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Introduction

» Polyakov’s induced chiral 2d gravity ['87]
» Induced gravity: found by integrating out scalars on worldsheet.

> |s covariant and non-local.
> Analysis in light-cone gauge reveals s/(2, R) current algebra.

» Induced chiral Ws-gravity in 2d

» Higher spin extensions of 2d induced gravity.
> Induced (matter fields integrated out) 2d gravities with W3-symmetries.

> Analysis in light-cone gauge similarly reveals an s/(3, R) current algebra,
just as above.

> These were also derived from gauged WZNW models for the gauge group
SL(3,R).



What is the holographic dual to such induced chiral Ws-gravity?
Possible answer: massless spin-3 field in AdS;

AdS; gravity yielding s/(2,R) Ka¢-Moody algebra with level k = ¢/6;
along with a copy of Virasoro. [Avery, RP, Suryanarayana]

There are boundary conditions on AdS; which yielding U(1) Ka¢-Moody
with central extension; along with a copy of Virasoro.
[Compeére, Song, Strominger]



Results

v

Higher-spin boundary conditions yielding an s/(3,R) or su(1,2) or
u(1) @ u(1) Kag¢-Moody algebra,

and a copy of classical Ws.

Choice depends on values of certain parameters in the general ansatz
for the flat gauge connection used.

s/(3,R) case may correspond to the induced Ws-gravity studied in the
early nineties by Ooguri et al and Verlinde.
[Ooguri, Schoutens, Sevrin, Van Neuwenhuizen][Verlinde]

Ws gravities with symmetries of the other kind need to be studied further.



Plan

We would like to generalize the boundary conditions on the AdS; metric
which yield an s/(2, R) current algebra to include a massless spin-3 field.

Higher-spin analysis is better done in Chern-Simons(CS) formalism for
AdSs.

Hence, we cast the metric formulation which yields s/(2, R) currents, in
the CS form.

Try and generalise the s/(2, R) guage fields to s/(3, R) gauge fields.

Compute the Poisson brackets between parameters of the space of
solutions.



Metric to CS formulation for s/(2, R) currents

» Boundary conditions on AdS; metric which yield an s/(2, R) current
algebra and a Virasoro [Avery, RP, Suryanarayana]:
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» Can be completely solved for order by order in r in
Fefferman-Graham(FG) gauge:
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» The EOM further impose a constraint which looks like the Virasoro Ward
identity of the boundary theory:

2(8y +20_F+Fo_ )k =0F. (3)

» One can get specific bulk solutions by imposing & = —1/4 and solve the
above diff. eq. for F

Eo= —1/4
= F = f(x")+g(x")e

ixT

+a(xt)e ™

» These become the s/(2,R) currents.



» AdS; gravity as difference of Chern-Simons:

S[A] = %/tr(A/\A—&-%A/\A/\A)
S = S[Al - S[A] + Sby
A=w+te/l A=w-—e/l (4)

» Gauge fields ansatz corresponding to the above metric:

A=b"'db+b'ab A=bdb ' +bab ",

a (Li+a 7 Ly +a? Lo)dx" + (a7 Lq)dx,

d = @E0L+a" L+ Lyax + @ L - L)dx. (5)

where b = el"/% is an SL(2, R) element can be used to absorb away all
the r dependence.

» Wherein we have allowed for a function é([) to have a positive power in
r.



The eom:

da+[ana =0 da+[ana =0 (6)
with Fefferman-Graham gauge condition a(f) = é(f) implies
The left gauge field components are solved upto a function x(x™)

The right gauge field components are solved for in terms of é([) and 3"
with Virasoro constraint:

(0r +20-8) +aa_)aH = %ai 3> 7)
For &™) = —1/4
) ~F = f(x)+g(x) e +g(xT)e (8)

The above functions give rise to an s/(2,R) current algebra with Virasoro
parametrized by x(x™).



s/(3,R) CS formulation for spin-3

» Gauge algebra
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2alf | [Li,Wn] = @i —mWim, me{-2,..,2}.

