Functional determinants, Index theorems, and Exact quantum black hole entropy

Sameer Murthy King's College London

Indian Strings Meeting Puri, Dec 19, 2014

BPS black hole entropy is a detailed probe of aspects of quantum gravity

Black hole entropy

underlying ensemble of microscopic states

Macroscopic

Q: How many fundamental BH degrees of freedom?

Aim of talk

In a theory of

- 4d N=2 supergravity,
- coupled to vector multiplets and hyper multiplets,
- with generic higher derivative couplings,

compute the perturbatively exact formula for the quantum gravitational entropy of a 1/2 BPS black hole.

Based on:

S.M., V. Reys, in preparation, B. de Wit, S.M., V. Reys, in progress.

and on the work of:

Sen (Quantum entropy function program),

Banerjee, Cardoso, Dabholkar, David, de Wit, Denef, Gaiotto, Gomes, Gupta, Hama, Hosomichi, Jatkar, Lal, Mahapatra, Mandal, Mohaupt, Moore, Pestun, Pioline, Shih, Strominger, Vafa, Yin, ...

Near-horizon region is an independent quantum system, fixed by charges

4d BPS black hole with charges (q_I, p^I)

$$ds^{2} = v\left((r^{2} - 1) d\theta^{2} + \frac{dr^{2}}{r^{2} - 1} \right) + v\left(d\psi^{2} + \sin^{2}\psi d\phi^{2} \right)$$

$$F_{rt}^I = e_*^I, \quad F_{\psi\phi}^I = p^I \sin \psi$$

$$X^I = X_*^I$$

Near-horizon region:

Euclidean $AdS_2 \times S^2$

Classical BPS black hole entropy is an AdS₂ extremization problem (Sen '05)

4d theory with higher derivative couplings $\mathcal{L} = \mathcal{L}^{\text{eff}}(v, e_*^I, X_*^I)$

Equations of motion (Einstein equations + ...)

$$\frac{\partial \mathcal{L}^{\text{eff}}}{\partial v} = 0, \qquad \frac{\partial \mathcal{L}^{\text{eff}}}{\partial X_*^I} = 0, \qquad \frac{\partial \mathcal{L}^{\text{eff}}}{\partial e_*^I} = q_I$$

Attractor equations

Classical entropy (Bekenstein-Hawking-Wald)

$$S_{\mathrm{BH}}^{\mathrm{class}} = \pi \left(-q_I e_*^I - \mathcal{L}^{\mathrm{eff}} \Big|_{\mathrm{attr}} \right) = \frac{A_{\mathrm{H}}}{4} + \cdots$$

Attractor entropy

Quantum BPS black hole entropy is an AdS₂ functional integral (Sen '08)

$$\exp(S_{BH}^{qu}(q_I)) \equiv Z_{AdS_2}(q_I) = \left\langle \exp\left[-i\,q_I \oint A^I\right] \right\rangle_{AdS_2}^{reg}$$

• Saddle point evaluation $\Longrightarrow S_{
m BH}^{
m qu} = S_{
m BH}^{
m class} + \cdots$

Leading logarithmic one-loop corrections systematized.
 New, improved, version available. (c.f. talks of Lal, Larsen)

(Sen + Banerjee², Gupta, Mandal, '10-'14, v2. Larsen, Keeler, Lisbão '14).

Set up for exact AdS₂ functional integral

$$Z_{\mathrm{AdS}_2}(q_I) \equiv \int_{\mathcal{M}} d\mu \, \mathcal{O} \, e^{-\mathcal{S}}$$

Supercharge Q with $Q^2 = L_0 - J_0$.

 \mathcal{M} : Field space of supergravity.

 $d\mu$: Measure on this field space.

O: Wilson line.

 ${\cal S}$: Action of graviton and other massless fields.

