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Introduction

I Polyakov’s induced chiral 2d gravity [’87]

I Induced gravity: found by integrating out scalars on worldsheet.

I Is covariant and non-local.

I Analysis in light-cone gauge reveals sl(2,R) current algebra.

I Induced chiral W3-gravity in 2d

I Higher spin extensions of 2d induced gravity.

I Induced (matter fields integrated out) 2d gravities with W3-symmetries.

I Analysis in light-cone gauge similarly reveals an sl(3,R) current algebra,
just as above.

I These were also derived from gauged WZNW models for the gauge group
SL(3,R).



I What is the holographic dual to such induced chiral W3-gravity?

I Possible answer: massless spin-3 field in AdS3

I AdS3 gravity yielding sl(2,R) Kač-Moody algebra with level k = c/6;
along with a copy of Virasoro. [Avery, RP, Suryanarayana]

I There are boundary conditions on AdS3 which yielding U(1) Kač-Moody
with central extension; along with a copy of Virasoro.
[Compère, Song, Strominger]



Results

I Higher-spin boundary conditions yielding an sl(3,R) or su(1, 2) or
u(1)⊕ u(1) Kač-Moody algebra,

I and a copy of classicalW3.

I Choice depends on values of certain parameters in the general ansatz
for the flat gauge connection used.

I sl(3,R) case may correspond to the induced W3-gravity studied in the
early nineties by Ooguri et al and Verlinde.
[Ooguri, Schoutens, Sevrin, Van Neuwenhuizen][Verlinde]

I W3 gravities with symmetries of the other kind need to be studied further.



Plan

I We would like to generalize the boundary conditions on the AdS3 metric
which yield an sl(2,R) current algebra to include a massless spin-3 field.

I Higher-spin analysis is better done in Chern-Simons(CS) formalism for
AdS3.

I Hence, we cast the metric formulation which yields sl(2,R) currents, in
the CS form.

I Try and generalise the sl(2,R) guage fields to sl(3,R) gauge fields.

I Compute the Poisson brackets between parameters of the space of
solutions.



Metric to CS formulation for sl(2,R) currents

I Boundary conditions on AdS3 metric which yield an sl(2,R) current
algebra and a Virasoro [Avery, RP, Suryanarayana]:

grr =
l2

r 2 +O(r−4), gr+ = O(r−1), gr− = O(r−3),

g+− = − r 2

2
+O(r 0), g−− = O(r 0),

g++ = r 2F (x+, x−) +O(r 0),

(1)

I Can be completely solved for order by order in r in
Fefferman-Graham(FG) gauge:
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1
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g(2)
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(0)g
(2)
db ,
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I The EOM further impose a constraint which looks like the Virasoro Ward
identity of the boundary theory:

2 (∂+ + 2 ∂−F + F ∂−) κ̃ = ∂3
−F . (3)

I One can get specific bulk solutions by imposing κ̃ = −1/4 and solve the
above diff. eq. for F

κ̃ = −1/4
=⇒ F = f (x+) + g(x+) ei x−

+ ḡ(x+) e−i x−

I These become the sl(2,R) currents.



I AdS3 gravity as difference of Chern-Simons:

S[A] =
k

4π

∫
tr(A ∧ A +

2
3

A ∧ A ∧ A)

S = S[A]− S[Ã] + Sbdy

A = ω + e/` Ã = ω − e/`. (4)

I Gauge fields ansatz corresponding to the above metric:

A = b−1db + b−1a b Ã = b db−1 + b ã b−1,

a = (L1 + a(−)
+ L−1 + a(0)

+ L0) dx+ + (a(−)
− L−1) dx−,

ã = (ã(0)
+ L0 + ã(+)

+ L1 + ã(−)
+ L−1) dx+ + (ã(+)

− L1 − L−1) dx−. (5)

where b = e(r/l)L0 is an SL(2,R) element can be used to absorb away all
the r dependence.

I Wherein we have allowed for a function ã(−)
+ to have a positive power in

r .



