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Kaluza-Klein Theory: 

There is a long history of quantum instabilities of these backgrounds 

•  Casimir Forces 
•  Tunneling to “Nothing” 
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The Main Result 

Grimm and Savelli 2011	



Kaluza-Klein compactification of N=1 Supergravity is unstable. 

1. Introduction and Summary

The purpose of this paper is to study four-dimensional N = 1 supergravity compact-

ified on a spatial circle. We will show that this background is quantum mechanically

unstable: the circle dynamically expands and the ground state is Minkowski space with

all three spatial dimensions non-compact.

Quantum mechanical instabilities of Kaluza-Klein compactifications have a long his-

tory. In the absence of supersymmetry, a Casimir force is generated perturbatively with

a competition between bosonic fields, which cause the circle to contract, and fermionic

fields which cause the circle to expand [1]. More scary instabilities lurk at the non-

perturbative level, with space teetering on the brink of tunnelling into a bubble of

nothing [2].

The existence of supersymmetry removes both instabilities described above. But

another remains. As we show in some detail, a Casimir force is now generated by

gravitational instantons. This results in a superpotential which schematically takes the

form

W ∼ exp

�
− πR2

4GN
− iσ

�
(1.1)

where R is the radius of the spatial circle and σ is dual to the Kaluza-Klein photon,

dσ ∼ �F . The existence of the superpotential (1.1) was first proposed in [3] on the basis

of fermi zero mode counting. It is also closely related to the superpotentials arising

from D6-brane instantons wrapping G2-holonomy manifolds described in [4]. Our goal

in this paper is to develop the full quantum supergravity computation which results in

(1.1).

One motivation for performing the instanton calculation in some detail is that N = 1

supergravity offers a testing ground in which some of the old ideas of Euclidean quantum

gravity can be explored, but where many of the accompanying difficulties do not arise.

It thus provides an opportunity for precision Euclidean quantum gravity. Indeed, as

we will see, we will be able to compute the numerical prefactor in (1.1). In doing these

calculations, we met a number of issues that were (at least to us) surprising and we

think worth highlighting.

The Scale of Gravitational Instantons

The natural energy scale associated to any quantum gravity effect is usually thought

to lie far in the ultra-violet, whether Planck scale, string scale or something else. How-

ever, in situations where gravitational instantons play a role, this is not the only scale
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And Something Interesting Along the Way… 

Quantum Gravity has a hidden infra-red scale! 

This is the scale at which gravitational instantons contribute 
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The Theory: N=1 Supergravity 
2. Classical Aspects

We work with N = 1 supergravity in d = 3 + 1 dimensions. Throughout the paper,

we focus on the minimal theory containing only a graviton and gravitino. The bulk

four-dimensional action is given by

S =
M

2
pl

2

�
d
4
x
√
−g

�
R(4) + ψ̄µγ

µνρDνψρ

�
(2.1)

We use the notation of the (reduced) Planck massM2
pl = 1/8πGN instead of the Newton

constant GN . Here R(4) is the 4d Ricci scalar, with the subscript to distinguish it from

its 3d counterpart that we will introduce shortly. There is also the standard Gibbons-

Hawking boundary term which we have not written explicitly.

The action is to be thought of as a functional of the Majorana gravitino ψµ and the

vierbein e
a
µ where µ, ν = 0, 1, 2, 3 are spacetime indices and a, b = 0, 1, 2, 3 are tangent

space indices. Here we follow the standard notation of suppressing the spinor indices

on the gravitino, whose covariant derivative is given by

Dνψρ = ∂νψρ +
1

4
ω̂abνγ

abψρ

In this formalism, the spin connection ωabµ that appears in the covariant derivative

differs from the purely geometric spin connection by the addition of a gravitino torsion

term: ω̂abµ = ωabµ(e) +Habµ with

Habµ = −1

4
e
ν
ae

ρ
b

�
ψ̄µγρψν − ψ̄νγµψρ − ψ̄ργνψµ

�

The action is, of course, invariant under diffeomorphisms and local supersymmetry

transformations. The latter act as δeaµ = 1
2 �̄γ

aψmu and δψµ = Dµ�.

The classical theory also enjoys a U(1)R symmetry which acts by axial rotations on ψ.

As we describe in more detail in Sections 3 and 4, this U(1)R symmetry is anomalous in

the quantum theory. (Although, as we will see, it mixes with a U(1)J bosonic symmetry

that will be described shortly and a combination of the two survives.)

