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As all’ precivus g/ﬁj/

exact results in QFT are highly desirable but rare




¢ Supersymmetry has proven a very successful theoretical tool

¢ Inthe last few years: many new exact results

about supersymmetric QFT in curved space

based on the technique of supersymmetric localization

% In this talk :

¢ focus on partition function Z

¢ study dependence of Z on geometry

¢ probe the theory varying shape & size parameters




Ouvutline
& Wil consider St x S* topology 51© |
X
as a complex manifold: Hopf surface

Compute the exact partition function of N=1 QFTs

(with an R-symmetry)

¢ reproduce old results (the index) with a different approach
¢ define a new interesting quantity (susy Casimir energy)

¢ put this in the context of gauge-gravity duality

Based on 1402.2278 with D. Martelli

1405.5144, 1410.6487 with B. Assel and D. Martelli



Localization

® Under some assumptions, the Euclidean supersymmetric path integral

can be deformed by a susy-exact term, so that

¢ itis dominated by supersymmetric configurations ®

¢ saddle point approximation becomes exact
=?» huge simplification !

r

1 )
Z = /cho e~ 51 ®ol
Sdet kinetic operator for  P|
often 9 = const, so DPy — dPg
=» infinite-dimensional integral reduces to a finite one
g J

® |n the last years: exact partition function computed for many

theories on various geometries, in different dimensions.



Partition function with sources

Need to place our field theory on a Riemannian manifold, preserving susy

® Couple it to background fields :

SI®5 Ay g = Sol®]+ [ (A + 9" T + ..

A f \

background  background conserved  energy-momentum
| gaugefield curvedmetric | | current tensor |
v ’ v ’
supergravity multiplet super-current multiplet

® Partition function :

Z[Aps g] = / D ¢~ SIFiA 0,



Supersymmetric backgrounds

® \Vhich curved backgrounds preserve supersymmetry?

method : start from off-shell supergravity and take a rigid limit 1, =0

01, = 0 constrains background metric and auxiliary fields

Festuccia, Seiberg 11

( )
answer for a four-dimensional N=1 theory with an R-symmetry :

¢ one supercharge < complex manifold with Hermitian metric

¢ two supercharges (of opposite R-charge) =» complexisometry K

other background fields, including A, coupling to R-current, determined

Klare, Tomasiello, Zaffaroni; Dumitrescu, Festuccia, Seibergj

Focus on second case : localization more powerful



Hopf surfaces

Assel, DC, Martelli,
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® Complex manifolds with S* x S§° topology are Hopf surfaces H,, 4

defined as a quotient of C* — (0, 0) (21, 22) ~ (pz1,q22)

—27b, —27bo

P = € , q = e . complex structure moduli
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® Complex manifolds with S* x S° topology are Hopf surfaces H, 4
defined as a quotient of C* — (0, 0) (21, 22) ~ (pz1,q22)
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P = € , q = e . complex structure moduli

® two supercharges: complex Kiling vector gl
o0 o0 o0
K = b - b2 1 TO A
01 0o oT

S?3 as torus fibration over an interval; by, b € R for simplicity




Hopf surfaces

Assel, DC, Martelli,

o 1 = .
Choose S* x S* topology also Closset, Shamir

® Complex manifolds with S* x S§° topology are Hopf surfaces H,, 4

defined as a quotient of C* — (0, 0) (21, 22) ~ (pz1,q22)

p — e—27‘l’b1, q — e—27'l'b2

® two supercharges: complex Kiling vector gl g3
o o0 o p
K = b - by i TO X &
Op1 Op2 ot

S?3 as torus fibration over an interval; by, b € R for simplicity

. complex structure moduli

® compatible metric has U(1)xU(1)xU(1) symmetry, still very general :

ds® = Q*(p)d7? + f%(p)dp® + mr;(p)derdes I,J=1,2



Localization on Hopf surfaces

® Consider partition function of an Euclidean theory on H, 4 , with
¢ vector multiplet for general gauge group

¢ (charged) chiral multiplets, with superpotential
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flat connections F = 0 = A. = const
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Localization on Hopf surfaces

® Consider partition function of an Euclidean theory on H, 4 , with
¢ vector multiplet for general gauge group

¢ (charged) chiral multiplets, with superpotential

® Adding a suitable susy-exact deformation term,

flat connections F = 0 = A. = const
localization locus : D { | |
all other fields vanish

® Integral over field fluctuations around localization locus :

Sdet kinetic operator for d P|

¢ cancellations between bosonic and fermionic eigenvalues

¢ left with oo product over 3 integers (from Fourier modes on U(1)3)

¢ regularized using generalised version of I"and ¢ functions



Localization on Hopf surfaces

Result : Z[MHp ql = e~ FPAT(p,q)
prefactor \ supersymmetric index
(psp)"c(q;9)"¢
I(p,q) N |W| /271'7,2 H 9(z ,p)H HHF zp(pq)2,p, )

TrG aEA—|— J pEAJ



Localization on Hopf surfaces

Result : Z[MHp ql = e~ FPAT(p,q)
prefactor \ supersymmetric index
(psp)"¢(q;5q)"¢
I(prq) = —/ 0 (=*,p)0 (= r.(=*(pg) % ,p, q)
wi ) ez 1L ol 1L
defined as

Z(p,q) = tr [(—1)Fp‘f" 2q7" J"}

= fugacities
Romelsberger;

refined Witten index tr(—1)*" counting certain BPS states Kinney et al.