Supersymmetric functional integrals can be evaluated exactly using Localization

Duistermaat-Heckmann, Atiyah-Singer-Bott, Berligne-Vergne, Witten (1980s), Pestun '07

Off-shell symmetry algebra $Q^2 = H -$ Compact U(1)

$$I := \int_{\mathcal{M}} d\mu \, \mathcal{O} \, e^{-\mathcal{S}}$$

Supersymmetric functional integrals can be evaluated exactly using Localization

Duistermaat-Heckmann, Atiyah-Singer-Bott, Berligne-Vergne, Witten (1980s), Pestun '07

Off-shell symmetry algebra $Q^2 = H -$ Compact U(1)

$$I(\lambda) = \int_{\mathcal{M}} d\mu \, \mathcal{O} \, e^{-\mathcal{S} + \lambda Q \mathcal{V}} \,, \qquad \mathcal{V} = \sum_{\psi} \int d^4 x \, \overline{\psi} \, Q \, \psi$$

$$\frac{d}{d\lambda}I(\lambda) = \int_{\mathcal{M}} d\mu \,\mathcal{O} \,Q\mathcal{V} \,e^{-\mathcal{S} + \lambda Q\mathcal{V}} \,=\, 0$$

$$\Longrightarrow I(0) = I(\infty) = \int_{\mathcal{M}_Q} d\mu_Q \,\mathcal{O} \, e^{-\mathcal{S}} \, Z_{\text{1-loop}}$$

The functional integral localizes onto the submanifold \mathcal{M}_Q of solutions of the off-shell BPS equations $Q\Psi=0$.

The steps

(A.Dabholkar, J.Gomes, S.M. '10, '11, '14)

- 1. Formalism: 4d N=2 off-shell conformal supergravity coupled to vector multiplets.
 - (de Wit, van Holten, Van Proeyen '80)

- 2. Find all solutions of localization equations $Q\Psi=0$, subject to $AdS_2 \times S^2$ boundary conditions. (R.Gupta, S.M. '12)
- 3. Evaluate action on these solutions (including all higher derivative terms). Compute measure.
- 4. Only chiral-superspace integrals in the action contribute. (S.M., V.Reys, '13)
 - Governed by holomorphic prepotential $F(X^I)$ computable in string theory.

N=2 conformal supergravity (gauge choice)

Local scale invariance in the off-shell theory.

$$X^{I} \to \lambda(x) X^{I}, \ (I = 0, \cdots, n_{\rm v}), \ g_{\mu\nu} \to \lambda(x)^{-2} g_{\mu\nu}$$

- $\Omega^2 \equiv e^{-\mathcal{K}} = -i(X^I \bar{F}_I \bar{X}^I F_I)$ appears in the action as $\frac{1}{8\pi} \sqrt{-g} \left[-\frac{1}{6} \Omega^2 \, R g^{\mu\nu} \, \partial_\mu \Omega \, \partial_\nu \Omega \right] \qquad \text{(conformal compensator)}$
- Can choose gauge $e^{-\mathcal{K}} = 1$ or $\sqrt{g} = 1$
- In the large charge limit $(q_I,p^I) o (\Lambda\,q_I,\Lambda\,p^I)$, $\Lambda o \infty$,

$$e^{-\mathcal{K}} \sim \Lambda^2 \sim A_{\rm H}$$

Localization in N=2 supergravity

• In vector multiplet sector, scalar fields go off-shell:

$$X^I = X_*^I + \frac{C^I}{r}, \qquad \bar{X}^I = \bar{X}_*^I + \frac{C^I}{r}, \qquad Y_1^{I1} = -Y_2^{I2} = \frac{2C^I}{r^2}.$$

Localization manifold labelled by one parameter $\phi^I \equiv X^I(0)$ for each vector multiplet X^I .

(A.Dabholkar, J.Gomes, S.M. '10)

- In the gravity multiplet sector, only solution is $AdS_2 \times S^2$. (R.Gupta, S.M. '12)
- •Classical measure for scalar manifold $\prod dX^I M(X^I)$ has been computed. Does not scale with charges

(Cardoso, de Wit, Mahapatra '12)

The exact N=2 BH entropy formula

$$Z_{\text{AdS}_{2}}^{\text{pert}}(q, p) = \int \prod_{I} d\phi^{I} M(\phi^{I}) \times$$

$$\times \exp\left(-\pi q_{I} \phi^{I} + 4\pi \operatorname{Im} F(\phi^{I} + ip^{I})\right) Z_{1-\text{loop}}(\phi^{I})$$

Result (V. Reys, S.M., to appear)

$$Z_{1-\text{loop}}(\phi^I) = \exp(-a_0 \mathcal{K}(\phi^I)), \quad a_0 = \sum_{\text{multiplets}} a_0^{\text{multiplets}}$$

Index theorem

In the large charge limit
$$S_{
m BH} = rac{A_{
m H}}{4} + a_0 \log A_{
m H}$$

Why is functional sdeterminant not trivial?