2.1 Reduction on a Circle

Our interest in this paper is in the dynamics of N = 1 supergravity when compactified

on a manifold M ∼= R1,2 × S1. We denote the physical radius of the circle as R.

We choose the spin structure such that the fermions are periodic around the compact

direction and supersymmetry is preserved.
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Compactify on a Circle 
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L is fiducial scale 

Fields R(xi) and Ai(xi) live here  

At distances larger than the compactification scale R, the dynamics is effectively

three dimensional. The metric degrees of freedom are parameterised by the familiar

Kaluza-Klein ansatz,

ds2(4) =
L2

R2
ds2(3) +

R2

L2

�
dz2 + Aidx

i
�2

(2.2)

where z ∈ [0, 2πL) is the periodic coordinate. Here R, Ai and the 3d metric g(3)ij are

dynamical degrees of freedom, while L is a fixed, fiducial scale. It is natural to pick

coordinates such that R(x) → L asymptotically and we will eventually do so but, for

now, we leave L arbitrary.

Evaluated on this background, the Einstein-Hilbert action becomes
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�

with M3 = 2πLM2
pl the 3d Planck scale and Fij = ∂iAj − ∂jAi the graviphoton field

strength.

In three dimensions, it is often useful to dualise the gauge field in favour of a periodic

scalar σ. This is particularly true if we are interested in instanton physics [5]. The dual

photon can be viewed as Lagrange multiplier which imposes the Bianchi identity,

Lσ =
σ

4πL
�ijkDiFjk (2.3)

With the magnetic charge quantised in integral units, σ has periodicity 2π. Integrating

out the field strength, we can write the low-energy effective action in dual form,

Seff =

�
d3x

�
−g(3)

�
M3

2
R(3) −M3

�
∂R

R

�2

− 1

M3

L2

R4

�
∂σ

2π

�2
�

(2.4)

This action enjoys a new U(1)J symmetry which acts by shifting the dual photon:

σ → σ + c. This symmetry is preserved in perturbation theory but, as we will see in

Section 4, is broken by instanton effects.

Our goal in this paper is to determine the quantum corrections to the effective action

(2.4). We describe perturbative corrections in Section 3 and instanton corrections in

Section 4.
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This action enjoys a new U(1)J symmetry which acts by shifting the dual photon:

σ → σ + c. All other fields are left invariant under this symmetry. The symmetry is

preserved in perturbation theory but, as we will see in Section 4, is broken by instanton

effects.

Our goal in this paper is to determine the quantum corrections to the effective action

(2.4). We describe perturbative corrections in Section 3 and instanton corrections in

Section 4.

6



Classical Low-Energy Physics 

At distances larger than the compactification scale R, the dynamics is effectively
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This action enjoys a new U(1)J symmetry which acts by shifting the dual photon:

σ → σ + c. This symmetry is preserved in perturbation theory but, as we will see in

Section 4, is broken by instanton effects.

Our goal in this paper is to determine the quantum corrections to the effective action

(2.4). We describe perturbative corrections in Section 3 and instanton corrections in

Section 4.
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Perturbative Quantum Corrections 



One-Loop Divergences 

At one-loop in pure gravity, there are three logarithmic divergences  
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These two can be absorbed by a field redefinition of the metric 
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The Riemann2 term can be massaged into Gauss-Bonnet. 
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This is purely topological. It doesn’t affect perturbative physics around flat space. 



The Gauss-Bonnet Term 

Christensen and Duff ’78	
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The coupling runs logarithmically 
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where the beta function is given by 

For our purposes, the most important one-loop divergence is associated to the Gauss-

Bonnet term (2.8). This, of course, is a total derivative in four-dimensions but will be

important when we come to discuss gravitational instanton physics. The coefficient α

is dimensionless and runs logarithmically at one-loop [6]

α(µ) = α0 − α1 log

�
M2

pl

µ2

�
(3.3)

where α0 is the coupling at the cut-off which, for convenience, we have identified with

the 4d Planck scale Mpl. In general, for a theory with Ns free massless spin-s fields,

the beta-function is given by [11, 12, 13]

α1 =
1

48 · 15
�
848N2 − 233N3/2 − 52N1 + 7N1/2 + 4N0

�

The computation leading to this result is closely related to the trace anomaly for

massless fields in fixed, curved spacetime. Indeed, for spins s ≤ 1, the coefficients

above are the same as c − a of the trace anomaly. The running coupling α(µ) results

in an RG-invariant scale,

Λgrav = µ exp

�
−α(µ)

2α1

�
(3.4)

For our present purposes, N0 = N1/2 = N1 = 0 while N3/2 = N2 = 1 which gives

α1 = 41/48.