Localization on Hopf surfaces

Result : Z[MHp ql = e~ FPAT(p,q)
prefactor \ supersymmetric index
I(p,q) = (p;p)w\(;'];m/z [ ¢z*p)0(z=*,q) [] ] Te(z*(pa)*,p,q)
TrG sza€A+ J peEAy
defined as , ,
Z(p,q) = tr [(—1)pr" zq 7 “}
= fugacities
. . . I . . Romelsberger;
refined Witten index tr(—1)" counting certain BPS states Kinney et al.

® General arguments show that Z does not depend on Hermitian metric
and is a holomorphic function of the complex structure parameters

Closset, Dumitrescu, Festuccia, KomargodsKi

® 7|Hp,q| conjectured to compute Z(p, q)

-» we have explicitly checked this. Found an exira contribution F(p, q)



Localization on Hopf surfaces

Z[Hp,q = e_]:(p’Q)I(PaQ)

/o N

N
47 47 (bl —I— b2)3

F = — (by +bs) (a — c) 4 3c—2a
(p,q) 5 (b1 + b2) ( ) 27 bibs ( )

y

p = e—27rb1 : q = e—27rb2

3 : 1 e -

a = — (3trR —trR), cC = — (9trR —5trR) R : fermionic

32 ~ ~ 32 R-charge

SCFT central charges



Localization on Hopf surfaces

Z[Hp,q = e_]:(p’q)I(Pa‘I)

/N

47T 47 (by + b2)?
]:(p,q):?(bl—l—bQ) (a — ¢) - 37 bibs (3c—2a)
J
p = e—27rb1 : q = e—27rb2

is this physical or ambiguous?




Ambiguities

¢ two choices of renormalisation scheme may differ by finife counterterms
¢ allowed counterterms are restricted by symmetries

¢ a physical observable should not depend on the chosen scheme

( )
- allowed finite counterterms parametrise ambiguities

iNn the computation of partition function

We have classified the supersymmetric, local counterterms.

All finite ones vanish whenever two supercharges are preserved.

=> there is no ambiguity in the partition function on Hopf surfaces



Localization on Hopf surfaces

Z[Hp,q = e_]:(p’Q)I(PaQ)

/N

47T 47 (by + bg)®
— 2" (by + bs) (a — ¢) - 3c— 2
F(p,q) 5 (b1 + b2) (a — ¢) 27 bibs (3c a)

—27wb, —27bso

D = € sy q@ = €
¢ physical (non-removable by supersymmetric local counterterm)

¢ defines a supersymmetric Casimir energy

¢ related to anomalies?  which regularisation is correct?

in progress - Assel, DC, Di Pietro, Komargodski, Lorenzen, Martelli

¢ dominates Z at large N =» prediction for dual supergravity solutions




Gravity duals

AdS/CFT master equation (at large N)

e—Sgravity[M5] — Z[M4]

My = OMs QFT background fields <= gravity boundary conditions
g J

=» can explore new corners of AdS/CFT

® When OMs = 'H,. 4, our prediction from localization (at large N):

( )

7T2 (bl —|— b2)3
S5dsugra[M5] — 54G5 blbz

G J

(entirely from prefactor)



New supergravity solution

We took a first step : D.C., Martelli "14

O s

® considered S' x S°

squashed 3
SZ r Ssquashed

impose enhanced symmetry U(1)xU(1)xU(1) = SU(2)xU(1)xU(1)

® studied 5d supergravity susy equations with these boundary conditions

22?2 '
277 ¢ ¢

> tS?

squashed

~

IR UV

-




New supergravity solution
D.C., Martelli ‘14

found a new one-parameter family of solutions

boundary
1 .
¢ regular AdS-like 1
€ no horizon " S?quashed
¢ family parameterized by )
sguashing of §° IR uv

¢ solution obtained in Lorentzian signature

analytic continuation t — 2t yields a complex bulk metric

¢® However, boundary metric and on-shell action remain real



New supergravity solution

¢ on-shell action agrees with field theory formula, with

by = b = 3, B =

\ rsll—lopf
field theory w2 (b1 + bz)3 472

.o . S suora M — —
prediction 5d sugra [ V5] 54Gs  byibo 27G’56
gravity : Ssd sugra|Ms] = il B4 ... «——tems independent
> 27Gx of 3

A need better understanding of supersymmetric holographic renormalization

- something to learn about (supersymmetric) AdS/CFT !



Conclusions

® \We saw an explicit computation of the partition function of N=1 gauge

theories on a Hopf surface H allowing for a general metric

p.q"

Z[Hp,q = e_}_(p’q)I(P ,q)

® First holographic check by constructing a new supergravity solution

® F(p,q) definesa supersymmetric Casimir energy

Future work :
¢ to explore more its (universal?) meaning in field theory

¢ toretrieve it in full generality in a holographic setup

=?» refine our understanding of gauge-gravity correspondence

¢ implications for matching black hole entropy?



.- f/’lan,é oLl !



