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PLAN

• MOTIVATION: Sakai Sugimoto model...BCS instability and

tachyonic instability

• INTERSECTING D1-BRANES: A simpler problem with
relevant features

• TACHYONIC INSTABILITY: the zero temperature spectrum

• FINITE TEMPERATURE CORRECTIONS: two-point
functions, UV, IR divergences

• CONCLUSION
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MOTIVATION: Sakai-Sugimoto

• Sakai-Sugimoto model: A string theoretic model for Quantum
Chromodynamics (QCD) giving a holographic description.

• Construction:

• A background consisting of Nc number of overlapping
D4-branes compactified on an S1(Witten,’98).

• Imposing anti-periodic boundary conditions on the S1 breaks
Supersymmetry. Scalars and fermions are massive at 1-loop
and low energy theory is SU(Nc) pure YM. (boundary)

• Insertion of Nf number of probe D8 and D̄8-branes on the
background (transverse to the S1)(bulk).
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MOTIVATION: Chiral symmetry breaking in SS-model

• The SS-model demonstrates Chiral Symmetry Breaking
geometrically.

• Holography: U(Nf )L × U(Nf )R symmetry of QCD = gauge
symmetry of the Nf number of D8− D̄8 pairs in the bulk.

• There is an upper cutoff for the radial direction(SUGRA) to
the S1 transverse to the D8− D̄8. As the radial coordinate
approaches this cutoff the size of the S1 shrinks.

• D8− D̄8-pair merges into D8-brane,

• U(Nf )L × U(Nf )R → U(Nf )L.
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MOTIVATION

• In conventional QCD The Nambu, Jona-Lasinio-model of
chiral symmetry breaking elucidates certain apparent
similarities between chiral symmetry breaking and the BCS
instability in superconductors.

• Inspired by this similarity, a holographic model of BCS
superconductivity has been proposed within the broken chiral
symmetric scenario in the Sakai Sugimoto model.(N. Sarkar,
S. Sarkar, B. Sathiapalan, K. Rama)

• proposal: BCS instability (Cooper pairing between Baryons) in
the boundary(D4 wrapped on S1) corresponds to tachyonic
instability in the bulk (D8).
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MOTIVATION: INTERSECTING D8-BRANES

• The formation of Cooper pairs in the boundary: introduce a
finite Baryon number density on the boundary theory i.e. a
Chemical Potential for Baryon number.

• How?: A point source of Baryon number in the bulk which
creates a cusp singularity in the bulk. For two D8-branes,
SU(2) is broken and the branes intersect at one angle
between them.(Bergman, Lifschytz, Lippert)

• In the SS-model a configuration of two intersecting D8-branes
were found to have a tachyonic instability in the bulk
spectrum which is proposed to correspond to Cooper pairing
instability in the boundary theory.(B. Sathiapalan, et.al.)
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INTERSECTING D8-BRANES

• The tachyon mode is identified as the lowest mode in the
open string excitation between the intersecting branes. (B
Sathiapalan et. al., K. Hashimoto & Nagaoka, A. Hashimoto
& Taylor)

• There is a stable minimum in the presence of electric
field.(B.Sathiapalan et.al.)

• Another way of stabilizing: Finite temperature field theory.

• Computation: Finite temperature one-loop mass-squared
corrections to the tree-level tachyon.

• Finite temperature effects : Existence of Tc at which the
effective mass-squared of the tachyon vanish. Our main goal
is to calculate the Tc.
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INTERSECTING D8-BRANES

• However this problem is difficult to handle in the case of
D8-branes on a curved D4-background. But many of the
technical features are captured by a much simpler set-up
consisting of two intersecting D1-branes on a flat background.

• We choose to study the finite temperature effects in this
simpler set-up. We are able to do so because the tachyon
dynamics is a local phenomenon and not influenced
significantly by curvature effects.
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Validity

• The low energy theory on the brane can be described by the
DBI action for the massless fields on the brane. This is valid
as long as only energies << 1

α′ are being probed.

• We can study this as a quantum theory with a cutoff Λ < 1√
α
′

and proceed to study the corrections due to the massless
mode quantum and thermal fluctuations.

• The Yang-Mills action (in D ≤ 3 + 1) is finite.

• Thermal corrections should be unambiguously finite.

• Supersymmetry ensures finiteness.
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INTERSECTING Dp-BRANES

• Consider two Dp-branes: world-volume:
Sp+1 =

1
g2
YM

tr
∫
dpx

[
−1

2FµνF
µν +DµΦID

µΦI + 1
2 [ΦI ,ΦJ ]2

]
+

Fermions

• a = {1, 2, 3}= SU(2) gauge index,

• I = 1, · · · , 8= transverse directions.