In the original discussions of Euclidean quantum gravity, the suggestion seems to have

been that Λgrav (or sometimes µ) should be identified with the Planck scale. (See, for

example, [14]). In contrast, here we view Λgrav as a new scale which emerges in quantum

gravity through dimensional transmutation; it dictates the length at which topological

fluctuations are unsuppressed by the Gauss-Bonnet term. Like its counterpart ΛQCD in

Yang-Mills theory, Λgrav can be naturally exponentially smaller than the Planck scale.

As we will see shortly, like its Yang-Mills counterpart, it provides the scale at which

instanton effects become important.

In the previous section, we saw that α naturally sits in a chiral multiplet with the

gravitational theta-term θ. These combine into the complex coupling τgrav = α + 2iθ.

This means that the scale Λgrav = µe−τ/2α1 is also naturally complex in supergravity

and sits in a chiral multiplet.
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the beta-function is given by [11, 12, 13]

α1 =
1

48 · 15
�
848N2 − 233N3/2 − 52N1 + 7N1/2 + 4N0

�

The computation leading to this result is closely related to the trace anomaly for

massless fields in fixed, curved spacetime. Indeed, for spins s ≤ 1, the coefficients

above are the same as c − a of the trace anomaly. The running coupling α(µ) results

in an RG-invariant scale,

Λgrav = µ exp

�
−α(µ)

2α1

�
(3.4)

For our present purposes, N0 = N1/2 = N1 = 0 while N3/2 = N2 = 1 which gives

α1 = 41/48.

In the original discussions of Euclidean quantum gravity, the suggestion seems to have

been that Λgrav (or sometimes µ) should be identified with the Planck scale. (See, for

example, [14]). In contrast, here we view Λgrav as a new scale which emerges in quantum

gravity through dimensional transmutation; it dictates the length at which topological

fluctuations are unsuppressed by the Gauss-Bonnet term. Like its counterpart ΛQCD in

Yang-Mills theory, Λgrav can be naturally exponentially smaller than the Planck scale.

As we will see shortly, like its Yang-Mills counterpart, it provides the scale at which

instanton effects become important.

In the previous section, we saw that α naturally sits in a chiral multiplet with the

gravitational theta-term θ. These combine into the complex coupling τgrav = α + 2iθ.

This means that the scale Λgrav = µe−τ/2α1 is also naturally complex in supergravity

and sits in a chiral multiplet.
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This scale will be associated with physics arising from non-trivial topologies.  
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Another Divergence: The Anomaly 

The classical action is invariant under rotations of the phase of the fermion. 
 
This U(1)R symmetry does not survive in the quantum theory. 

The phase of the fermion can be absorbed by shifting the theta term 
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In general, the anomaly is given by [15, 16, 12]
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µ
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1
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�
21N3/2 −N1/2

�
�Rµνρσ Rµνρσ

(3.5)

For us, N1/2 = 0 and N3/2 = 1. As usual, the anomaly can be compensated by shifts on

the gravitational theta angle which means that we should view Λgrav as carrying U(1)R

charge.

3.2 One-Loop Determinants

In this section, we present the determinants arising from one-loop fluctuations of the

graviton, the gravitino and their ghosts. This material is standard fare but, since we

will need this for a number of subsequent calculations, we take the time to describe it

in some detail.

The Graviton and its Ghost

Throughout this paper, we use the background field method. We work in Euclidean

space and write the metric as background gµν , which is taken to obey the Einstein

equations, and fluctuation hµν ,

gµν → gµν + hµν

From now on, all covariant derivatives and curvatures are to be thought of with respect

to the background. It’s useful to further decompose the fluctuations into the trace

h = gµνhµν and traceless parts, h̄µν = hµν − 1
4gµνh.

We expand the Einstein-Hilbert action to quadratic order in hµν following, for exam-

ple, [19]. The residual gauge freedom hµν → hµν +∇µξν +∇νξµ is fixed by imposing

the condition

∇µ

�
hµν −

1

2
gµνh

�
= 0

The resulting Fadeev-Popov determinants are exponentiated in the usual fashion through

the introduction of ghosts which, in this context, are anti-commuting complex vectors.