I The eom:

da + [a ∧ a] = 0 dã + [ã ∧ ã] = 0 (6)

with Fefferman-Graham gauge condition a(0)
+ = ã(0)

+ implies

I The left gauge field components are solved upto a function κ(x+)

I The right gauge field components are solved for in terms of ã(−)
+ and ã(+)

−
with Virasoro constraint:

(∂+ + 2 ∂−ã(−)
+ + ã(−)

+ ∂−) ã(+)
− =

1
2
∂3
−ã(−)

+ (7)

I For ã(+)
− = −1/4

ã(−)
+ ≈ F = f (x+) + g(x+) ei x−

+ ḡ(x+) e−i x−
(8)

I The above functions give rise to an sl(2,R) current algebra with Virasoro
parametrized by κ(x+).



sl(3,R) CS formulation for spin-3

I Gauge algebra

L−1 =

 0 −2 0
0 0 −2
0 0 0

 , L0 =

 1 0 0
0 0 0
0 0 −1

 , L1 =

 0 0 0
1 0 0
0 1 0

 ,

W2 = 2αL2
1 , [Li ,Wm] = (2i −m)Wi+m, m ∈ {−2, ..., 2}.

I Where, α = 1 =⇒ sl(3,R) and α = i =⇒ su(1, 2).
ηab = Killing metric, fabc = structure consts.

I Choose anzats and solve for components by imposing flatness:

a = L1 − κL−1 − ωW−2 dx+

ã = (−L−1 + κ̃ L1 + ω̃W2) dx− +

(
1∑

a=−1

f (a)La +
2∑

i=−2

g(i)Wi

)
dx+

A = b−1∂r b dr + b−1a b, Ã = b ∂r b−1 dr + b ã b−1.

where b = e(r/l)L0 is an SL(3,R) element.



I Flatness for a implies : ∂−κ = 0 and ∂−ω = 0

I Flatness for ã implies: Components can be solved for in terms
. of {κ̃, ω̃, f (−1), g(−2)}.

Further constraints among {κ̃, ω̃, f (−1), g(−2)} are the Ward identities for
the boundary theory

(∂+ + 2 ∂−f (−1) + f (−1) ∂−) κ̃− α2 (12 ∂−g(−2) + 8 g(−2)∂−) ω̃ =
1
2
∂3
−f (−1),

12 (∂+ + 3 ∂−f (−1) + f (−1)∂−) ω̃ + (10 ∂3
−g(−2) + 15 ∂2

−g(−2) ∂−

+9 ∂−g(−2)∂2
−+ 2 g(−2)∂3

−) κ̃− 16 (2 ∂−g(−2) + g(−2) ∂−) κ̃2 =
1
2
∂5
−g(−2). (9)

I Note: That α enters only in the first of the equations.



I So far we have done the following:

I Ansatz for sl(3,R) gauge field.

I Soved for EOM in terms of {κ̃, ω̃, f (−1), g(−2)}.

I These staisfy constraints, identical to Ward Identities on the boundary.

I Next, we would like these solutions to be variationally well defined by
requiring the boundary theory have f (−1) & g(−2) as the dynamical fields.



Boundary terms for the action

I For the solution to be variationally well defined, one needs to add
boundary terms to the bulk action.

I Boundary term in action for fixed κ̃ and ω̃

Sbdy

=
k

4π

∫
d2x tr (−L0[ã+, ã−] + 2 κ̃0 L1 ã+ +

1
2α

W0{ã+, ã−}

+
1
3

ã+ ã− + 2 ω̃0 W2ã+).

