# Backreaction effects of matter coupled higher derivative gravity

#### Lata Kh Joshi (Based on arXiv:1409.8019, work done with Ramadevi)

Indian Institute of Technology, Bombay

ISM 2014, Dec 16, 2014

## Introduction

#### Strongly coupled field theories



# Introduction

#### Strongly coupled field theories





# Introduction

#### Strongly coupled field theories





#### AdS – CFT Correspondence

- *AdS CFT* correspondence
  - ► AdS<sub>5</sub>/CFT<sub>4</sub> [Maldacena, Adv.Theor.Math.Phys.2:231-252,1998]

Type IIB string theory on  $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4$  SYM theory.

- *AdS CFT* correspondence
  - AdS<sub>5</sub>/CFT<sub>4</sub> [Maldacena, Adv.Theor.Math.Phys.2:231-252,1998]

**Type IIB string theory on**  $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4$  **SYM theory**.

• A correspondence to relate theories of two very different kind. One in gravity and other in field theory.

Strong coupling  $\iff$  Weak coupling



- AdS CFT correspondence
  - AdS<sub>5</sub>/CFT<sub>4</sub> [Maldacena, Adv.Theor.Math.Phys.2:231-252,1998]

Type IIB string theory on  $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4$  SYM theory.

• A correspondence to relate theories of two very different kind. One in gravity and other in field theory.





• Specific limit:

Fluid-Gravity Correspondence

Hydrodynamics: Large length scales in field theories.

• To locate transition temperature precise behavior of  $\eta/s$  with  ${\cal T}$  is needed.

• To locate transition temperature precise behavior of  $\eta/s$  with  ${\cal T}$  is needed.



Figure: Sera Cremonini et al. arXiv:1206.3581

• The figure shows expectation taking analogy with  $H_2O$  and He plots.

Lata Joshi (IITB)

Matter coupled higher derivative gravity

#### Calculation of the correlator?

#### Calculation of the correlator?

Use AdS-CFT correspondence  $\langle e^{i \int_{\partial M} \phi_0 \tilde{O}} \rangle = e^{i S_{cl}[\phi]}$ 

 $ilde{O}$  is an operator in the boundary;  $\phi$  field in the bulk, with  $\phi_0$  value at boundary.

#### Calculation of the correlator?

Use AdS-CFT correspondence  $\langle e^{i \int_{\partial M} \phi_0 \tilde{O}} \rangle = e^{i S_{cl}[\phi]}$ 

 $ilde{O}$  is an operator in the boundary;  $\phi$  field in the bulk, with  $\phi_0$  value at boundary.

Giving,

$$\langle \tilde{O}(x_1)\tilde{O}(x_2)
angle = i^2rac{\delta^2}{\delta\phi_0(x_1)\delta\phi_0(x_2)}e^{iS_{cl}[\phi_0]}$$
 at  $\phi_0 o 0$ 

**Note:** We need to know the **background geometry** for the exact form of above correlator.

Lata Joshi (IITB)

# Background solutions in gravity

Einstein gravity with higher derivatives

$$S = \int d^D x \sqrt{-g} \left( R - 2\Lambda + c_1 R^2 + c_2 R^{\mu\nu} R_{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} \right)$$

# Background solutions in gravity

Einstein gravity with higher derivatives

$$S = \int d^{D}x \sqrt{-g} \left( R - 2\Lambda + c_{1}R^{2} + c_{2}R^{\mu\nu}R_{\mu\nu} + c_{3}R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right)$$
  
with  $\Lambda = -\frac{(D-1)(D-2)}{2}$   
 $ds^{2} = \frac{1}{r^{2}} \left( \left( -f(r)dt^{2} + (d\vec{x}^{2}) \right) + \frac{dr^{2}}{f(r)} \right)$ 

where, 
$$f(r) = 1 - r^{D-1} + \delta + \kappa r^{2(D-1)}$$

 $\delta$  and  $\kappa$  being dependent on D,  $c_1$ ,  $c_2$  and  $c_3$  (Kats and Petrov: arXiv 0712.0743)

# Matter coupling

To know the properties of QGP, it becomes necessary to consider dilaton field in the gravity