The Einstein-Hilbert action is, famously, unbounded below. In the present context,

this shows up in the negative-definite operator∇2
for the trace fluctuations h. We follow

11

Fermions

This bosonic effective action has a fermionic counterpart which is dictated by super-

symmetry. Let us work for now with a Majorana basis of 4d gamma matrices,

γi
=

�
0 γi

3d

γi
3d 0

�
i = 0, 1, 2 , γz

=

�
1 0

0 −1

�
(2.5)

Upon dimensional reduction, the 4d Majorana gravitino ψµ decomposes into a 3d spin-

3/2 Dirac fermion λi and 3d spin-1/2 Dirac fermion χ. To perform this reduction, it’s

simplest to work with the frame index, so that ψa = eµaψµ. Further, to make life easy

for ourselves, we restrict to the flat background R1,2 × S1
with metric (2.2) and make

the spinor ansatz,

ψi =

�
Reλi + (γ3d)iImχ

Imλi + (γ3d)iReχ

�
and ψz =

�
Reχ

Imχ

�
(2.6)

The gravitino kinetic term in (2.1) then becomes,

Sfermions =

�
d4x

√
−g

M2
pl

2
ψ̄µγ

µνρ∂νψρ

=

�
d3x

�
−g(3)

M3L

R

�
1

2
λ̄i�

ijk∂iλk − χ̄ /∂χ

�
(2.7)

After dividing out by local supersymmetry transformations, the spin-3/2 fermion λi

carries no propagating degrees of freedom. (This is the supersymmetric analog of the

statement that the 3d metric carries no propagating degrees of freedom.) In contrast,

the spin-1/2 fermion χ carries two propagating degrees of freedom; these are the super-

symmetric partners of R and σ. We will postpone a more detailed discussion of how

supersymmetry relates R, σ and χ to Sections 3.4 and 4.4.

2.2 Topological Terms

In addition to the Einstein-Hilbert action, there are two topological terms that will play

a role in our story. Both are higher derivative terms, with dimensionless coefficients.

They are the Gauss-Bonnet term

Sα =
α

32π2

�
d4x

√
g �R�

µνρσ Rµνρσ
(2.8)

which integrates to the Euler characteristic of the manifold, and the Pontryagin class,

Sθ =
θ

16π2

�
d4x

√
−g �RµνρσRµνρσ

(2.9)
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In supergravity, these two coupling constants sit in a chiral multiplet 

If we care only about perturbative physics on R3 × S1
, then we can neglect these

terms. However, when we start to sum over manifolds of different topology, they

become important.

Usually, when working with an effective field theory, we keep all relevant and marginal

terms in the action, neglecting only the irrelevant operators on the grounds that they

are suppressed by some high mass scale. In the present case, there are two further

four-derivative terms which come with dimensionless coefficients: R2
and RµνRµν

.

However, both can be absorbed into the Einstein-Hilbert term through a redefinition

of the metric [6]. For this reason, we need only consider Sα and Sθ above.

In supergravity, the Gauss-Bonnet (2.8) and Pontryagin (2.9) terms can be written

as an F-term [17, 18] (using the so-called “chiral projection operator”). This, in turn,

means that the two coupling constants α and θ combine into the complex coupling

τgrav = α + 2iθ (2.10)

which naturally lives in a chiral multiplet. We will see later that τgrav appears in the

instanton generated superpotential.

3. Perturbative Aspects

In this section we describe the results of quantum fluctuations of the graviton and

gravitino around the background R1,2 × S1
. There are two kinds of effects: those from

divergences that arise already in four dimensions; and finite corrections to the low-

energy effective action which are suppressed by the dimensionless combination 1/M2
plR

2
.

3.1 Summary

We open this section by summarising the main results. The remainder of the section

contains details of the computations.

Finite Corrections

We start by describing finite corrections to the effective action that arise at one-loop.

These only occur when the theory is compactified on R1,2 × S1
and are due to loops

wrapping the spatial circle. The results depend on R, the radius of the circle and so are

non-local from the four-dimensional perspective. For this reason, they do not depend

on the ultra-violet details of the theory and are therefore calculable.
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Finite Quantum Corrections 
These finite corrections were first computed in the Kaluza-Klein context in [1], where

they manifested themselves as a Casimir force, causing the Kaluza-Klein circle to either

shrink or expand. (The analogous calculation was performed earlier in the thermal

context [9]). The effective 3d potential is given by1

Veff = −NB −NF

720π

L3

R6
(3.1)

Here NB is the number of massless bosonic degrees of freedom; these make the Kaluza-

Klein circle contract. NF the number of massless fermionic degrees of freedom; these

make the circle expand. Of course, in supersymmetric theories NB = NF and Kaluza-

Klein compactifications are perturbatively stable. The presence of fermions with peri-

odic boundary conditions means that the bubble-of-nothing instability is absent in this

theory [2], but other gravitational instantons, discussed in Section 4, will contribute.