(10)

The above form is demanded by requiring:

δStotal = − k
2π

∫
d2x [(κ̃− κ̃0) δf (−1) + 4α2 (ω̃ − ω̃0) δg(−2)] (11)

I Cases studied for fixed and constant values κ̃ = κ̃0 and ω̃ = ω̃0



I Solve the Ward identities for f (−1) and g(−2) for constants κ̃0 & ω̃0

∂3
−f (−1) + 24α2 ω̃0 ∂−g(−2) − 4 κ̃0 ∂−f (−1) = 0

∂5
−g(−2) − 20 κ̃0 ∂

3
−g(−2) + 64 κ̃2

0 ∂−g(−2) − 72 ω̃0 ∂−f (−1) = 0 (12)

I 1. κ̃0 6= 0, ω̃0 6= 0 & ∂−{f (−1), g(−2)} = 0:

f (−1) = f (x+), g(−2) = g(x+). (13)

This trivially solves the above equations. This can be viewed as a spin-3
generalisation of the boundary conditions of Compère et al.



I 2. ω̃0 = 0 and κ̃0 6= 0:

f (−1) = fκ(x+) + gκ(x+) e2
√
κ̃0 x−

+ ḡκ(x+) e−2
√
κ̃0x−

,

g(−2) = fω(x+) + gω(x+) e2
√
κ̃0 x−

+ ḡω(x+) e−2
√
κ̃0 x−

+ hω(x+) e4
√
κ̃0 x−

+h̄ω(x+) e−4
√
κ̃0 x−

(14)

κ̃0 = −1/4 =⇒ boundary of global AdS3

I 3. ω̃0 = 0 and κ̃0 = 0 gives:

f (−1) = f−1(x+) + x− f0(x+) + (x−)2f1(x+), (15)

g(−2) = g−2(x+) + x− g−1(x+) + (x−)2 g0(x+) + (x−)3 g1(x+)
+(x−)4 g2(x+)

Suitable for non-compact x+ and x− (boundary of Poincare or Euclidean
AdS3)



Charge and asymptotic symmetry

I We would like to compute the Poisson brackets between the functions
parametrizing the space of solutions.

I To this effect we would have to compute the residual gauge parameters
which keeps the form of the gauge field same.

I And also compute the charge QΛ, associated with the these residual
gauge transformations.



I Change in the asymptotic charge in CS theory associated with residual
gauge transformation Λ: [Barnich, Brandt]

/δQΛ = − k
2π

∫ 2π

0
dφ tr [Λ δAφ]. (16)

These are trivially integrable.

I Construct Poisson brackets by demanding above charges generate
required variation of solution space parameters F(x):

δΛF(x) = {QΛ,F(x)}, (17)

where δΛF is read from δΛA = dΛ + [A,Λ]



I Left sector: for Λ = λ(i)Li + η(m)Wm, δa = dΛ + [a,Λ]

Q(λ,η) = − k
2π

∫ 2π

0
dφ [λκ− 4α2 η ω] (18)

where λ = λ(1) & η = η(2) are gauge transformation parameters.

I This implies the following Poisson brackets:

− k
2π

{
κ(x+), κ(x̃+)

}
= −κ′(x+) δ(∆x+)− 2κ (x+) δ′(∆x+) + 1

2 δ
′′′(∆x+),

− k
2π

{
κ(x+), ω(x̃+)

}
= −2ω′(x+) δ(∆x+)− 3ω(x+) δ′(∆x+),

− 2kα2

π

{
ω(x+), ω(x̃+)

}
=

8
3

[κ2(x+) δ′(∆x+) + κ(x+)κ′(x+)δ(∆x+)]

−1
6

[5κ(x+)δ′′′(∆x+) + κ′′′(x+)δ(∆x+)]

−1
4

[3κ′′(x+)δ′(∆x+) + 5κ′(x+)δ′′(x+ − x̃+)] +
1
24
δ(5)(∆x+)

(19)

I this is theW3 algebra. [Campoleoni, Fredenhagen, Pfenninger, Theisen]



I Right sector: Solve for residual gauge transformation parameters Λ̃ :

Λ̃ = λ̃iLi + η̃mWm, (20)

which keep ã form-invariant and δκ̃ = 0 & δω̃ = 0

I 1.κ̃0 6= 0, ω̃0 6= 0, ∂−f (−1) = ∂−g(−2) = 0

Residual gauge transformation parameters are

λ̃(−1) = λ̃(x+), η̃(−2) = η̃(x+). (21)

These induce:

δf (−1) = ∂+λ̃, δg(−2) = ∂+η̃. (22)



I Charge under above Λ :

Qã = k
2π

∫ 2π

0
dφ 2 [λ̃ (κ̃0 f − 6α2 ω̃0 g) + η̃ 2α2 ( 8

3 κ̃
2
0 g − 3 ω̃0 f )] (23)

{f (x+), f (x̃+)} = −πk
κ̃2

0
∆
δ′(∆x+), {g(x+), g(x̃+)} = −πk

3 κ̃0
16 ∆α2 δ

′(∆x+),

{f (x+), g(x̃+)} = −πk
9 ω̃0
8 ∆

δ′(∆x+) (24)

where

∆ = κ̃3
0 − 27

4 α
2 ω̃2

0 (25)

I =⇒ u(1)⊕ u(1) Kač-Moody current for suitable combination of f & g.



I 2.κ̃0 = − 1
4 and ω̃0 = 0 residual gauge transformation parameters are

λ̃(−1) = λf (x
+) + λg(x+) ei x−

+ λ̄ḡ(x+) e−i x−

η̃(−2) = ηf (x
+) + ηg(x+)ei x−

+ η̄ḡ(x+)e−i x−
+ ηh(x+)e2i x−

+η̄h̄(x+)e−2i x−
(26)

I One can collect the solution space parameters and the (residual) gauge
transformation parameters in:

{Ja, a = 1, · · · , 8} = {ḡκ, fκ, gκ, h̄ω, ḡω, fω, gω, hω}
{λa, a = 1, · · · , 8} = {λ̄ḡ , λf , λg , η̄h̄, η̄ḡ , ηf , ηg , ηh}

I Notice that the parameters 8 in each set.



I In this notation, the action of the residual gauge parameters λ on the sol.
space parameters J can be summarized:

δJa = ∂+λ
a − i f̂ a

bcJbλc

Q[λa] = − k
4π

∫ 2π

0
dφ η̂ab λ

aJb (27)

the expression for the charge can also be writen compactly as done
above.

I The associated Poisson bracket algebra is:

{Ja(x+), Jb(x̃+)} = i f̂ ab
c Jc(x+) δ(∆x+) +

k
4π

ĥabδ′(∆x+). (28)

where η̂ab & f̂abc are the ones obtained from ηab & fabc by replacing:

α2 → −α2.

I =⇒ Had we started with a sl(3,R) gauge group, we would end up with
an su(1, 2) Kač-Moody current with central extension k = c/6.(and
vice versa)



I 3. κ̃0 = 0 & ω̃0 = 0

λ̃(−1) = λ−1(x+) + x− λ0(x+) + (x−)2 λ1(x+)

η̃(−2) = η−2(x+) + x− η−1(x+) + (x−)2 η0(x+) + (x−)3 η1(x+)
+(x−)4 η2(x+) (29)

I Collecting the parametrizing functions as before:

{Ja, a = 1, · · · , 8} = {f−1, f0, f1, g−2, g−1, g0, g1, g2}
{λa, a = 1, · · · , 8} = {λ−1, λ0, λ1, η−2, η−1, η0, η1, η2}

The expression for the change in the sol. space parameters and the
associted charge simplifies to:

δJa = ∂+λ
a − f a

bcJbλc

Q[λ̃] = k
4π

∫
dx+ ηabJaλb (30)



I The Poisson brackets are:

{Ja(x+), Jb(x̃+)} = f ab
c Jc(x+) δ(∆x+)− k

4π
ηab δ′(∆x+) (31)

I =⇒ One gets the same current algebra of that of the gauge group i.e.
sl(3,R) Kač-Moody current for an sl(3,R) gauge group; with central
extension k = c/6.



Further directions

I It would be interesting to see what current algebras does one get once
more spins are included.

I Different choices of asymptotic symmetry algebra =⇒ diff. chiral
induced W -gravities; further study of this analogy is required.

I Generalisations to include super-gravities and higher-spin supergravity
of these considerations.



. . . .Thank You.
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