Hamiltonian H , Supercharge Q , $Q^2=H$ Witten index ${\rm Tr}\,(-1)^F\,e^{-iHt}$ independent of t.

- Background R-symmetry potential ⇒ no pairing (e.g. for hypermultiplets).
- 2. Supersymmetry does not commute with gauge fixing ⇒ pairing of states destroyed!

Gauge-fix by hand

(R. Gupta, I. Jeon)

Gauge fixing and ghosts (vector multiplets)

- U(1) gauge symmetry $A_{\mu} \to A_{\mu} + \partial_{\mu} \theta$
- Introduce BRST complex, i.e. (b,c) ghosts, and Lagrange multiplier B

• Zero modes of gauge transformation present, introduce ghost-for-ghost c_0 .

• BRST operator Q_B , $\ Q_B\,A_\mu=\partial_\mu c\,,\,\dots$, with $\ Q_B^2=0$ Add gauge fixing term to action $Q_B\mathcal{V}_\mathcal{B}$

Gauge fixing and ghosts (vector multiplets)

- New operator $\widehat{Q} = Q + Q_B$ with $\widehat{Q}^2 = H = L_0 J_0$
- In supergravity, $Q^2 = L_0 J_0 + \delta_{\rm gauge}$
- Algebra fixes the action of Q (and so of \widehat{Q}) on all the matter and ghost fields

All modes arranged in reps of \widehat{Q}

Physical action is deformed by $\widehat{Q}\,\widehat{\mathcal{V}}\,$, $\,\widehat{\mathcal{V}}=\mathcal{V}+\mathcal{V}_{\mathcal{B}}\,$

The sdeterminant is now an algebraic computation

Organize fields as:
$$D_{10} \downarrow Q X \\ \Psi \xrightarrow{\widehat{Q}} \widehat{Q} \Psi$$
 e.g.
$$\gamma \psi \qquad F$$

Want to compute
$$Z_{1\text{-loop}}=\left(\frac{\det K_f}{\det K_b}\right)^{\frac{1}{2}}$$
 for the deformation operator $\widehat{Q}\widehat{\mathcal{V}}=(X,K_b\,X)+(\Psi,K_f\,\Psi)$.

The sdeterminant is captured by an index

Write:
$$\frac{\det_{\Psi} H}{\det_{\mathbf{X}} H} = \prod_{n} \lambda_n^{a(n)}$$

Eigenvalues encoded in index

$$\operatorname{ind}(D_{10})(t) := \operatorname{Tr}_{\operatorname{Ker}D_{10}} e^{-iHt} - \operatorname{Tr}_{\operatorname{Coker}D_{10}} e^{-iHt}$$
$$= \sum_{n} a(n) e^{-it\lambda_{n}}$$

The index is captured by fixed points of U(1)

Atiyah-Bott-Singer index theorem

$$\operatorname{ind}(D_{10})(t) = \sum_{\text{x=fixed pts of } H} \frac{\operatorname{Tr}_{X,\Psi}(-1)^F e^{-iHt}}{\det(1 - \partial \widetilde{x}/\partial x)}.$$

 $(\widetilde{x} = Hx)$

Fixed points of

$$\operatorname{ind}_{\operatorname{vec}}(D_{10}) = -4\sum_{n>1} n \exp\left(-\frac{i t n}{\ell_{\operatorname{AdS}}}\right)$$