Although the perturbative potential vanishes, there are still finite one-loop effects of

interest. These renormalise the kinetic terms in the effective action (2.4). Much of this

section is devoted to computing these effects; we will show that the low-energy effective

action becomes,

Leff =
1

2

�
M3 +

5

16π

L

R2

�
R(3) −

�
M3 −

1

6π

L

R2

��
∂R

R

�2

−
�
M3 +

11

24π

L

R2

�−1 L2

R4

�
∂σ

2π

�2

(3.2)

This is the one-loop effective action. We certainly expect that there will be further

corrections, both from higher-loops and from non-perturbative effects. Nonetheless,

this will suffice for our purposes. The most important fact that we will need is the

observation that the renormalisation of the R and σ kinetic terms come with different

coefficients. This will prove important later when we reconcile this with supersymmetry:

it results in a one-loop shift in the complex structure. We describe this in Section 3.4.

Anomalies and One-Loop Divergences

Also important for our story are the divergences that appear at one-loop. It is well

known that the S-matrix is one-loop finite in pure Einstein gravity [6] and two-loop

finite in pure N = 1 supergravity [7, 8]. Nonetheless, as we now review, these theories

do suffer from one-loop divergences which are related to anomalies.

1The standard Casimir potential in four dimensions scales as 1/R3. The 1/R6 scaling seen here
arises after a Weyl transformation to the 3d Einstein frame.
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Supersymmetry means that NB=NF  and this Casimir energy vanishes. 
 
But there are other effects….  
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The Complex Structure 

The two fields R and σ must combine in a complex number   

Classically: 

is blurred, the obvious analogy is to consider ‘initial’ and ‘final’ surfaces which are

asymptotically flat hemispheres of S2
with a (necessarily trivial) S1

bundle, and require

them to be glued in a locally smooth, flat manner. The non-trivial global behaviour

now arises due to the possibility of creating a non-trivial bundle of S1
over the whole

S2
.

We conclude that, despite the different boundary conditions, we should be summing

over Taub-NUT configurations to determine the low-energy physics on R1,2 × S1
. We

would reach the same conclusion by considering the low-energy world where we would

expect to sum over different Dirac monopole configurations provided they have a suit-

able microscopic completion [5]. We also reach the same conclusion by considering

the very high-energy world of string theory, where these Taub-NUT instantons can be

viewed as D6-brane instantons wrapping manifolds of G2-holonomy [4].

The multi-Taub-NUT solution (4.2) enjoys 3k bosonic zero modes, parameterised by

the centres Xa, and 2k spin-3/2 fermionic zero modes [28]
6
. Although this result is

well known, we will provide a slightly different derivation of the index theorem for the

fermionic zero modes in Section 4.3 en route to calculating the one-loop determinants.

For now, we merely note that only the k = 1 Taub-NUT solution, with two fermionic

zero modes, can contribute to the superpotential [3].

The Action

The Einstein-Hilbert action evaluated on the Taub-NUT space with charge k = 1 is,

after subtracting appropriate counterterms, given by [29, 35],

STN = 2π2M2
plR

2

where R here is interpreted as the asymptotic radius of the circle. (In the coordinates

(4.2), we could just as well have written STN = 2π2M2
plL

2
.) However, there are a

number of further contributions to the action. The first comes from the dual 3d photon

which, as first observed by Polyakov, acts as a chemical potential for the topological

instanton charge [5]. This follows from the coupling (2.3): the 3d field strength arising

from the metric (4.2) has charge
�
S2 F = 2πL, which ensures that the single Taub-NUT

instanton also comes with a factor of

S = 2π2M2
plR

2
+ iσ

6For Yang-Mills instantons, the number of zero modes can be simply determined by integrating
the anomaly. In the present case there is a mismatch between the integrated anomaly (3.5) and the
number of zero modes due to the presence of boundary terms. These are known as eta-invariants [36]
and will also play a role when we come to discuss the one-loop determinants around the background
of the gravitational instanton.
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and the classical action (2.4) for this complex scalar takes the form

S = −M3

�
d3x

�
−g(3)

1

(S + S†)2
∂S∂S†

(3.25)

which is derived from the classical Kähler potential

K = − log(S + S†
) (3.26)

The presence of the Planck mass Mpl in the complex structure (3.24) means that this

chiral multiplet does not survive the rigid limit in which gravity is decoupled. (The

distinction between rigid and gravitational theories was stressed, in particular, in [24]).