# Matter coupling

To know the properties of QGP, it becomes necessary to consider dilaton field in the gravity

**Consider the action** 

$$S = \frac{1}{2\kappa_D^2} \int d^D x [R - \frac{4}{D-2} (\partial \Phi(r))^2 - V(\Phi(r))]; \quad V(\Phi(r)) = 2\Lambda e^{\alpha \Phi(r)}$$

The already known solution to this action shows effects of matter on the background metric It is interesting to look upon the case of matter coupled higher derivative gravity

$$S = \frac{1}{2\kappa_D^2} \int d^D x (R - \frac{4}{D-2} (\partial \Phi(r))^2 - V(\Phi(r)) + \beta G(\Phi(r)) R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho})$$

with 
$$V(\Phi) = 2\Lambda e^{\alpha \Phi}$$
;  $G(\Phi) = e^{\gamma \Phi}$ .

It is interesting to look upon the case of matter coupled higher derivative gravity

$$S = \frac{1}{2\kappa_D^2} \int d^D x (R - \frac{4}{D-2} (\partial \Phi(r))^2 - V(\Phi(r)) + \beta G(\Phi(r)) R_{\mu\nu\sigma\rho} R^{\mu\nu\sigma\rho})$$
  
with  $V(\Phi) = 2\Lambda e^{\alpha\Phi}$ ;  $G(\Phi) = e^{\gamma\Phi}$ .

Varying the action with respect to metric field and scalar field gives,

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = T^{matter}_{\mu\nu} + T^{hd}_{\mu\nu}$$
$$\frac{8}{D-2}\Box\Phi(r) = \partial_{\Phi}(\beta G(\Phi(r))R_{\mu\nu\sigma\rho}R^{\mu\nu\sigma\rho} - V(\Phi(r)))$$
$$where, T_{\mu\nu} = -\frac{1}{\sqrt{-g}}\frac{\partial\sqrt{-g}L_{M}}{\partial g^{\mu\nu}}$$

• Choosing an ansatz is the most crucial part in solving the above equation.

- Choosing an ansatz is the most crucial part in solving the above equation.
- To find the solution up to  $\mathcal{O}(\beta)$ , we choose the ansatz as:

$$ds^{2} = -r^{-2a}(1 - r^{c(\beta,r)})dt^{2} + \frac{dr^{2}}{r^{-2a}(1 - r^{c(\beta,r)})r^{4}} + r^{-2a}d\vec{x}^{2}$$
  
$$\Phi(r) = m \log(r) + \beta \Phi_{1}(r)$$

where  $c[\beta, r]$  is chosen as:

$$c[r] = c + \frac{Log(1 - \beta\kappa(r))}{Log(r)}$$

#### The first order correction $\kappa(r)$ , is obtained as:

$$-(D-4)\left(4+\frac{(D-4)(D-1)16^{D-\frac{6((-1)^D+1)m}{D-2}}(g\times r)^{-aD+1}}{(D-2)((D-2)^2\alpha^2-16(D-1))}\right)+\frac{2\Lambda r^{\frac{m}{2}(\alpha+\gamma)}}{(D-2)}\times \left(r^{m\gamma+a(D-1)}\frac{((D-2)^2\alpha(3(D-2)\alpha+4(D-3)\gamma)-16(D-4)(D-3))}{((D-2)^2\alpha\gamma+16(D-1))}-r^{m\alpha}\frac{(4(D-1)(D-2)^2\alpha^2+8(D-3)(D-2)^2\alpha\gamma+64(D-4))}{((D-2)^2\alpha(\alpha+2\gamma)+16(D-1))}\right)$$

Horizon gets a linear order correction as:  $r_h = 1 + \beta r_1$ .