Eigenvalues $\lambda_n = n/\ell_{AdS}$

Degeneracy a(n) = -4n

Regularize determinant using Zeta functions

(cf. Hawking '77)

$$\frac{\det_{\Psi} H}{\det_{X} H} = \prod_{n} \lambda_{n}^{a(n)} = C \exp(-4\zeta_{R}(-1) \log \ell_{AdS})$$

$$\ell_{\mathrm{AdS}}^2 = e^{-\mathcal{K}(\phi^I)}$$
, $\zeta_R(s) = \sum_{n \ge 1} \frac{1}{n^s}$

$$\implies \frac{\det K_f}{\det K_b} = \frac{\det_{\Psi} H}{\det_{X} H} = C \exp\left(-\frac{1}{6} \mathcal{K}(\phi^I)\right)$$

Main result for one-loop determinant

$$Z_{1\text{-loop}}(\phi^I) = \exp(-a_0 \mathcal{K}(\phi^I)), \quad a_0 = \sum_{\text{multiplets}} a_0^{\text{multiplets}}$$

Index theorem calculation $\implies a_0^{\text{vector}} = -\frac{1}{12}$

$$\Longrightarrow$$

$$a_0^{\text{vector}} = -\frac{1}{12}$$

Similar calculation for hypers
$$\Longrightarrow$$
 $a_0^{\text{hyper}} = +\frac{1}{12}$

$$a_0^{\text{hyper}} = +\frac{1}{12}$$

In the large charge limit
$$S_{
m BH} = rac{A_{
m H}}{4} + a_0 \log A_{
m H}$$

Consistency with large charge one-loop calculation

Index theorem calculation underway

$$\Longrightarrow$$

(B. de Wit, S.M., V. Reys)

1/8 BPS black holes in N=8 theory

(A.Dabholkar, J.Gomes, S.M. '10, '11)

- Truncation of N=8 to N=2 theory with 7 vector multiplets.
- AdS₂ path integral reduces to an 8-dimensional integral.
- Use measure of zero modes.

$$\underbrace{\left(e^{S_{BH}^{\text{qu}}}(N) = \int \frac{d\sigma}{\sigma^{9/2}} \exp\left(\sigma + \pi^2 N/4\sigma\right) = \widetilde{I}_{7/2}(\pi\sqrt{N})\right)}_{}$$

A quantitative test

(A.Dabholkar, J.Gomes, S.M. '11)

N	$d_{\rm micro}({ m N})$	$\exp(S^{qu}(N))$	$\exp(S^{\mathrm{cl}}(\mathrm{N}))$
3	8	7.97	230.76
4	12	12.2	535.49
7	39	38.99	4071.93
8	56	55.72	7228.35
	152	152.04	33506.14
12	208	208.45	53252.29
15	513	512.96	192400.81
•••	•••	•••	•••
10^5	exp(295.7)	exp(295.7)	exp(314.2)

$$d_{\text{micro}}(\Delta) = e^{S_{BH}^{\text{qu}}(\Delta)} \left(1 + O(e^{-\pi\sqrt{\Delta}/2}) \right)$$

Why does the truncation work?

We kept: zero modes of 8 vector multiplets

$$-\frac{1}{2} \times 8$$

We threw away:

- Non-zero modes of 8 vector multiplets
- (15-8) vector multiplets
- 10 hyper multiplets
- 6 gravitini multiplets
- 1 gravity multiplet

$$+\frac{5}{12} \times 8$$
 $-\frac{1}{12} \times (15 - 8)$
 $+\frac{1}{12} \times 10$
 $-\frac{11}{12} \times 6$
 $+2$

Total

1/2 BPS black holes in N=2 theory

$$Z_{\text{AdS}_2}^{\text{pert}}(q, p) = \int \prod_{I=0}^{n_{\text{v}}} d\phi^I (\phi^0)^{2 - \frac{\chi}{12}} e^{-\mathcal{K}(\phi)} \times \exp\left(-\pi q_I \phi^I + 4\pi \operatorname{Im} F(\phi^I + ip^I)\right)$$
$$\chi = 2(n_{\text{v}} + 1 - n_{\text{h}})$$

(cf. Ooguri-Strominger-Vafa '04, Denef-Moore '07, Sen, 1108.3842)

Note:

- Still need to complete graviton calculation
- This formula implies a surprising cancellation of states in N=2 string theory.