This, in turn, means that we cannot use the fact that R sits in a chiral multiplet to

restrict the way it appears in superpotentials when rigid supersymmetric gauge theories

are compactified on a circle as in [38, 39]
4
.

One-Loop Corrected Complex Structure

As we have just seen, the kinetic terms are corrected at one-loop. This in principle

affects both the complex structure and Kähler potential. For our present purposes, we

are only concerned with the shift to the complex structure.

The renormalisation of the complex structure can be seen from the fact that the

(∂R)
2
and (∂σ)2 terms pick up different 1/R2

corrections in (3.23). (Strictly speaking,

we should first perform a conformal transformation so that we are working in the

Einstein frame, but this only affects the complex structure at order 1/R4
and so can be

neglected at one-loop order.) It is simple to check that the one-loop corrected complex

structure is given by

S = 2π2M2
plR

2
+

7

48
log(M2

plR
2
) + iσ (3.27)

(Tracing the origin of this shift, we see that it depends on the �a coefficients defined in

(3.16), but is independent of the �b coefficients defined in (3.17)). We will have use for

this later when we compute the instanton-generated superpotential.

3.5 Divergences and the Heat Kernel

The gradient expansion employed in Section 3.3 is the simplest approach for computing

the effective action at the two derivative level. However, it becomes increasingly cum-

bersome as we look to higher derivatives. In particular, as described at the beginning

4We thank N. Seiberg for discussions on these issues.
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Non-Perturbative Quantum Corrections 



Gravitational Instantons 

Look for other saddle points of the action 

We want these to contribute to the (super)potential. They must obey 

We note that the interpretation of this “running” as a scale-dependent coupling

constant comes with a caveat. In gauge theories, the running coupling g2(µ) tells us

how the strength of local interactions varies with the energy scale of the process. But, in

the gravitational context, there is no local process associated to the Gauss-Bonnet term.

Instead, it knows only about the global properties of the space. The real physics in this

running coupling is the emergence of the infra-red scale Λgrav defined in (3.4) which

tells us characteristic scale at which manifolds with different topologies contribute to

the path integral.

4. Non-Perturbative Aspects

In this section we describe the instanton corrections to the low-energy effective action.

We will show that they generate a superpotential term for the chiral multiplet S. The
techniques of gravitational instanton computations were pioneered in the late 1970s [27,

28, 29] and much of this section is devoted to reviewing and extending this machinery.

We start, however, with a brief introduction to gravitational instantons and the role

they play in N = 1 supergravity.

4.1 Gravitational Instantons

Gravitational instantons are saddle points of the four-dimensional path integral. In

supersymmetric theories, we can restrict attention to (anti)-self-dual solutions to the

Einstein equations satisfying

Rµνρσ = ±�Rµνρσ (4.1)

Such backgrounds preserve half of the supersymmetry. This means that supersymmetry

transformations generate only two fermionic Goldstino zero modes, which is the right

number to contribute towards a superpotential in N = 1 theories [30]. The self-duality

requirement (4.1) is a necessary, but not sufficient, condition for instantons to contribute

to the superpotential; there may also be further fermionic zero modes which do not

arise from broken supersymmetry which we describe below.

For theories on R3×S1, the gravitational instantons are Kaluza-Klein monopoles [31,

32] which, in the present context are perhaps best referred to as “Kaluza-Klein instan-

tons”. From the low-energy 3d perspective, these solutions look like Dirac monopoles

and the calculation can be thought of as a gravitational completion of Polyakov’s fa-

mous computation [5]. The contribution of these “Kaluza-Klein instantons” has been

discussed previously in the non-supersymmetric context in [33] and, more recently, in

[34].
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Taub-NUT Instantons 

Gross ’84	


Hartnoll and Ramirez ‘13	



The appropriate metrics are given by the multi-Taub-NUT solutions 

Gibbons and Hawking ‘78	

The simplest class of gravitational instantons are the multi-Taub-NUT metrics [27],

ds2 = U(x)dx · dx+ U(x)−1 (dz +A · dx)2 (4.2)

with

U(x) = 1 +
L

2

k�

a=1

1

|x−Xa|
and ∇×A = ±∇U

The metric is smooth when z ∈ [0, 2πL) and the Xa are distinct. For ∇×A = ±∇U ,

the Riemann tensor obeys Rµνρσ = ∓�Rµνρσ.