» Where,« =1 = s/(3,R)anda =i = su(1,2).
nap = Killing metric, fpc = structure consts.

» Choose anzats and solve for components by imposing flatness:

a
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where b = el”/% is an SL(3,R) element.
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» Flatness for aimplies: 0_k=0and9d_-w =20

» Flatness for a implies: Components can be solved for in terms
of {&, &, f=1, g(=2)}.

Further constraints among {#, @, f—", g{=?} are the Ward identities for
the boundary theory

Os +20_FD 4 f0 9 Vi — a? (120_9? + 89 Do) = 1593_ £,

120, +30_ N 4+ Y9 Yo+ (108° g + 1562 g P o_
+90_9202 +29 2% )k —16(20_9" D+ gD o) R? = %aig(*). 9)

» Note: That « enters only in the first of the equations.



» So far we have done the following:
> Ansatz for s/(3, R) gauge field.
> Soved for EOM in terms of {&,&, f(=1), g(=2)},

> These staisfy constraints, identical to Ward Identities on the boundary.

» Next, we would like these solutions to be variationally well defined by
requiring the boundary theory have f(~" & g(~? as the dynamical fields.



Boundary terms for the action

» For the solution to be variationally well defined, one needs to add
boundary terms to the bulk action.

» Boundary term in action for fixed £ and @

dey

k . B B 1 o
= E/ aPxtr(—Lo[ay,a ]+ 20 Ly a++5Wo{a+,a_}

1. ~
+§a+ a— +2(:)() Wga+).

(10)

The above form is demanded by requiring:

k L. _ L. ,
6810,3/:—E/d2x (7 — 7o) 6D + 402 (& — @) 6972 (11)

» Cases studied for fixed and constant values < = k¢ and & = &y



» Solve the Ward identities for f(~") and g{=? for constants #o & @

83)‘(_1) + 24 o° %o 3_9(_2) —4F a_f(—1) -0
° gD _ 20703 g +64720_9"2 —72000_f") = 0 (12)

» 1.Ro#0,i0 #08&9_{f" g?} =0:
o0 =1(x*), g% =g(x"). (13)

This trivially solves the above equations. This can be viewed as a spin-3
generalisation of the boundary conditions of Compere et al.



> 2.(:)0203ndf%0350:

0 = L)+ VR 4 g (x ) e VR
g(72) _ fw(X+) + gw(XJr) 92\/%)(*_’_ QW(X+) efz\/%x*_"_ hw(X+) 64\/%)(7

R, (xT) e tVFoXT (14)
ko = —1/4 = boundary of global AdS;

» 3. & = 0and &y = 0 gives:

f(71) = f_1(X+)+X7 fO(X+)+(X7)2f1(X+) (15)

g7 = gaxX) X7 galx ) + () golx ) + (X)) g1 (x")
+Hx ) ga(x7)

Suitable for non-compact x* and x~ (boundary of Poincare or Euclidean
AdS;)



Charge and asymptotic symmetry

» We would like to compute the Poisson brackets between the functions
parametrizing the space of solutions.

» To this effect we would have to compute the residual gauge parameters
which keeps the form of the gauge field same.

» And also compute the charge Qa, associated with the these residual
gauge transformations.



» Change in the asymptotic charge in CS theory associated with residual
gauge transformation A: [Barnich, Brandt]

27

fjan = —£ do tr]AGA,)]. (16)
0

These are trivially integrable.

» Construct Poisson brackets by demanding above charges generate
required variation of solution space parameters F(x):

SAF(x) = {Qn, F(X)}, (17)

where oz F is read from 5pA = dA + [A,A]



» Leftsector: for A = ADL + ™MW, da=dA+[a,A]

21
Qo = — 2% | de Ak —40%nw] (18)

where A = XV & 5 = n® are gauge transformation parameters.