• Background : 〈Φ3
1〉 = qx, separation between branes;

• x : world-volume. (Hashimoto, Nagaoka, D.Lust et al, etc.)

• Slope: q =
(

1
πα′

)
tan( θ2).

• q = 0: Coincident branes.

• Putting Aa0 = 0 removes ghosts.
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INTERSECTING Dp-BRANES: SPECTRUM OF BOSONS

• The background fields : {(Φ1
1B, A

2
xB); (Φ2

1B, A
1
xB)}. The

Lagrangian for the background fields decouple into two pieces,
one for each of these doublets.

• Define bosonic doublets (τ = it).

ζ(x, τ) =

(
A2
xB(x, τ)

Φ1
1B(x, τ)

)
, ζ

′
(x, τ) =

(
A1
xB(x, τ)

Φ2
1B(x, τ)

)
• In each doublet the fields satisfy a set of coupled differential

equations.

• There are two sectors of solutions: m2
n = (2n− 1) q

g2
YM

,

m2
n = 0. Two different sets of normalized eigenfunctions for

each of these doublet fields.
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INTERSECTING Dp-BRANES: SPECTRUM OF BOSONS

• (A2
x,Φ

1
1), (A

1
x,Φ

2
1):

• Normalized Eigenfunctions: m2
n = (2n−1)q

g2
YM

An(x) = ±N e−
qx2

2 (Hn(
√
qx) + 2nHn−2(

√
qx)) eikαx

α
,

Φn(x) = N e−
qx2

2 (Hn(
√
qx)− 2nHn−2(

√
qx)) eikαx

α
,

n 6= 1.

Normalized Eigenfunctions: m2
n = 0

Ãn(x) = ±N ′e−
qx2

2 (Hn(
√
qx)− 2(n− 1)Hn−2(

√
qx)) eikαx

α
,

Φ̃n(x) = Ñ e−
qx2

2 (Hn(
√
qx) + 2(n− 1)Hn−2(

√
qx)) eikαx

α
,

n 6= 0.
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INTERSECTING Dp-BRANES:SPECTRUM OF BOSONS

• We turn on all the other fields as fluctuations. For the other
bosonic fields:

Φ1,2
In (x) = N 1,2e−

qx2

2 Hn(
√
qx)eikαx

α
, m2

n = (2n+ 1)
q

g2YM

where I 6= 1

• The third gauge components of all fields are massless

• {A3
x, A

3
α,Φ

3
I} ∼ eik.x
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INTERSECTING D1-BRANES:FERMIONS

• The fermions in the picture play a crucial role in ensuring the
UV finiteness of one-loop computations.

• We shall restrict our discussion to only D1-branes now. We
have a complete calculation for this case. For D2 and D3-
branes the work is still in progress.

• The fermions: sixteen left and sixteen right moving
Majorana-Weyl fermions, grouped into two different sets of
eight pairs distinguished by their e.o.m.

(∂0 + ∂x)L± qxR = 0

(−∂0 + ∂x)R± qxL = 0
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INTERSECTING D1-BRANES:SPECTRUM:FERMIONS

• The Eigenfunctions for the Fermions: mn = ±
√

2nq

Ln = Nfe−
qx2

2

(
− i√

2n
Hn(
√
qx) +Hn−1(

√
qx)

)
Rn = ±Nfe−

qx2

2

(
− i√

2n
Hn(
√
qx)−Hn−1(

√
qx)

)
and their complex conjugates.

• L3
i and R3

i are massless fermions(plane waves).
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TACHYON INSTABILITY

• The bosonic doublets ζk are eigenvectors corresponding to the
mass squared eigenvalue:

m2
k = λk =

(2k − 1)q

g2YM

where k = 0 corresponds to tachyonic modes.
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FINITE TEMPERATURE CORRECTIONS

• Main Idea: We implement the background field method

• Fluctuations participate only at the level of loop.

• We use perturbation theory to construct the full spectrum for
the fluctuations.

• Technical Difficulties:

• Harmonic Oscillator basis

• Bosonic amplitudes (two-point functions for tachyon):
problem of IR + UV divergences

• IR div. occur due to massless fields in the loops

UV div ∼
∑
n

1√
n

arise from Quantum Corrections(T = 0)

• Fermionic amplitudes: problem of UV divergences
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FINITE TEMPERATURE CORRECTIONS

• IR problem: A two-step Resolution

• Step 1: Calculate the finite T 1-loop mass-corrections for the
massless fields namely, Φ3

1, Φ3
I , (I 6= 1) and A3

x.

