
Generalized Superconductors and Holographic 
Optics

Subhash Chandra Mahapatra

Department of Physics, IIT Kanpur

Based on arXiv: 1411.6405



Introduction

Our primary objective here is use gauge/gravity duality to study the electro-magnetic
response of strongly coupled superconducting media which appear as boundary
theories of the AdS-Schwarzschild and R-charged black holes in 4d with full
backreaction.

This can be carried out via the computation of the retarded correlators of the
theory and then extracting the response functions of the media from these
correlators.

The strong-weak nature of the gauge-gravity duality can be and has been
exploited to compute useful quantities in a strongly coupled field theory from
relatively simpler calculations in its dual classical gravity theory. The correspondence
has been successfully applied to gain useful insights into a number of fields like
entanglement entropy ,hydrodynamics, superconductivity and so on.

In this talk, we will discuss another direction of this duality:  Optics



Earlier Works…

This was first carried out by Policastro and his collaborators using gauge/gravity
duality for boundary theory of 5-dimensional charged AdS black hole
(JHEP04(2011)036).

They were able to show that at small enough frequencies, the boundary media
exhibited negative refraction.

Work has been, later, generalized to the cases of 4d RN-AdS black hole [Ge, Jo, Sin],
holographic superconductors in 5d. [Gao & Zhang, Amariti et al.] and for holographic
superconductors in 4d in the probe limit [Dey et al. ].

In all these examples with the exception of the probe limit study on 5d holographic
superconductors, negative refraction has been a generic feature of the strongly
coupled media at small frequencies.

This was quite interesting in light of the construction of a class of such negative
refractive index materials (also known as metamaterials) in early 2000. By now large
number of materials which support negative refraction are known.



Metamaterials are a class of artificially engineered materials in which phase
velocity of an EM wave propagates in a direction opposite to the direction of
to energy flux or poynting vector.

The direction of phase velocity is determined by the sign of Re[n] and that of
energy flow is determined by the sign of Re[n/µ].

For Metamaterials

Re[n] < 0 Re[n/µ]>0and Should be satisfied simultaneously

With   n2 = εµ

These conditions lead to the following simple form for negative refraction

nDL = Re[ε]  µ   + Re[µ]   ε < 0

Metamaterials

Above condition is strictly based on the assumptions that Im[ε]>0 and Im[µ]>0.  
The condition Im[µ]<0 can occur in the probe limit.



Holographic set up
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Generalize the model in gauge invariant way (Franco et al. 2009)
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Einstein + Maxwell + scalar field action

Gubser, Hartnoll et al.  (2008) 



Holographic superconducting solution
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Boundary Conditions:

At the horizon (z=1)
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Results
Condensate as a function of T/µ for

. The red, green, blue and brown
curves correspond to = 0, 0.2, 0.5 and
0.7 respectively.

0.3 


Exists critical above which the transition
from normal to superconducting phase is
first order. Below transition is Second
order. The critical temperature does not
depend on .

c

c

Condensate for different values of       with
The red, green, blue, brown and 

black curves correspond to      =10^(-10), 
0.1, 0.3 and 0.5 respectively. 



0.5. 




The critical temperature decreases with 
higher backreaction parameter, making it 
harder for condensate harder to form.
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Momentum dependent vector type perturbations
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Linearized Einstein and Maxwell equations of motion
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Eqs. (5)-(8) are not independent, eqs. (5), (6) and (8) implies eq. (7). 



Boundary Action
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These coupled differential equations are extremely difficult to solve even
numerically. However, for normal phase analytic solution in the
hydrodynamic limit is possible.

We use another technique in which we solve eqs. (5), (6) ,(7) simultaneously, and 
then treat eq. (8) separately as the constraint equation on the various correlators.
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In terms of transverse current current Correlators,  the boundary response functions 
are
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Where and are the coefficients of powers of the spatial momentum
k, in the series expansion of the transverse current-current correlator
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It is to be noted that the boundary system doesn’t have a dynamical photon. The
strongly coupled field theory is assumed to be weakly coupled to a dynamical
EM field at the boundary.
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Responce functions as a function          for               at T=0.5Tc.  
cT 0.2 

Numerical Results for = 0.1, 0.3, 0.5

With backreaction, Im(µ)  is always positive and has a new diffusive pole at ω=0 
which was absent in the probe limit case. 



Numerical Results for = 0.1, 0.3, 0.5

superconducting system makes the transition from positive        to negative         as 
we decrease ω. 

DLn DLn

The magnitude of cutoff increases with increase in backreaction, which
implies that the superconducting phase can support negative refraction for
relatively higher frequencies with higher backreaction.

c

The transition from positive refraction to negative refraction with frequency is
almost independent of .
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Dissipation Effects
Propagation to dissipation ratio in the region of
negative is small and negative. This is not very
uncommon among the isotropic metamaterials.

DLn

Higher backreaction enhances the propagation.
Unfortunately the propagation, on the other hand,
decreases with higher values of .

Within the plotted frequency range,  the

constraint holds true.
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Temperature dependence of with ω for T/Tc=
0.8, 0.6, 0.4 and 0.2 . We find that negative refraction
is present for all temperatures. This is another
distinct result from the probe limit case where
was found to be negative only within a window of

temperatures.
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Response functions in the normal, superconducting and metastable regions

At a fixed temperature, for (2 + 1) dimensional systems that show a first
order transition from the normal to the superconducting phase, our results
suggest that the imaginary part of the permittivity is always smaller in the
superconducting phase compared with the normal phase.



Summary
We have calculated the electro-magnetic response of strongly coupled
superconducting boundary systems whose dual gravitational descriptions
AdS-Schwarzschild black hole with the backreaction.

Boundary system shows a superconducting phase transition above  µc and 
that the nature of phase transition changes with     .

Using the tools of AdS-CFT correspondence, we have computed the
retarded correlators of the boundary theory.

Numerical computations of the response functions ε and µ have been
performed. It confirms the existence of negative refractive index in these
boundary media at small enough frequencies.

We also performed a comparative analysis of the response functions in the
normal, superconducting and metastable regions of the phase diagram for
holographic superconductors and our results suggest that the imaginary
part of the permittivity is always smaller in the superconducting phase
compared with the normal phase.

We did the same analysis with the R-charged black hole background.
Results involving R-charged examples indicate that the essential features
remain the same as in the AdS-Schwarzschild black hole case.



Thank you