The Taub-NUT metric takes the same form as our Kaluza-Klein ansatz (2.2) with

U = L2/R2. However, because U → 1 asymptotically, it means that we have made a

coordinate choice in which the fiducial length L is taken to be the physical asymptotic

length of the circle: R(x) → L.

One might wonder about the relevance of Taub-NUT spaces to the Euclidean path

integral. Ultimately, we’re interested in physics on R1,2×S1 and, after a Wick rotation,

the boundary of space is S2 × S1. But for k �= 0, the boundary of the manifold is the

S1 is fibered non-trivially over the S2. For example, with k = 1, the boundary is

topologically S3. The question at hand is whether we should sum over these different

boundary conditions in the path integral.

A similar question arises in gauge theories in flat space, where the issue becomes

whether one should sum over topologically non-trivial bundles at infinity. Here the

answer is certainly yes: a trivial gauge bundle can be smoothly deformed into an

instanton-anti-instanton pair which are subsequently moved far apart. Such configura-

tions certainly contribute to the path integral but locality and cluster decomposition

then requires us to also sum over individual instanton bundles. (See, for example, [24]

for a recent discussion of this topic). However, these same arguments also hold in the

present case: we can equally well locally nucleate a NUT-anti-NUT pair which can

then be moved far apart. This suggests that should sum over all asymptotic windings.

(There is, admittedly, one loophole which is the lack of local observables in a theory of

gravity but this does not seem to be a serious objection to the argument.)

Another way to motivate including non-trivial S1 bundles is to consider a parallel

to a more familiar story with gauge theory instantons. There, one imposes ‘initial’

and ‘final’ conditions in Euclidean time and boundary conditions at spatial infinity

which require local decay everywhere, but allow for non-trivial global behaviour of

the solution. For us, where the distinction between initial and boundary conditions
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From the low-energy 3d perspective, these look like Dirac monopoles. 
 
This is the gravitational verson of Polyakov’s famous calculation. Polyakov ‘77	





Zero Modes of Taub-NUT 
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boundary conditions in the path integral.

A similar question arises in gauge theories in flat space, where the issue becomes

whether one should sum over topologically non-trivial bundles at infinity. Here the
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3k bosonic zero modes 
 
2k fermionic zero modes 

Only k=1 solution contributes to the superpotential 
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An ugly number 
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is blurred, the obvious analogy is to consider ‘initial’ and ‘final’ surfaces which are

asymptotically flat hemispheres of S2
with a (necessarily trivial) S1

bundle, and require

them to be glued in a locally smooth, flat manner. The non-trivial global behaviour

now arises due to the possibility of creating a non-trivial bundle of S1
over the whole

S2
.

We conclude that, despite the different boundary conditions, we should be summing

over Taub-NUT configurations to determine the low-energy physics on R1,2 × S1
. We

would reach the same conclusion by considering the low-energy world where we would

expect to sum over different Dirac monopole configurations provided they have a suit-

able microscopic completion [5]. We also reach the same conclusion by considering

the very high-energy world of string theory, where these Taub-NUT instantons can be

viewed as D6-brane instantons wrapping manifolds of G2-holonomy [4].

The multi-Taub-NUT solution (4.2) enjoys 3k bosonic zero modes, parameterised by

the centres Xa, and 2k spin-3/2 fermionic zero modes [28]
6
. Although this result is

well known, we will provide a slightly different derivation of the index theorem for the

fermionic zero modes in Section 4.3 en route to calculating the one-loop determinants.

For now, we merely note that only the k = 1 Taub-NUT solution, with two fermionic

zero modes, can contribute to the superpotential [3].

The Action

The Einstein-Hilbert action evaluated on the Taub-NUT space with charge k = 1 is,

after subtracting appropriate counterterms, given by [29, 35],

STN = 2π2M2
plR

2

where R here is interpreted as the asymptotic radius of the circle. (In the coordinates

(4.2), we could just as well have written STN = 2π2M2
plL

2
.) However, there are a

number of further contributions to the action. The first comes from the dual 3d photon

which, as first observed by Polyakov, acts as a chemical potential for the topological

instanton charge [5]. This follows from the coupling (2.3): the 3d field strength arising

from the metric (4.2) has charge
�
S2 F = 2πL, which ensures that the single Taub-NUT

instanton also comes with a factor of

S = 2π2M2
plR

2
+ iσ

6For Yang-Mills instantons, the number of zero modes can be simply determined by integrating
the anomaly. In the present case there is a mismatch between the integrated anomaly (3.5) and the
number of zero modes due to the presence of boundary terms. These are known as eta-invariants [36]
and will also play a role when we come to discuss the one-loop determinants around the background
of the gravitational instanton.
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and the classical action (2.4) for this complex scalar takes the form

S = −M3

�
d3x

�
−g(3)

1

(S + S†)2
∂S∂S†

(3.25)

which is derived from the classical Kähler potential

K = − log(S + S†
) (3.26)

The presence of the Planck mass Mpl in the complex structure (3.24) means that this

chiral multiplet does not survive the rigid limit in which gravity is decoupled. (The

distinction between rigid and gravitational theories was stressed, in particular, in [24]).