• m2
n = 0: Infinitely degenerate massless modes corresponding

to the zero eigenvalue sector: diagonalized mass matrices as a
function of temperature (numerically).

• Step 2: These temperature dependent masses modify the
propagators in the tachyonic amplitudes.

• The tachyon two-point functions are computed
self-consistently (numerical computation).
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FINITE TEMPERATURE CORRECTIONS

• UV problem: for all fields.

• Finite T 1-loop bosonic and fermionic amplitudes: Each term
is UV divergent.

• Sum over discrete momemtum n (fields coupled to the
background are massive)

• integral over continuous momemtum (massless modes).

• Compute the integrals involved in the vertices and expand the
sums over n about n =∞: leading order 1√

n
.

• Cancellation between Bosonic and fermionic terms yeilds finite
answer.
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FINITE TEMPERATURE CORRECTIONS

• No divergence from temp-dependent part.

• One-loop corrections to the tachyon mass term: set all
external momenta in the Feynman diagrams = 0 and
integrate/sum over the loop momenta.
One-loop diagrams:

c2c1

c1 c2

s1
s2

Figure : one-loop bosons

c1 c2

s2

Figure : one-loop fermions
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FINITE TEMPERATURE CORRECTIONS

• What do we expect?: Tachyon: tree-level mass squared =
− q
g2
YM

.

• Corrections: Quantum Corrections(T = 0) + Thermal
Corrections (T 6= 0).

• Expand the finite temperature integrands and summands
about β = 0: Leading order behaviour is given by 1

β
√
q .

• The parameter q provides a scale for supersymmetry breaking.
The effective mass of the tree-level tachyon

m2(q, T ) = − q

g2YM
+

(
m2

0 +
T
√
q

(
∑
n

1√
λn

+ · · · ) +O(
g2YM
q

)

)

• m2
0: Quantum corrections (T = 0). Only true for

1 + 1-dimensions.
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FINITE TEMPERATURE CORRECTIONS (MASSLESS
FIELDS)

Sample plot for massless field : Φ3
I , m2

0 = 1.6g2YM
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FINITE TEMPERATURE CORRECTIONS

• Numerical Plot: m2(q, T ) vs T , |g2YM | = 1/100.

Figure : Mass-squared Vs β Figure : Mass-squared Vs T
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FINITE TEMPERATURE CORRECTIONS

•

Tc =
∑
n

(
1√
λn

+ · · ·
)(
√
q

(
q

g2YM
− m̃2

0

))
(0.1)

m̃2
0 = 1.6 is the dimensionless zero temperature quantum

correction.

q Tc (leading order analytical) Tc (numerical)

0.1 3.34 3.38

0.2 9.48 9.51

0.3 16.73 16.79

Table : Comparing between analytical and numerical values of Tc

.
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CONCLUSION

• The finite temperature effects remove the tachyon instability
in intersecting D1-branes and stabilize the configuration.

• The effective mass-squared of the tree-level tachyon grows
linearly with temperature as expected in (1 + 1)-dimensions.

• The zero temperature quantum corrections are independent of
the parameter q (1 + 1-dim.).

• At finite temperature the superconducting instability transits
into a stable normal phase.

• This phenomenon bears the hallmark of a phase transition.
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FUTURE DIRECTIONS

• To do the full stability analysis we must compute the full
finite temperature effective action for the tachyon, which calls
for computing higher point functions.

• Our results can be generalized to higher dimensional
branes(D2 and D3) without much difficulty. It will be
interesting to study the issue of phase transition in higher
dimensions. (ongoing)

• By scaling arguments(scaling the integrals by powers of β) we
see that the finite temperature bhaviour in p+ 1-dims
(p > 1)is T p−1.

• Question of adding α
′
-corrections in the loop may be

interesting.