» This implies the following Poisson brackets:
— £ {k(xT), k(X)) } —k' (xT)0(AxT) =2k (xT) 8" (AXT) + 1 6" (AxT),

— 25 {n(x7), w(X")}

—2u' (xY)6(AxT) = Bw(xT) 8 (AxT),

—2ke® (), w(x)) = g[rf(x*)a'(Ax*)H(x*)ﬁ'(x*)(smx*)]
1
X 1
" ! + / 10+ ~+ 5
— 418k (xN)& (AxT) + 5" (xT)8" (xT — % )]+ﬂ5( (Ax™
(19

Br(x)s" (AxT) + " (x1)s(AxT)]

» this is the W5 algebra. [Campoleoni, Fredenhagen, Pfenninger, Theisen]



» Right sector: Solve for residual gauge transformation parameters A :
A = NLi+i"Wn, (20)
which keep & form-invariant and 6< =0 & & =0
» 1Ro#0,i0 #0,0 "N =092 =0
Residual gauge transformation parameters are
A =R, 7P =), (21)

These induce:



» Charge under above A :

2
Q = £ dp2[A(Rof—6a°@og) +i2a° (8RS g — 3o f)] (23)
0

{F(x). ()} = — 2535 (Ax7), {g(x"), g(}")} = ~ etz 8 (AXT),

{f(x"), g(x")} = — 73R (Ax") (24)
where

A =Ry —ZaPoh (25)

» = u(1) ® u(1) Kat-Moody current for suitable combination of f & g.



> 2.Fp = —% and &y = 0 residual gauge transformation parameters are

M(XF) + Ag(xT) € + Xg(xT) e
A2 = )+ ng(x )+ ip(x e+ m(x e
+iip(x")e" ¥ (26)

2i X~

» One can collect the solution space parameters and the (residual) gauge
transformation parameters in:

{Jz7a:17"' 58} = {Qﬁa fKagN7 F'bhguh fwaguu hw}
N a=1,---.8 = {Xg, A, Ags g, Tlgs 11, Mgs M}

» Notice that the parameters 8 in each set.



In this notation, the action of the residual gauge parameters A on the sol.
space parameters J can be summarized:

5% = 04N — ifa,A°
27
QN = —£ [ diap A (27)
0
the expression for the charge can also be writen compactly as done
above.
The associated Poisson bracket algebra is:

k

N gab s +
2,170 (8x"). (28)

(SN, L) = iR (x)s(axT) +
where 7z & f.pe are the ones obtained from nab & fane DY replacing:
2 2

o — —Q .

—> Had we started with a s/(3, R) gauge group, we would end up with
an su(1,2) Ka¢-Moody current with central extension k = ¢/6.(and
vice versa)



» 3. Rg=0&@p =0

AED T = AL () X Ao(xT) + (x )P A (xT)
770 = (X)X () + (X )P mo(x) + (X;)3 m(x")
+(x7) ne(x)  (29)
» Collecting the parametrizing functions as before:
{Sfa=1,---,8 = {fq,f,f,0-2,9-1,00,0,02}
M a=1,---,8 = {X_1,2,A,0-2,1-1,70, 71,72}

The expression for the change in the sol. space parameters and the
associted charge simplifies to:

§J7 = O AT — fdPN°
Q] = £ / ax " nap AP (30)



» The Poisson brackets are:

k

(S, L)) = fachC(X+)5(AX+)*Enaby(AX*) (31)

» — One gets the same current algebra of that of the gauge group i.e.
sl/(3, R) Kaé-Moody current for an s/(3, R) gauge group; with central
extension k = ¢/6.



Further directions

» |t would be interesting to see what current algebras does one get once
more spins are included.

» Different choices of asymptotic symmetry algebra —- diff. chiral
induced W-gravities; further study of this analogy is required.

» Generalisations to include super-gravities and higher-spin supergravity
of these considerations.



....Thank You.
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