# Shear viscosity

**Kubo formula for viscosity** Low energy and low momentum limit of retarded Green's function of stress tensor in CFT.

$$\eta = -\lim_{\omega \to 0} \frac{1}{\omega} Im G^R_{xy;xy}(\omega, \mathbf{k} = 0)$$

• Translate the calculation of the correlator to a holographic one

# Shear viscosity

**Kubo formula for viscosity** Low energy and low momentum limit of retarded Green's function of stress tensor in CFT.

$$\eta = -\lim_{\omega o 0} rac{1}{\omega} Im G^R_{xy;xy}(\omega, \mathbf{k} = 0)$$

- Translate the calculation of the correlator to a holographic one
- perturbation in the xy components of the metric.

$$g_{xy} = g_{xy}^0 + \epsilon h_{xy}(r, x) = g_{xy}^0 + \epsilon g_{ii}\phi(r, x), \qquad \left[x = (t, \overrightarrow{x})\right]$$

with

$$\phi(\mathbf{r}, \mathbf{x}) = \frac{1}{(2\pi)^4} \int d^4 k e^{-i\mathbf{k}.\mathbf{x}} \phi(\mathbf{r}, \mathbf{k}),$$
$$\begin{bmatrix} \mathbf{k} = (\omega, \overrightarrow{\mathbf{k}}), & \mathbf{k}.\mathbf{x} = \mathbf{k}_{\mu} \mathbf{x}^{\mu} \end{bmatrix}$$

• Effective action up to order two for any power of curvature tensor under this perturbation:

$$S \sim \int \frac{d\omega d^{D-2}k}{(2\pi)^{D-1}} dr \left[ A(r,k)\phi''(r,k)\phi(r,-k) + B(r,k)\phi'(r,k)\phi'(r,-k) \right. \\ \left. + C(r,k)\phi'(r,k)\phi(r,-k) + D(r,k)\phi(r,k)\phi(r,-k) \right. \\ \left. + E(r,k)\phi''(r,k)\phi''(r,-k) + F(r,k)\phi''\phi'(r,-k) \right]$$

• Effective action up to order two for any power of curvature tensor under this perturbation:

$$S \sim \int \frac{d\omega d^{D-2}k}{(2\pi)^{D-1}} dr \left[ A(r,k)\phi''(r,k)\phi(r,-k) + B(r,k)\phi'(r,k)\phi'(r,-k) \right. \\ \left. + C(r,k)\phi'(r,k)\phi(r,-k) + D(r,k)\phi(r,k)\phi(r,-k) \right. \\ \left. + E(r,k)\phi''(r,k)\phi''(r,-k) + F(r,k)\phi''\phi'(r,-k) \right]$$

• Corresponding to this metric,

$$\eta = \left[ \sqrt{\frac{-g_{rr}}{g_{tt}}} \left( A - B + \frac{F'}{2} \right) + \left( E \left( \sqrt{\frac{-g_{rr}}{g_{tt}}} \right)' \right)' \right] \bigg|_{r=r_{H}}$$

(Myers, Poulos and Sinha: arXiv 0903.2834)

Lata Joshi (IITB)

# Entropy density

#### Wald formula

$$S = -2\pi \int_{\Sigma} d^{D-2}x \sqrt{-h} \frac{\delta L}{\delta R_{\mu\nu\rho\sigma}} \epsilon_{\mu\nu} \epsilon_{\rho\sigma}$$

$$\epsilon_{\mu\nu}\epsilon^{\mu\nu} = -2 \epsilon_{\mu\nu} = \xi_{\mu}\eta_{\nu} - \xi_{\nu}\eta_{\mu}$$

The L above is chosen by writing the action as

$$S_{action} \sim \int d^5 x \sqrt{-g} L$$

### Backreaction effects on $\eta$ and s

For the matter coupled higher derivative action the shear viscosity and entropy density is

$$\eta = \frac{1}{2\kappa_D^2} \left[ r_h^P - \frac{4\beta(D-2)^2 \alpha \gamma \left(\alpha^2 (D-2)^2 - 16(D-1)\right) r_0^M}{(16 + \alpha^2 (D-2)^2)^2} \right]$$
  

$$s = \frac{1}{2\kappa_D^2} \left[ 4\pi r_h^P - \frac{128\pi\beta(D-4) \left(\alpha^2 (D-2)^2 - 16(D-1)\right) r_0^N}{(16 + \alpha^2 (D-2)^2)^2} \right]$$