• Open string world-sheet perspective : calculating the annular
amplitudes at finite T.
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THANK YOU!
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FINITE TEMPERATURE CORRECTIONS

• The one-loop corrections from the bosonic diagrams with 4-pont vertex

Σ
1
(w,w

′
, k, k

′
, β, q)

=
1

2
N
∑
m

∑
n

F1(k, k
′
, n, n)

ω2
m + λn

+
F̃1(k, k

′
, n, n)

ω2
m

+
7F2(k, k

′
, n, n)

ω2
m + γn


+

∫
dl

(2π
√
q)

 7F
′
2(k, k

′
, l,−l)

ω2
m + l2

+
F
′
3(k, k

′
, l,−l)

ω2
m + l2


+

∫
dl

2π
√
q

F3(k, k
′
, l,−l)

ω2
m

 δ
w+w

′ (0.2)

• where F ’s denote the four point vertices in this expression.

V
4
i = −

N

g2
F4
i (k, k

′
, n/l, n

′
/l
′
)δ
w+w

′
+m+m

′ (0.3)

N =
√
q/β.
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FINITE TEMPERATURE CORRECTIONS

• The one-loop corrections from the bosonic diagrams with 3-pont vertex

Σ
2
(w,w

′
, k, k

′
, β, q) = −

1

2
qN

∑
m,n

∫ dl

2π
√
q

F4(k, l, n)F∗4 (k
′
, l, n)

(ω2
m + λn)ω2

m
′

+

∫
dl

2π
√
q

F̃4(k, l, n)F̃∗4 (k
′
, l, n)

ω2
mω

2

m
′

+

∫
dl

2π
√
q

 7F5(k, l, n)F∗5 (k
′
,−l, n)

(ω2
m + γn)(ω2

m
′ + l2)

+
F
′
5(k, l, n)F

′∗
5 (k

′
,−l, n)

(ω2
m + λn)(ω2

m
′ + l2)


+

∫
dl

2π
√
q

F̃
′
5(k, l, n)F̃

′∗
5 (k

′
,−l, n)

(ω2
m)(ω2

m
′ + l2)

 δ
w+w

′ (0.4)

V
3
i = −

N
3
2

g2
F3
i (k, k

′
, n/l, n

′
/l
′
)δ
w+w

′
+m+m

′ (0.5)
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FINITE TEMPERATURE CORRECTIONS

• After performing the Matsubara sums, the mass correction for the four-point vertices become

Σ
1
(k, k

′
, β, q) =

1

2

∑
n

F1(k, k
′
, n, n)√

(2n− 1)

(
1

2
+

1

eβ
√

(2n−1)q − 1

)

+
∑
m

 F̃1(k, k
′
, n, n)

ω2
m

+

∫
dl

2π
√
q

F3(k, k
′
, l− l)

ω2
m


+

∑
n

 7F2(k, k
′
, n, n)√

(2n + 1)

(
1

2
+

1

eβ
√

(2n+1)q − 1

)
+

(∫
dl

(2π
√
q)

15N

2l2
((βl/2) coth(βl/2)− 1)

)]
(0.6)
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FINITE TEMPERATURE CORRECTIONS

The mass correction for the three-point vertices after the Matsubara sum assumes the form

Σ
2
(k, k

′
, β, q)

= −
1

2

∑
n

∫ dl

2π
√
q

F4(k, l, n)F∗4 (k
′
, l, n)

2n− 1

[( √
q

βω2
m

−
1

√
2n− 1

(
1

2
+

1

e
√

(2n−1)qβ − 1

))]

+

∫
dl

2π
√
q

∑
m

F̃4(k, l, n)F̃∗4 (k
′
, l, n)

ω4
m

+

∫
dl

2π
√
q

 7F5(k, l, n)F∗5 (k
′
,−l, n)

l2 − (2n + 1)q

(
1

√
2n + 1

(
1

2
+

1

e
√

(2n+1)qβ − 1

)

−
1

l

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

F ′5(k, l, n)F
′∗
5 (k

′
,−l, n)

l2 − (2n− 1)q

(
1

√
2n− 1

(
1

2
+

1

e
√

(2n−1)qβ − 1

)

−
1

l

(
1

2
+

1

elβ − 1

))]

+

∫
dl

2π
√
q

F̃
′
5(k, l, n)F̃

′∗
5 (k

′
,−l, n)

l2

 √
q

βω2

m
′
−

1

l

(
1

2
+

1

elβ − 1

) δ
w+w

′

(0.7)
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FINITE TEMPERATURE CORRECTIONS

• The fermionic corrections are accompanied with diagrams with only 3-point vertices.

