z) :=
〈 n∏

i=1

Vmi Φ2,1(z)
〉
ai

= ZU(1) Zinst,S(ai ,mi , ε1, ε2; z) .

(23)

I On the LHS, Φ2,1(z) is a degenrate field of the Virasoro
algebra, satisfying the null-vector condition

(
1

b2
L2
−1 + L−2)Φ2,1 = 0 . (24)

I On the RHS, Zinst,S is the instanton partition function of the
quiver gauge theory in the presence of a surfce operator.
Operationally, what this means is that in the NS limit:

Zinst,S(ai ,mi , ε1, ε2; z) =
− F
ε1ε2
− 1
ε1

W (z)+...
(25)



Null-vector decoupling equation
I Plan: use null-vector decoupling to write a Schrodinger type

equation for the “wavefunction” Ψ(z).
I Use the AGGVT ansatz for Ψ(z) and take the U(1) factor to

be such that

Ψ(z) = q...1 q...2 (1−q1)...(1−q2)...(1−q1q2)... e
− Finst
ε1ε2
−W (z)

ε1
+...

(26)

I

(
1

b2
L2
−1 + L−2)〈Φ2,1(z)

∏
i

Vi 〉 = 0 . (27)

I Take the NS limit: the equation simplifies to the Schrodinger
form with ε1 playing the role of ~ and an ~-dependent
potential: (

−ε21
d2

dz2
+ V (z , ε1)

)
Ψ(z) = 0 , (28)

I The potential is of the form:

V (z , ε1) = φ2(z) + ε21 V2(qi , z) (29)



Prepotential from Schrodinger equation: WKB analysis

I Use a WKB ansatz for the wavefunction:

e
− 1
ε1

W (z)
=: Φ(z , ε1) = e

− 1
ε1

R z dz P0(z)+ε1 P1(z)+...
(30)

I Substituting the ansatz we find that P0 =
√
φ2(z): the zeroth

order wavefunction is just [GMN]

Φ0(z) = e
− 1
ε1

R z λSW . (31)

I This observation provides a basis for a natural extension of
SW theory to the ε1-deformed theory:

Φ(z+Ai ) = e
2πia(ε1)
ε1 Φ(z) Φ(z+Bi ) = e

2πiaD (ε1)

ε1 Φ(z) . (32)

I Quantum monodromy conditions derived from fusion and
braiding in Liouville [DGOT, AGGTV ‘09]



Ω-deformed prepotential from null-vector decoupling

I The (semi-classical) monodromy conditions imply

ai (ε1) = − 1

2πi

∮
Ai

(
P0(z) + ε1P1(z) + ε21P2(z) + . . .

)
(33)

I The first term is just the undeformed period. The claim is
that the successive WKB corrections to the wavefunction
calculates the deformed SW period.

I If we expand the periods as

ai (ε1) =
∞∑

k=0

εk1 a
(k)
i , (34)

the first order term is zero. At second order, we find

a
(2)
1 = − 3q1

16
√

F1
− 1

128F
5
2
1

(
q2
1 (17F 2

1−7F1F2+2F 2
2 )+40q1q2 F 2

1

)
+. . .

(35)



Ω-deformed prepotential from null-vector decoupling

I All odd powers vanish in this case; the next non-zero term is

a
(4)
1 =

q2
1

1024F
7
2
1

(
− 19F 2

1 + 8F1F2 − 16F 2
2

)
+ . . . (36)

I Similarly a
(k)
2 is obtained by exchanging (q1,F1) and (q2,F2).

As before, invert and we obtain Fi (ai , qi ). Integrating w.r.t qi ,
we obtain F (ai , qi ).

I The result matches with the Nekrasov calculation (which is
much harder to do) up to 4 instantons.

I So, in the NS limit, the ε1-corrected prepotential is obtained
from a wavefunction that solves a quantum problem with
φ2(z) as the potential (+corrections), which satisfies
monodromy conditons.



Things to do

I Doing the massive case turns out to be useful: our earlier
claim needs to be modified

Resti x
2(t) =

∂F

∂ti
+ corrections (37)

I The corrections include AGT-prefactors (now
mass-dependent).

I The SW curve with masses obviously distinguishes (m1,m2)
and (m3,m4). For a single gauge group, how to restore this?

I Difficult to do the general massive quiver case by factorizing
polynomials. Calculate periods using Picard-Fuchs equations.



Take-home messages

I AGT helps to solve for the prepotential of undeformed
conformal quiver theories by giving you Matone’s relation.

I The instanton partition function is the wavefunction of a
quantum mechanical system in the NS limit. This follows
from null-vector decoupling in the Liouville CFT.

I The monodromy relations give you deformed periods of the
gauge theory.



More interesting things to do

I How about gauge theories with no AGT-dual?

I Nekrasov-Pestun-Shatashvili have written down SW curves for
any Ω-deformed (conformal) quiver gauge theory as difference
equations.

I In the NS limit, for the (SU(2))n quiver, these reduce to Ward
identities of Liouville theory. So this method could be applied
to any gauge theory to calculate the prepotential.

I Does a WKB type solution still work?



More interesting things to do

I What about null vectors at higher level? Can they be used to
solve for the prepotential along similar lines?

I What about WN algebras for higher rank quivers?



Even more interesting things to do

I The calculation of ε1 corrections reduced to a QM problem,

with ~ = ε1. Are there non-perturbative O(e
− 1
ε1 ) corrections

to the prepotential? Interpretation?

I How does one include ε2 corrections systematically?



From the prepotential to the SW curve

I According to SW, the data of the low energy effective action
is encoded in the SW curve. In particular,

τij =
∂2F

∂ai∂aj
(38)

is the period matrix of the SW curve. Recall that the SW
differential is

λ = x(t)dt =

√
u2t + u1

t(t − 1)(t − q1)(t − 1/q2)
dt . (39)

Differentiating w.r.t the ui we get

∂λ

∂u1
=

dt

y
,

∂λ

∂u2
=

t dt

y
, (40)

where

y2 = t(t − 1)(t − q1)(t − 1/q2)(t + u1/u2) . (41)



For the quiver . . .

I The SW curve is of genus two:

y2 = t(t − 1)(t − ζ1)(t − ζ2)(t − ζ3) . (42)

I Suppose you know the period matrix of the curve τij [IR].

I There are expressions for the roots in terms of theta constants
of the genus-2 curve with given period matrix.

I But we know that ζ1 = q1 and ζ2 = q−1
2 etc. [uv]

I There are three dimensionless uv parameters: (q1, q2,
a1
a2

).
There are three IR parameters τij . The theta constants
provide the map between these two sets.



Geometry of the SW curve
I Given the period matrix τ , define

Q1 = e iπτ11 , Q2 = e iπτ22 , Q̂ = e iπτ12 . (43)

The genus-2 theta-constants are defined as follows:

θ
[ ε
ε′

]
≡
∑
k∈Z2

eπi [(k+ε/2)T τ (k+ε/2)+(k+ε/2)T ε′)] , (44)

where ε, ε′ are two 2-vectors.
I The cross ratios ζ1, ζ2, ζ3 can be written in terms of

theta-constants:

ζ1 =

θ2
[ 10

00

]
θ2
[ 11

00

]
θ2
[ 01

00

]
θ2
[ 00

00

] , ζ2 =

θ2
[ 10

00

]
θ2
[ 00

11

]
θ2
[ 01

00

]
θ2
[ 11

11

] . (45)

I Is this consistent if we input the τij obtained from the
prepotential .. ? YES! ζ1 = q1 and ζ2 = q−1

2 . ζ3 ∼ −u1
u2

.