### Backreaction effects on $\eta$ and s

For the matter coupled higher derivative action the shear viscosity and entropy density is

$$\eta = \frac{1}{2\kappa_D^2} \left[ r_h^P - \frac{4\beta(D-2)^2 \alpha \gamma \left(\alpha^2 (D-2)^2 - 16(D-1)\right) r_0^M}{(16 + \alpha^2 (D-2)^2)^2} \right]$$
  

$$s = \frac{1}{2\kappa_D^2} \left[ 4\pi r_h^P - \frac{128\pi\beta(D-4) \left(\alpha^2 (D-2)^2 - 16(D-1)\right) r_0^N}{(16 + \alpha^2 (D-2)^2)^2} \right]$$

Giving,

$$\frac{\eta}{s} = \frac{1}{4\pi} \left[ 1 - \frac{4\beta \left( -16(D-1) + (D-2)^2 \alpha^2 \right) \left( -8(D-4) + (D-2)^2 \alpha \gamma \right)}{\left( 16 + (D-2)^2 \alpha^2 \right)^2} \right]$$



- Found the first order correction to the background metric for matter coupled higher derivative AdS gravity.
- Horizon gets a linear order correction due to matter presence.

# Summary

- Found the first order correction to the background metric for matter coupled higher derivative AdS gravity.
- Horizon gets a linear order correction due to matter presence.
- Shear viscosity and Entropy density get linear order correction via the correction in horizon
- However, the ratio  $\eta/s$  remains unaffected due to the backreaction in the metric.

# Summary

- Found the first order correction to the background metric for matter coupled higher derivative AdS gravity.
- Horizon gets a linear order correction due to matter presence.
- Shear viscosity and Entropy density get linear order correction via the correction in horizon
- However, the ratio  $\eta/s$  remains unaffected due to the backreaction in the metric.

**Puzzle:** Backreaction to the matter solution and  $\Lambda$  still remains unknown

# Summary

- Found the first order correction to the background metric for matter coupled higher derivative AdS gravity.
- Horizon gets a linear order correction due to matter presence.
- Shear viscosity and Entropy density get linear order correction via the correction in horizon
- However, the ratio  $\eta/s$  remains unaffected due to the backreaction in the metric.

**Puzzle:** Backreaction to the matter solution and  $\Lambda$  still remains unknown

# **Thank You**

# Anti de Sitter space

- Solution to Einstein equation with negative cosmological constant.
- Space of Lorentzian signature (-, +, +..+), but of constant negative curvature
- On boundary

$$-x_0^2 + \sum_{i=1}^{d-1} x_i^2 - x_{d+1}^2 = R^2$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \frac{1}{2}g_{\mu\nu}\Lambda = 0$$
(1)  
$$\implies R = \Lambda \frac{(d+1)}{d-1}$$
(2)

Thus constant negative curvature

$$R_{\mu\nu} = \frac{1}{d-1} \Lambda g_{\mu\nu} \tag{3}$$

Parametrize,

$$\Lambda = -\frac{d(d-1)}{L^2}$$
$$\implies R = -\frac{d(d+1)}{L^2}$$

Lata Joshi (IITB)

ISM 2014 17 / 15

▶ Back

(4)

# Conformal Field Theory

- Guage field theory with enhanced symmetries.
- Poincare symmetry + dilatations + special conformal symmetry

# Conformal Field Theory

- Guage field theory with enhanced symmetries.
- Poincare symmetry + dilatations + special conformal symmetry
- Dilatations:  $x_{\mu} \rightarrow \lambda x_{\mu}$
- special conformal: Translation+Inversion+Translation

Under special conformal:  $x'^{\mu} = x^{\mu} + 2x^{\mu}b.x - x^2b^{\mu}$ 



$$Translation: P_{\mu} = -i\partial_{\mu}$$
(5)  

$$Dilatations: D = -ix^{\mu}\partial_{\mu}$$
(6)  

$$Rotations: L_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})$$
(7)  

$$SCT: G_{\mu} = -2ix_{\mu}(x.\partial) + ix^{2}\partial_{\mu}$$
(8)

| - |     |     |
|---|-----|-----|
|   | rel | · • |
|   |     |     |