Σ
3
(w,w

′
, k, k

′
, β, q) =(8N)

∑
n,m,m

′

∫
dl

2π
√
q

1

(iωm +
√
λ
′
n)

× [
FR6 (k, n, l)FR∗6 (k

′
, n, l)

(iωm + l)
+
FL6 (k, n, l)FL∗6 (k

′
, n, l)

(iωm − l)

+
FL7 (k, n, l)FL∗7 (k

′
, n, l)

(iωm + l)
+
FR7 (k, n, l)FR∗7 (k

′
, n, l)

(iωm − l)

+
FR6 (k, n, l)FL∗7 (k

′
, n,−l)

(iωm + l)
+
FL7 (k, n, l)FR∗6 (k

′
, n,−l)

(iωm − l)

+
FR7 (k, n, l)FL∗6 (k

′
, n,−l)

(iωm + l)
+
FL6 (k, n, l)FR∗7 (k

′
, n,−l)

(iωm − l)
]δ
w+w

′

where ωm =
(2m+1)π

β
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FINITE TEMPERATURE CORRECTIONS

• The fermionic corrections are accompanied with diagrams with only 3-point vertices.

Σ
3
(w,w

′
, k, k

′
, β, q) =

(8N)
∑
n

∫ dl

2π
√
q

−β tanh
(
βl
2

)
+ β tanh

(
1
2
β
√

2nq
)

2
(
l−
√

2nq
)


[
(F
R
6 (k, n, l)F

R∗
6 (k

′
, n, l) + F

L
7 (k, n, l)F

L∗
7 (k

′
, n, l)

+F
R
6 (k, n, l)F

L∗
7 (k

′
, n, l) + F

R∗
6 (k, n, l)F

L
7 (k
′
, n, l))

]

+

∫
dl

2π
√
q

−β tanh
(
βl
2

)
− β tanh

(
1
2
β
√

2nq
)

2
(
l +
√

2nq
)


+

[
(F
L
6 (k, n, l)F

L∗
6 (k

′
, n, l) + F

R
7 (k, n, l)F

R∗
7 (k

′
, n, l)

+F
L
6 (k, n, l)F

R∗
7 (k

′
, n, l) + F

L∗
6 (k, n, l)F

R
7 (k
′
, n, l))

]]
δ
w+w

′ (0.8)
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UV FINITENESS:leading order terms

1

2

∑
m,n

1

2π
√

2n

1

ω2
m + λn

+
1

2

∑
m,n

7× 2

2π
√

2n

1

ω2
m + γn︸ ︷︷ ︸

amplitudes for F1(0, 0, n, n) + F2(0, 0, n, n)

+
∑
m

1

2ω2
m︸ ︷︷ ︸

from F̃1(0, 0, n, n)

−
∫

dl

2π
√
q

∑
m

1

2ω2
m

+
1

2

∑
m,n

1

2π
√

2n

1

ω2
m + λn


︸ ︷︷ ︸

from F̃4(0, l, n)

+

∫
dl

2π
√
q

∑
m

1

2ω2
m︸ ︷︷ ︸

from F3(0, 0, l,−l)

+

(
1

2
(7)

∫
dl

2π
√
q

∑
m

1

ω2
m + l2

+
1

2
×

1

2

∫
dl

2π
√
q

∑
m

1

ω2
m + l2

)
︸ ︷︷ ︸

amplitudes for F
′
2(0, 0, n, n) + F

′
3(0, 0, n, n)

+
1

2
×

1

2

∫
dl

2π
√
q

∑
m

1

ω2
m + l2

−
∑
m

1

2ω2
m︸ ︷︷ ︸

from F̃
′
5(0, l, n)

−

 1

2
(7)

∑
m,n

4

2π
√

2n

1

ω2
m + γn

+
1

2

∑
m,n

4

2π
√

2n

1

ω2
m + λn


︸ ︷︷ ︸

amplitudes for F5(0, l, n) + F
′
5(0, l, n)

(0.9)
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FINITE TEMPERATURE CORRECTIONS

•

−
1

2
(16)

∑
m,n

1

2π
√

2n

1

ω2
m + λ

′
n︸ ︷︷ ︸

1st term in Σ3(w,w, 0, 0, β, q)

−
1

2
(8)

∫
dl

2π
√
q

∑
m

1

ω2
m + l2︸ ︷︷ ︸

2nd term in Σ3(w,w, 0, 0, β, q)

+
1

2
(8)

∑
m,n

4

2π
√

2n

1

ω2
m + λ

′
n︸ ︷︷ ︸

3rd term in Σ3(w,w, 0, 0, β, q)

(0.10)

• The asymptotic expansions of the one-loop corrections about n =∞ gives the above terms. There is
cancellation between the leading order Bosonic and Fermionic contributions.
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