This, in turn, means that we cannot use the fact that R sits in a chiral multiplet to

restrict the way it appears in superpotentials when rigid supersymmetric gauge theories

are compactified on a circle as in [38, 39]
4
.

One-Loop Corrected Complex Structure

As we have just seen, the kinetic terms are corrected at one-loop. This in principle

affects both the complex structure and Kähler potential. For our present purposes, we

are only concerned with the shift to the complex structure.

The renormalisation of the complex structure can be seen from the fact that the

(∂R)
2
and (∂σ)2 terms pick up different 1/R2

corrections in (3.23). (Strictly speaking,

we should first perform a conformal transformation so that we are working in the

Einstein frame, but this only affects the complex structure at order 1/R4
and so can be

neglected at one-loop order.) It is simple to check that the one-loop corrected complex

structure is given by

S = 2π2M2
plR

2
+

7

48
log(M2

plR
2
) + iσ (3.27)

(Tracing the origin of this shift, we see that it depends on the �a coefficients defined in

(3.16), but is independent of the �b coefficients defined in (3.17)). We will have use for

this later when we compute the instanton-generated superpotential.

3.5 Divergences and the Heat Kernel

The gradient expansion employed in Section 3.3 is the simplest approach for computing

the effective action at the two derivative level. However, it becomes increasingly cum-

bersome as we look to higher derivatives. In particular, as described at the beginning

4We thank N. Seiberg for discussions on these issues.
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with 

we find that the superpotential is given by,

W = CM3

�
Λgrav

Mpl

�41/24

e−S

with the overall constant

C =

�
4e24ζ

�(−1)−1
�7/48

2(4π)3/2

Note that the superpotential is not invariant under the U(1)J symmetry which shifts

the dual photon. Further, the Yukawa vertex in (4.20) explicitly breaks the U(1)R

symmetry under which the gravitino is charge; this is manifestation of the axial anomaly

(3.5). However, a combination of U(1)J and U(1)R symmetry survive.

The Potential

The supersymmetric completion of the Yukawa term is a potential. In three-dimensional

supergravity, this is given by (see, for example, [23, 3])

V = M3 e
K
�
(∂∂̄K)

−1
|DW|

2 − 4|W|
2
�

with DW = ∂W + (∂K)W . This potential includes some critical points at S ∼ O(1).

They are not to be trusted as they lie outside the semi-classical regime of large S where

we performed our calculation. Instead, at large S, the potential is dominated by the

|W �|2 term and takes the runaway form

V ∼ M3
3 (RΛgrav)

41/24
exp

�
−4π2M2

plR
2
�

We learn that the Kaluza-Klein compactification of N = 1 supergravity on R3 × S1
is

not a ground state of the theory. This instanton-generated potential causes the circle

to decompactify to large radius R.
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Kaluza-Klein compactification of N=1 supergravity is unstable 

The ground state has R   ∞ 



Open Questions 

distance2 = −
�
1− 2GM

rc2

�
δt2 +

�
1− 2GM

rc2

�−1

dr2 + r2
�
δθ2 + sin2 θδφ2

�

x = R sin θ sinφ

y = R sin θ cosφ

z = R cos θ

δx = (R cos θ sinφ)δθ + (R sin θ cosφ)δφ

δy = (R cos θ cosφ)δθ − (R sin θ sinφ)δφ

δz = −(R sin θ)δθ

θ

φ

M = R1,d−1 × S1

∂µσ ∼ 1

2
�µνρF

νρ

Λgrav � Mpl

Leff =

�
1− 1

6π

L

M3R2

��
∂R

R

�2

+

�
1 +

11

24π

L

M3R2

�−1 L2

R4

�
∂σ

2π

�2

Leff = K(S,S†) ∂S∂S†

Leff =

�
∂R

R

�2

+
1

M2
3

L2

R4

�
∂σ

2π

�2

Leff =
1

(S + S†)2
∂S∂S†
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What is this good for? 
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